LES TRANSGRESSIONS OLIGOCÈNES SUR LE MASSIF ARDENNE-EIFEL1

par

Alain DEMOULIN2

(1 figure et 1 tableau)

ABSTRACT.- The author reports and comments the discovering of silicified Oligocene marine sands on the Weisser Stein massif, in the heart of the Ardenne-Eifel. He furthermore demonstrates the Tongrian age of the marine sands preserved on the northern edge of the Ardenne and briefly describes the Oligocene transgressions on the Ardenne-Eifel.

INTRODUCTION

L’invasion du massif Ardenne-Eifel par une mer oligocène fait toujours l’objet d’un certain nombre de questions. De nombreux auteurs se sont attelés à ce problème, le plus souvent en l’abordant par une seule de ses facettes, à savoir le prolongement vers l’intérieur du massif des diverses couvertures tertiaires qui le limitent sur l’une ou l’autre de ses bordures. Malheureusement, selon que l’on aborde le massif par l’un ou l’autre de ses flancs, les études attribuent un âge différent, quoique généralement oligocène, au recouvrement tertiaire du massif par la mer. Quant aux trop rares discussions synthétiques de la question (Alexandre, 1976), elles constituent souvent une simple juxtaposition de résultats si divers qu’il est bien difficile d’en extraire des conclusions cohérentes sur cette transgression. Après une longue controverse sur un éventuel âge chattien des sables de la région liégeoise et, par extension, des sables marins tertiaires du plateau des Hautes Fagnes et du Condroz (Rutot, 1907; Destinez, 1909; Velge, 1909, Fourmarier, 1930; Macar & De Magnée, 1936; Bourguignon, 1954; Calember, 1954), il semble qu’un consensus est apparu parmi les auteurs belges pour attribuer ces sédiments azoïques au Tongrien marin (Thibeau, 1960; Alexandre, 1976; Soyer, 1978; Voisin, 1981; Demoulin, 1987), ainsi que l’avaient proposé Rutot & Vanden Broeck (1891) dès le siècle dernier. Du côté allemand par contre, une opinion différente est tout aussi solidement établie : parmi les dépôts marins tertiaires de la Baie du Rhin inférieur, ce sont les sables des «Kölner Schichten» qui s’avancent le plus au sud vers le Massif schisteux rhénan et c’est à eux qu’ont été rattachés les placages de sables marins tertiaires de la bordure nord de l’Eifel. La similitude de ces derniers avec les sables des Hautes Fagnes a par la suite conduit à reporter

1 Manuscrit déposé en avril 1989.
2 Boursier de la Fondation A. von Humboldt, Köln, R.F.A.
Froidebermont 30, B-4641 Oine, Belgium.
ceux-ci également aux Kölner Schichten (Hager, 1980). Or, les études les plus récentes placent le dépôt des Kölner Schichten à peu près entièrement dans l'Oligocène supérieur (Anderson, 1966; Gliese, 1971; Hager, 1981) et font ainsi écho à l'ancienne opinion qui, en Belgique, reconnaissait l'âge chattien des sables des Hautes Fagnes. Enfin, chez les géologues néerlandais, les gisements isolés de sable tertiaire disséminés dans le sud du Limbourg néerlandais et le Pays de Herve (et par conséquent implicitement les sables des Hautes Fagnes) sont simplement répertoriés comme restes d'une couverture oligo-miocène (formation de Holset), n' excluant nullement que se cotoient parmi eux des sédiments tongriens et d'autres appartenant aux formations miochènes de Breda et d'Heksenberg (Felder, communic. orale). Ces divergences importantes résultent de l'absence de spécificité des sables tertiaires du nord de l'Ardenne-Eifel. En l'absence de toute trace de fossilies (à l'exception des fossiles également peu significatifs du niveau supérieur des sables de Boncelles, près de Liège), leur caractérisation repose en effet uniquement sur leur composition minéralogique. Malheureusement, si celle-ci permet de les distinguer à coup sûr de sédiments plus anciens, écocènes ou crétacés, elle n'est nullement indicative de leur position précise dans l'Oligocène ou le Mioène, et d'autres arguments doivent alors être employés. Enfin, concernant l'âge de la transgression oligocène sur l'Ardenne-Eifel, il faut encore signaler que sur la bordure sud et sud-est du massif, les arguments s'accumulent pour reconnaitre une avancée maximale de la mer en direction de celui-ci, et notamment dans la baie du Luxembourg, durant le Rupélien (Tricart, 1949; Kadolsky, 1975; Kadolsky et al., 1983; Sonne & Weiler, 1984).

Dans ce contexte toujours confus, le présent article apporte l'éclairage d'une observation nouvelle fondamentale, et discute de l'âge précis de la transgression sur base d'arguments minéralogiques et paléontologiques.

UN GRES OLI GOCÈNE SUR LE MASSIF DU WEISSER STEIN

J'ai eu la chance de trouver à proximité du sommet du massif du Weisser Stein un gros bloc de grès de constitution similaire à celle des grès tertiaires connus sur les bordures nord et sud de l'Ardenne. Ce bloc, auquel le massif doit d'ailleurs son nom, est connu depuis longtemps en tant que mélathite (W. & M. Brou, 1988), mais il semble que son intérêt géologique n'ait jamais été perçu, les archéologues s'accordant à le rapporter au Crétacé.

Le Weisser Stein constitue, à 691 m d'altitude, un des points culminants du massif Ardenne-Eifel, au coeur de celui-ci, environ 25 km au sud-est du sommet de la Baraque Michel (fig. 1). Il correspond à un relief résiduel aux flancs en pente douce, se détachant d'une surface ancienne, d'âge au moins paléogène, particulièrement bien développée dans cette région à des altitudes de l'ordre de 580-620 m. Le bloc de grès se trouve à 1 km au nord-ouest du sommet du Weisser Stein, émergant d'une petite fagne sur le flanc nord de la tête de vallée évasée de l'Edesbach, à l'altitude de 665 m. Il s'agit d'une dalle d'environ 6 m² de surface dont l'épaisseur
visible atteint 60 cm; sa surface est légèrement ondulée et les angles sont arrondis. Le grès, de coloration gris-blanc, est extrêmement cohérent et homogène, sans litage apparent. On observe seulement quelques rares lentilles de grès grossier et gravillons quartzeux au sein d'une masse de grès fin.

STRUCTURE DU GRES

Il s'agit d'un grès à ciment de quartz microcristallin. Le squelette du grès est constitué de grains de quartz de 200 à 900 μm, à émoussé marin remarquable. Aucun feldspath n'est observé. Par contre, on trouve en grand nombre de petits quartz détritiques (< 70 μm) encore relativement bien roulés, appartenant probablement aussi au sédiment marin. Celui-ci semble donc assez mal classé. Outre le ciment de quartz microcristallin, qui n'est que modérément développé puisqu'une bonne part des pores du sable était dès avant son induration occupée par la fraction silteuse, on peut reconnaître de rares plages de quartz de nourrissage conférant occasionnellement des faces cristallines aux grains.

Par ailleurs, un certain nombre de grains de quartz révèlent des traces d'une corrosion assez importante : celle-ci apparaît le mieux aux endroits où le ciment microcristallin est développé le long d'une face d'un gros grain.

Etant donné la constitution du sédiment et la nature du ciment, la porosité du grès du Weisser Stein est très réduite : les pores sont peu nombreux et très petits, ce qui explique la grande cohérence de cette roche. Les diverses formes de précipitation de la silice (quartz de nourrissage, quartz microcristallin authigène) et la corrosion des grains de quartz évoquent une formation en milieu continental, en relation avec la zone de battement de la nappe.
MINERALOGIE

L'étude minéralogique du grès du Weisser Stein doit constituer une des clefs de son identification éventuelle aux sables oligocènes du plateau des Hautes Fagnes. Elle a été réalisée, après désagrégation de la roche, sur la fraction dense de la classe granulométrique de 50 à 420 μm. Le comptage de 400 grains a fourni les pourcentages suivants :

- zircon : 40 %
- disthène : 3 %
- anatase : 3 %
- tourmaline : 38.5 %
- andalousite : 1 %
- corindon : 0.5 %
- rutile : 13 %

Dans le reliquat de 1 % ont été observés les minéraux suivants : topaze, monazite, chlorite, hornblende commune. Les pourcentages fournis ci-dessus pour le disthène, l'andalousite et l'anatase sont obtenus en ne considérant que les grains de taille supérieure à 80 μm. Si on inclut aux comptages les grains de 50 à 80 μm, ces pourcentages tombent respectivement à 2 ; 0.5 et 1.8.

La population des minéraux denses du grès est mixte. D'une part, on observe des grains relativement gros (100 à 250 μm de diamètre) parfaitement roulés, typiques d'un sédiment marin. Toutes les andalousites dénombrées, ainsi que quelques-uns parmi les disthènes présents, appartiennent à cette fraction minoritaire (± 30 %) de la population. D'autre part, on se trouve en présence d'une majorité de grains plus petits (50 à 100 μm), généralement sub-émoussés et parfois même anguleux. Les minéraux stables en grains peu usés représentent l'essentiel de cette fraction : ils pourraient correspondre à l'élément dense de la fraction siltuse du sédiment ou éventuellement témoigner d'un certain remaniement du dépôt avant son induration. Similaire situation, où les sables marins ont été quelque peu retouchés avant leur silicification, s'observe en effet également pour les grès tertiaires des Hautes Fagnes. Enfin, l'anatase présente dans le grès du Weisser Stein se trouve sous la forme de petites tablettes probablement authigènes aux faces bien nettes de 60 à 90 μm de long, salies de traces de leucoxène.

SIGNIFICATION DU GRES DU WEISSER STEIN

Avant de discuter de la nature et de l'âge du grès du Weisser Stein, une question préliminaire doit être débattue : le bloc décrit est-il bien en place là où il a été observé ? Cette question nait du fait que ce bloc est considéré comme un mégalithe, ce qui pourrait le faire suspecter d'avoir été amené par l'homme sur ce sommet, tout au moins tant que d'autres restes du même sédiment n'auront pas été signalés à cet endroit. Cependant, plusieurs objections peuvent être opposées à cette hypothèse, notamment en raison de l'origine généralement locale du matériau des monuments mégalithiques ardennais, ou du poids de la dalle de grès, qui semble devoir exclure un long transport. Par ailleurs, cette dalle n'est pas établie, comme on s'y attendrait pour un mégalithe, sur une position privilégiée, par exemple le point sommital du massif. Bien au contraire, le site dans lequel on l'observe est en tous points comparable à celui dans lequel sont conservés nombre de blocs de grès tertiaires du plateau des Hautes Fagnes, à savoir sur le flanc d'un vallon hérité de la morphologie tertiaire. Ces observations témoignent à mon avis de silicifications élaborées sur le massif du Weisser Stein, et dont un bloc résiduel est conservé après érosion de la couverture meuble qu'elles ont affectée ; l'hypothèse d'un mégalithe peut ainsi être rejetée.

En ce qui concerne l'origine de ce bloc, le spectre minéralogique du grès, ainsi que l'émoussé des grains de quartz en font indubitablement un dépôt initialement accumulé par la mer oligocène. En effet, la présence du disthène, de l'andalousite et de la topaze exclut toute origine locale et réfute également l'hypothèse d'un sable abandonné par la transgression crétacique. Quant à l'éventualité d'un dépôt fluvial avec apport des minéraux paraméta morphiques depuis des régions plus méridionales, elle est clairement déniée par l'émoussé marin des grains de quartz. Ces caractères s'appliquent par contre parfaitement aux dépôts marins oligocènes connus dans le nord de l'Ardennne : ceux-ci sont des sables quartziteux fins à moyens (médiane comprise entre 160 et 330μm), bien classés mais comportant fréquemment une fraction argileuse non négligeable (10 à 20%). Sur le plan minéralogique, ils sont caractérisés par une association à disthène, andalousite, stauroïde et topaze, auxquels se joint occasionnellement la sillimanite. Ils ont aussi donné lieu à la formation de silicifications dans les fonds de vallons évésqués marquant les surfaces d'érosion tertiaires du plateau des Hautes Fagnes.

Le pourcentage réduit des minéraux de métamorphisme dans la fraction dense du grès du Weisser Stein (4 % contre 8 à 20 % dans les sables oligocènes non indurés) peut être mis sur le compte de l'altération intense qui a affecté le sable avant son induration, ainsi que cela a été observé de manière encore plus accusée pour les sables silicifiés des Hautes Fagnes (Démoulin, 1988). La prédominance parmi ces minéraux du
disthène, plus résistant, ainsi que l’absence du staurolit, confirment cette interprétation. Par contre, proportionnellement, l’andalousite n’y est guère si bien représentée que dans les dépôts oligocènes des Hautes Fagnes, ce qui semblerait confirmer une provenance ardennoise de ce minéral.

L’AGE DES SABLES MARINS TERTIAIRES DU NORD DE L’ARDENNE-EIFEL

Il est clair qu’une meilleure connaissance de la transgression oligocène sur le massif Ardenne-Eifel passe nécessairement par une datation sérieusement argumentée des dépôts qui en sont conservés. Dans ce sens, la première question à résoudre est celle de l’unicité de la couverture de sables marins tertiaries sur la bordure nord de l’Ardenne-Eifel. Pour la clarté de la discussion, il est utile d’y reconnaître cinq zones, d’où en est (fig. 1) :

2. les sables marins tertiaries du Condroz qui, au sud de la Meuse entre Namur et Liège, sont le plus souvent piégés dans des poches de dissolution des calcaires dinantiens, où ils sont fréquemment associés à des argiles plastiques connues sous le nom d’argiles d’Andenne. Calemart (1954) signale que certains de ces dépôts sableux atteignent une puissance de 20 à 30 m.

3. les sables oligocènes de la région liégeoise, avec notamment les gisements de Boncelles, au sud de Liège, où ont été décrits quelques fossiles mal conservés attribués au Chattien (Rutot, 1907).

Tous ces dépôts sableux ont toujours été rapportés à un événement transgressif unique en raison de leur réelle identité lithologique. Pourtant, cette dernière n’a en elle-même aucune valeur d’argument. Le critère de la distribution régulière des restes sableux sur toute la bordure nord du massif n’a également qu’une valeur restreinte en tant qu’argument positif. Par contre, il doit probablement, là où il n’est pas satisfait, constituer un argument négatif d’un certain poids : c’est ainsi que l’on peut opposer, d’une part une vaste région occidentale où les dépôts sableux se suivent de proche en proche sans solution de continuité notable depuis l’Entre-Sambre-et-Meuse jusqu’aux sommets des Hautes Fagnes, et d’autre part les sables oligocènes du nord de l’Eifel, séparés des précédents par une large bande dépourvue de toute trace de sable, et comprise entre les failles de Lauresberg à l’ouest et de Feldbiss à l’est (fig. 1).

Enfin, l’argument décisif pour associer tous les sables considérés en une couverture unique est la similitude marquante de leur cortège de minéraux denses. Après les observations pionnières d’Anten (1920), celle-ci a été assise par Macar & De Magnée (1936) et confirmée à maintes reprises par des travaux ultérieurs, l’association des minéraux denses typique des sables oligocènes du massif inclut le disthène, le staurolit, l’andalousite, éventuellement la topaze et la sillimanite, et exclut les amphiboles, l’épidote et le grenat (sauf exception dans le Limbourg néerlandais pour ce dernier minéral). Cependant, j’ai déjà fait remarquer qu’au-delà d’une similitude à grands traits, on peut reconnaître dans les sables des différentes zones définies ci-dessus des variantes assez nettes (Demoulin, 1987). Une distinction claire peut être ainsi établie d’une part les sables des Hautes Fagnes et du nord de l’Eifel où, parmi les silicates de métamorphisme, l’andalousite occupe une place prépondérante ou au moins essentielle, et d’autre part les autres dépôts sableux, y compris ceux du Pays de Herve, où l’andalousite est tout à fait accessoire. L’interprétation de cette différence est très délicate ; il faut en effet garder à l’esprit que la présence ou l’absence de minéraux caractéristiques permet des considérations d’ordre paléogéographique beaucoup plus que des corrélations stratigraphiques. Il est établi de longue date que, dans le Tertiaire des Pays-Bas, de Belgique et d’Allemagne occidentale, une association à minéraux paramétamorphiques correspond à des apports méridionaux et caractérise des dépôts proches du littoral (Edelman, 1938 et 1948; Müller, 1943; Tavernier, 1947). Mais on n’a jamais pris la peine d’observer qu’au sein de cette association la prédominance de l’andalousite (probablement d’origine ardennoise, peut-être localisée dans le massif cambro-ordovicien de Stavelot) est typique de dépôts tout à fait côtiers ou continentaux : sables oligocènes des Hautes Fagnes, Boldérian continental belge et
<table>
<thead>
<tr>
<th>Localité</th>
<th>zircon</th>
<th>tourmaline</th>
<th>rutile</th>
<th>stauroïte</th>
<th>diathèse</th>
<th>andalousoïte</th>
<th>topaze</th>
<th>stillemenite</th>
<th>grenat</th>
<th>épiedote</th>
<th>corindon</th>
<th>anatase</th>
<th>brookite</th>
<th>spinelle</th>
<th>clinopyroxène</th>
<th>hornblende</th>
<th>commune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongrien - Geulhem</td>
<td>15</td>
<td>30,5</td>
<td>24</td>
<td>11,5</td>
<td>10</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>1,5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ubachsb</td>
<td>9</td>
<td>50,5</td>
<td>10,5</td>
<td>9</td>
<td>10,5</td>
<td>4</td>
<td></td>
<td></td>
<td>1,5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miocène - Nievelstein</td>
<td>5,5</td>
<td>42,5</td>
<td>7</td>
<td>6,5</td>
<td>17</td>
<td>8,5</td>
<td>0,5</td>
<td>0,5</td>
<td>10</td>
<td>1,5</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Heerlen</td>
<td>3,5</td>
<td>60</td>
<td>5</td>
<td>5,5</td>
<td>11,5</td>
<td>14,5</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campine - Miocène</td>
<td>9</td>
<td>62,3</td>
<td>7,3</td>
<td>7,3</td>
<td>7,5</td>
<td>4,5</td>
<td>*</td>
<td></td>
<td>0,7</td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Herve</td>
<td></td>
</tr>
<tr>
<td>nord - St Jean Sart</td>
<td>33</td>
<td>38</td>
<td>12</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Zevenwegen</td>
<td>38,5</td>
<td>20,3</td>
<td>24</td>
<td>8,3</td>
<td>8,3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3 Bornes</td>
<td>28,5</td>
<td>25,8</td>
<td>19,7</td>
<td>12,3</td>
<td>9,2</td>
<td>0,8</td>
<td></td>
<td>*</td>
<td></td>
<td>3,7</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sud - Heuseux</td>
<td>33,3</td>
<td>24,3</td>
<td>14,6</td>
<td>7,6</td>
<td>14,6</td>
<td>4,3</td>
<td>*</td>
<td>*</td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. liégeoise</td>
<td></td>
</tr>
<tr>
<td>Rocourt (Tg)</td>
<td>17</td>
<td>54</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boncelles</td>
<td>30,4</td>
<td>46,2</td>
<td>8,2</td>
<td>4</td>
<td>6,2</td>
<td>2,8</td>
<td>1,4</td>
<td>*</td>
<td>*</td>
<td></td>
<td>0,2</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mons-lez-Liège</td>
<td>36,3</td>
<td>37,3</td>
<td>10</td>
<td>5,3</td>
<td>6,7</td>
<td>1,3</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>0,7</td>
<td></td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hautes Fagnes</td>
<td></td>
</tr>
<tr>
<td>Cokaifagne</td>
<td>35,4</td>
<td>34,1</td>
<td>13,3</td>
<td>2,7</td>
<td>5,7</td>
<td>5,8</td>
<td>1,3</td>
<td></td>
<td>0,8</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spa 1</td>
<td>28,3</td>
<td>42</td>
<td>7,3</td>
<td>3</td>
<td>6,7</td>
<td>6,3</td>
<td>4,3</td>
<td></td>
<td>1,3</td>
<td></td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spa 2</td>
<td>38,3</td>
<td>20</td>
<td>22,7</td>
<td>3,3</td>
<td>3,2</td>
<td>5,3</td>
<td>6</td>
<td></td>
<td>1</td>
<td></td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solwaster</td>
<td>33</td>
<td>34,5</td>
<td>10,5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
<td>0,5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konnerzvenn</td>
<td>57</td>
<td>24</td>
<td>9,5</td>
<td>1,5</td>
<td>4</td>
<td>2,5</td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Michel</td>
<td>54</td>
<td>26</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>grès 3 aire</td>
<td>63</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grès Weißer Stein</td>
<td>40</td>
<td>38,5</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td>0,5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eifel (Gressenich)</td>
<td>25</td>
<td>37</td>
<td>11</td>
<td>5,3</td>
<td>12,5</td>
<td>6,3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1,3</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

formation (lignitifère) de Heksenberg du Limbourg néerlandais. L’andalousoïte, qui n’est bien représentée que dans une frange littorale de largeur restreinte, oblige ainsi à distinguer les sables de l’Eifel de ceux des Hautes Fagnes : les sables riches en andalousoïte du nord de l’Eifel correspondent à une côte située beaucoup plus au nord que celle qui existait lors du dépôt des sables des Hautes Fagnes. Par contre, au spectre minéralogique littoral de ceux-ci peut être associé le spectre à andalousoïte pauvrement représentée des dépôts du Pays de Herve et de la région liégeoise, accumulés à une certaine distance du rivage de l’époque. Ainsi, le critère minéralogique et le critère de distribution vont dans le sens commun de la reconnaissance de deux couvertures oligocènes distinctes sur le nord de l’Ardenne-Eifel : d’un côté, les sables du nord de

Cette distinction est par ailleurs confirmée par des données paléogéographiques qui ressortent des travaux de Müller (1943) dans le Limbourg néerlandais. En effet, les dépôts de sable marin tertiaire du nord de l’Eifel constituent le prolongement naturel sur la bordure du massif des sables des « Kölner Schichten » (Oligocène supérieur), dont la couverture continue de la Baie du Rhin inférieur est à proximité immédiate, particulièrement dans les petits grabens bordiers. Or, Müller a montré que, dans le sud du Limbourg néerlandais, l’Oligocène supérieur est absent à l’ouest de la faille de Feldbiss, soit qu’il n’y ait jamais été déposé, soit que, d’importance très restreinte, il ait été totalement érodé dès le Mioène inférieur. La mer de l’Oligocène supérieur, en provenance du nord-ouest, n’a donc évidemment pu recouvrir ni le Pays de Herve, ni encore moins le plateau des Hautes Fagnes. Lors de sa progression vers le sud dans la Baie du Rhin, elle était vraisemblablement limitée vers l’ouest par la faille de Feldbiss, au-delà de laquelle les blocs tectoniques, du Limbourg néerlandais aux Hautes Fagnes, constituaient déjà l’épaupe soulevée en compensation de l’affaissement de la baie (et plus spécialement du graben de la Rur).

Si la distinction entre les sables de l’Eifel et ceux du nord de l’Ardenne est ainsi entérinée, il reste à déterminer l’âge des derniers. Les argiles plagioclastiques d’Ardenne qui, dans les poches de dissolution du Condroz, reposent toujours sur les sables marins tertiaires, ont livré une flore assez riche qui leur assigne un âge miocène inférieur, éventuellement oligocène supérieur (Gilkinet, 1922). Un âge négocène des sables est donc exclu, de même un âge oligocène supérieur, ainsi qu’il est démontré ci-dessus; les rapporter au Rupélien semble aussi peu justifié, pour deux raisons : la disposition de la couverture rupélienne du nord de la Belgique tend à indiquer pour cette époque une ligne de rivage orientée de l’ONO à l’ESE, qui s’écarte de 45° de la ligne des dépôts sableux du nord de l’Ardenne. De plus, aussi bien en Belgique que dans le Limbourg néerlandais (Kuyl, 1975), la couverture rupélienne s’avance moins loin vers le sud que celle du Tongrien. Étant donné qu’un âge éocène ou plus ancien est exclu pour les sables à minéraux paramétamorphiques du massif ardenaис (les minéraux de métamorphisme n’apparaissent de façon significative dans les dépôts tertiaires qu’à partir de l’Oligocène; auparavant, les massifs pourvoyeurs sont probablement toujours masqués par une couverture mésozoïque, ou les voies d’acheminement des produits de leur érosion vers le bassin de la mer du Nord ne sont pas encore tracées), leur appartenance au Tongrien marin semble s’imposer. Cette approche par élimination est de fait entièrement soutenue par plusieurs observations:

- dans un dépôt de sable oligocène à Oret, dans l’Entre-Sambre-et-Meuse, Soyer (1978) signale l’existence de passées liganètes qui ont fourni du matériel (kystes de dynophycées, spores et pollens) appartenant à l’Oligocène inférieur.
- les sables de Boncelles et autres sables tertiaires de la région liégeoise sont très proches de dépôts d’âge tongrien assuré, situés à Rocourt, juste au nord de Liège. Par ailleurs, une ample littérature a démontré l’absence de valeur stratigraphique précise de la faune décrite à Boncelles (Calembert, 1954; Alexandre, 1976); celle-ci était en outre conservée dans un niveau supérieur du gisement, et Fourmarier (1933), ainsi que Thibou (1960) par la suite, ont insisté sur la distinction que l’on doit faire entre celui-ci et les sables sous-jacents.
- les variations du spectre minéralogique des sables tongriens suivent, selon une ligne NNO-SSE s’étirant du Limbourg néerlandais aux Hautes Fagnes, et donc perpendiculaire au rivage de l’époque, s’accordent parfaitement avec ce que l’on sait de la provenance des divers minéraux constituants: du sud vers le nord, la composante littorale du spectre, d’origine méridionale, fait progressivement place à une composante probablement d’origine scandinave, caractéristique des dépôts accumulés vers le centre du bassin:

 - Tongrien du Limbourg néerlandais : epidote - grenat (staurolite - disthène).
 - extrémité sud de la couverture tongrienne : disthène - staurolite (andalousite - epidote).
 - sables oligocènes du Pays de Herve : disthène - staurolite (andalousite).
 - sables oligocènes des Hautes Fagnes : andalousite - disthène - staurolite.

Le bloc de grès du massif du Weisser Stein occupe dans ce schéma une position quelque peu équivoque : d’une part, son appartenance à la couverture tongrienne du nord de l’Ardenne ne fait aucun doute mais d’autre part, sa situation au cœur du massif apparaît en contradiction notoire avec l’idée d’un rivage tongrien sur le flanc nord du plateau des Hautes Fagnes. J’ai déjà discuté ce problème, posé dans une moindre mesure par le gisement sableux de la Baraque Michel (Demoulin, 1987), et la position élevée du grès du Weisser Stein satisfait à l’explication que j’en ai fournie, à savoir une avancée tardive et probablement peu durable de la mer tongrienne...
vers l’intérieur du massif, après qu’elle ait longtemps été arrêtée par le versant septentrional de celui-ci, déjà individualisé dans le paysage paléogène.

EXTENSION DES TRANSGRESSIONS Oligocènes SUR L’ARDENNE-EIFEL

En guise de conclusion, je voudrais synthétiser brièvement les données relatives à l’extension des transgressions oligocènes sur l’Ardenne-Eifel.

Enfin, la terminaison occidentale du massif paléozoïque a, comme le plateau des Hautes Fagnes, été submergée par la mer tongrienne. L’expression «massif paléozoïque» est employée ici à dessein car, dans cette région, l’Ardenne proprement dite n’a probablement pas été noyée et seul son avant-pays condusien a préservé de nombreux témoins des sables tongriens (rappelez que c’est dans l’Entre-Sambre-et-Meuse que se trouve le seul élément de datation directe de ces sédiments). Contrairement à ce qui s’est passé plus à l’est, il paraît qu’ici la mer n’a pu à aucun moment dépasser le talus qui limitait vers le sud la surface paléogène du Condroz.

L’histoire des transgressions oligocènes sur l’Ardenne-Eifel peut donc être schématiquement condensée de la sorte: au cours du Tongrien, une mer s’avance sur le massif depuis le NNO et submerge la bordure nord de l’Ardenne. Elle
pénètrera momentanément au moins aussi loin que le Weisser Stein. Par contre, aucune trace de cette première avancée marine oligocène ne peut être décelée sur le versant sud du massif, et il semble qu'à cette époque, celui-ci était globalement basculé vers le nord. Au même moment, l'Eifel reste également émergé, par suite d'un soulèvement que l'on peut assimiler au mouvement préalable à l'effondrement de la Baie du Rhin inférieur. Lors du Rupélien, la situation semble inversée : le nord du massif est préservé de toute invasion marine alors que sa bordure sud en conserve d'évidentes traces. Cette transgression développée à partir du Bassin de Paris a vraisemblablement une origine eustatique, et son absence dans la partie nord de l'Ardenne-Eifel indique que, dès ce moment, la surrection de celle-ci est considérable. Vers l'est par contre, la subsidence de la Baie du Rhin inférieur et du Bassin de Neuwied est déjà amorcée, et l'Eifel oriental constitue une région basse à sédimentation surtout argileuse. Enfin, à partir du Chattien, le massif Ardenne-Eifel n'est plus concerné par aucune transgression et la mer qui s'avance jusqu'au fond de la Baie du Rhin inférieur ne fera qu'effleurer les contreforts de l'Eifel en bordure de celle-ci.

REMERCIEMENTS

Je tiens à exprimer ici ma plus sincère reconnaissance à M. W.M. Felder, du Bureau géologique de Herleen (Service géologique des Pays-Bas) qui m'a fait découvrir sur le terrain le Tertiaire du Limbourg néerlandais et les problèmes inhérents à sa compréhension, et avec qui j'ai entretenu des discussions très enrichissantes à ce sujet. J'adresse également tous mes remerciements à la Fondation A. von Humboldt, sans le soutien de laquelle je n'aurais pu réaliser cette recherche, ainsi qu'au Professeur H. Bremer, qui m'accueille actuellement à l'Université de Cologne.

BIBLIOGRAPHIE

BUURMAN, P., 1952. Paleopedology and stratigraphy on the Conradian peneplain (Belgium), with a reconstruction of a paleosol,thèse sc. agron., Llabouwchac, Wageningen, 67 p.