NOUVELLES DONNÉES SUR LA BANDE DE SAMBRE-ET-MEUSE À OMBRET (HUY, BELGIQUE).

HANCE L.1, STEEMANS P.,2,6, GOEMAERE E.3, SOMERS Y.4, VANDENVEN G.1, VANGUDESTAINE M.2 & VERNIERS J.5,6

(6 figures et 2 tableaux)

ABSTRACT. - The eastern part of the Sambre-et-Meuse Band at Ombret has been investigated at the favour of new outcrops and geotechnical boreholes in the Meuse river. Information on the evolution degree of the sediments have been obtained by the coalification rank of the palynomorphs, by the illite crystallinity and by the reflector power of the organic matter. The results are discussed in the outline of a general section between the Brabant Massif and the Dinant Synclinorium. The sediments of the southern part of the Sambre-et-Meuse Band display a very low evolution degree reflecting a thin lithostatic burden. It can be explain by a positive behaviour of this structure from at least the Ashgillian to the Devonian. The lack or low development of the Lower Devonian in the Namur Synclinorium is probably related to this paleogeographical trend.

RÉSUMÉ. - La partie orientale de la Bande de Sambre-et-Meuse à Ombret a été étudiée à la faveur de nouveaux affleurements et de forages géotechniques exécutés en Meuse. Des données sur le degré d'évolution des sédiments ont été obtenues par le taux de carbonisation des palynomorphes, par la cristallinité des illites et par le pouvoir réflecteur de la matière organique. Les résultats sont discutés dans le contexte d'une section générale entre le Massif du Brabant et le Synclinorium de Dinant. Les sédiments de la partie méridionale de la Bande de Sambre-et-Meuse présentent un degré d'évolution très faible en relation avec une couverture lithostatique peu épaisse. C'est le résultat d'un comportement positif de la Bande de Sambre-et-Meuse depuis au moins l'Ashgillian jusqu'au Dévonien. L'absence ou le très faible développement du Dévonien inférieur dans le Synclinorium de Namur y est sans doute lié.

1. INTRODUCTION

1.1. Evolution des idées

Au sud du Massif du Brabant, le Calédonien réapparaît dans une structure longitudinale, la Bande de Sambre-et-Meuse, qui sépare les Synclinoria de Namur et de Dinant. Cette structure s'étend sur une soixantaine de kilomètres, entre Hermalle-sous-Huy et Presles (fig. 1). Elle relève le tracé de la faille du Midi à l'ouest à celui de la faille effélienne à l'est.

Dans la littérature belge, de très nombreux articles font état de controverses sur l'interprétation structurale de cette région. Sans entrer dans un historique qui serait hors de propos, nous rappellerons brièvement deux faits principaux et les hypothèses auxquelles ils ont conduit.

L'élément le plus évident est la différence, de part et d'autre de la Bande de Sambre-et-Meuse, entre le bord nord du Synclinorium de Dinant à série éodévonienne épaisse (1500 m dans la transversale de la Meuse) et le bord sud du Synclinorium de Namur où ces terrains sont en lacune. Le second point porte sur l'absence ou le faible développement de la

2. Université de Liège, Département de paléobotanique et de paléopalynologie, place du XX Août 7, B-4000 Liège.
3. Université de Liège, Institut de Minéralogie, Bâtiment 818, Sart-Tilman, B-4000 Liège.
4. ISSeP-INLX, Rue du Chêtra 200, B-4000 Liège.
5. Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Research Associate N.F.S.R. (Belgium).
schistosité dans la Bande de Sambre-et-Meuse, alors que son empreinte est très nette dans le Massif du Brabant (FOURMARIER, 1931, p. B371).

La lacune de l’Eocéenien dans le Synclinorium de Namur fait aujourd’hui encore l’objet de discussions. Doit-elle être attribuée à une lacune de séduction ou à une lacune d’érosion ? Dans la première hypothèse, on admet implicitement un rejet considérable du charriage Midi-Eifel, nécessaire pour escamoter le biseau sédimentaire éodévonien. Par contre, dans l’hypothèse d’une lacune d’érosion, l’ampleur du charriage est minimisée.

Pour FOURMARIER (1931, 1939), l’absence de schistosité dans la Bande de Sambre-et-Meuse est interprétée comme étant le résultat d’une charge lithostatique plus faible. Selon lui la lacune de l’Eocéenien dans le Synclinorium de Namur est attribuée à une lacune de sédition. Selon MICHOT (1979), une phase épirogenique tardicalédonienne (Emsien inférieur, phase bollandienne) est responsable de la formation d’un bombardement longitudinal - la Ride bollandienne - soumettant ainsi à l’érosion sa couverture éodévonienne et déterminant le retrait de la mer emsienne vers le sud et le développement des faciés conglomératiques.

Par ailleurs, la nette réduction des séries sédimentaires calédoniennes dans la Bande de Sambre-et-Meuse par rapport au Massif du Brabant et la position relative du front de schistosité dans les deux unités (Massif du Brabant: > Ludlowien; Bande de Sambre-et-Meuse : < Llanvirnien) ont conduit MICHOT (1979) à admettre un refoulement vers le nord du “tecfaciés condruzien“ (= BSM), suivant une faille de charriage, la faille mosane qu’il rattache à la phase bollandienne.


Signalons enfin l’hypothèse de BLESS, BOUCKAERT et PAPROTH (1989) pour qui le charriage Midi-Eifel résulterait de la réactivation varisque de failles listriques synsédimentaires.

Le présent travail s’inscrit dans cette problématique de la Bande de Sambre-et-Meuse et du Front varisque en Belgique. C’est plus précisément l’interprétation structurale de la Bande de Sambre-et-Meuse qui sera abordé, à la faveur de nouvelles données sur l’extrémité orientale de cette structure à Ombret.

1.2. Synthèse des données régionales antérieures

Fig. 2. Localisation des unités lithologiques 1 à 5 et des échantillons prélevés dans le contexte structural régional.
Selon MARTIN et al. (1970, p.359), la Bande de Sambre-et-Meuse constitue “le soubassement sédimentaire originel du recouvrement frasien du bord sud du Synclinorium de Namur”. Par contre, au sud de la Bande de Sambre-et-Meuse, le contact avec le Gedinnien du Synclinorium de Dinant s’établit par la faille d’Ombret qui est le prolongement occidental de la faille eifélienne. La colline 118, au nord immédiat de l’église d’Ombret, constitue un point particulier dans la Bande de Sambre-et-Meuse, par le faciès turbiditique inhabitable qui s’y développe et par la présence d’une schistosité. MARTIN et al. considèrent que cette zone doit être rattachée au Synclinorium de Dinant. Ils l’interprètent comme étant un lambeau de recouvrement géologique limité à sa base par la faille d’Ombret.

Le cadre géologique régional est ainsi fixé. On le voit, dans l’interprétation structurale de la Bande de Sambre-et-Meuse, l’absence de schistosité (hormis dans la colline 118) ou son très faible développement est un élément fondamental. Cet aspect traduit le degré d’évolution des roches qui sera abordé ici par le taux de carbonisation du matériel palynologique, par le pouvoir réflecteur de la matière organique et par la cristallinité des illites.

2. LES DONNÉES NOUVELLES

2.1. La colline 118

MARTIN et al. (1970, p. 341-343) ont donné une description détaillée du versant occidental de la colline 118 (fig. 3A) qu’ils résument comme suit du nord vers le sud : “après la série quartzito-schisteuse de type rythmique a-b-c fortement redressée, appartenant au flanc sud d’un synclinal, vient une faille très redressée (à en juger par l’allure de la zone d’éboulis) qui est à l’emplacement du plan axial d’un anticlinal; celui-ci est rapidement suivi par un synclinal affectant une série sédimentaire d’identique à la précédente, à plan axial déversé vers le NNW et à flanc méridional fortement redressé et se renversant ensuite vers le nord (e).” Plus au sud vient une formation stratigraphiquement inférieure (f), constituée essentiellement de shales noirâtres. Les acritharches et les chitinozoaires indiquent pour l’ensemble un âge ordovicien supérieur, probablement caradocien.

Récemment, la création d’un axe routier rapide en rive droite de la Meuse a entamé le flanc occidental de la colline, offrant ainsi une coupe remarquable et d’accès facile, illustrée par la figure 3B. Les allures sont nettement moins régulières que ce que la figure 3A laissait supposer. La zone broyée située approximativement entre les cumulées 125 et 145
2.2. Les forages en Meuse

Une campagne de forages carottés peu profonds (5m), réalisée en vue de l’approfondissement de la Meuse, a fourni un matériel d’étude inespéré dans une zone dépouvrue d’affleurement et qui recoupe le bord sud du Synclinorium de Namur et la Bande de Sambre-et-Meuse presque sur toute sa largeur (fig. 2). La zone étudiée débute une soixantaine de mètres à l’amont de l’ile de Pontière et s’étend jusqu’au coude de la Meuse, à hauteur de la station de Fiéne; elle longe la colline 118. Les formations siluro-ordovi ciennes ont été atteintes par 51 forages. Cinq unités lithologiques peuvent être distinguées.

Au nord, le bedrock est de nature pélitique et profondément altéré, parfois décomposé en argile noircère (1). À 150 m environ au SE du bord sud du Synclinorium de Namur, la charge gréseuse devient beaucoup plus importante, voire prépondérante (2). On y reconnait les lithologies qui préfèrent en rive droite, à l’ouest de la colline 118. Au sud-ouest de la colline 118, dans la portion de Meuse d’orientation NE-SW, le bedrock est essentiellement constitué de shales. L’altération est souvent très forte et de nombreux forages n’ont remonté qu’une argile de décomposition noircère (3). À l’amont de l’île de Pontière, 2 forages (211 et 92) ont atteint une unité carbonatée (4) qui semble disposée en une étroite bande dont l’orientation NE-SW est compatible avec les données d’affleurement. Nous y avons relevé des calcaires fins, des calcaires crinoloidiques et des calcaires gréseux fossilifères (térébratulaires, bivalves); ceux-ci incorporent un lit conglo mératique à cailloux de phosphate surmonté géométriquement par un mince niveau (3 cm) d’anhydrite fibroradiée pseudomorphosée en dolomite. Enfin, au SE de l’unité carbonatée (4), les forages ont rencontré une lithologie où dominent des shales gris-vert avec des intercalations de shales bordeaux et de shales verts (5).

2.2.1 Interprétation stratigraphique

Les résultats des analyses palynologiques sont présentés dans le tableau 1.

Dix-neuf échantillons ont été prélevés dans les unités 1, 2, 3 et 4 (tabl. 1); 2 échantillons sont stériles et 5 ont livré des formes non identifiables. Les 12 autres contiennent des acritarches ordovi ciens. Aucune espèce exclusivement cambro-trémadocienne ou siluriennenne n’y a été reconnue. Par ailleurs, ainsi que MARTIN et al. (1970) l’avaient déjà signalé, des formes de l’Ordovicien supérieur sont associées avec des formes de l’Ordovicien inférieur vraisemblablement remaniées. Cette observation avait été faite également par MARTIN (1973) et par AZZAOUI (1986), respectivement dans le Massif du Brabant et dans l’extrémité occidentale de la Bande de Sambre-et-Meuse.

Sept échantillons prélevés au sud du faciès carbonaté ont livré un assemblage silurien. Plus précisément, il s’agit de la partie supérieure du Llandovérien ou du Wenlockien.

L’unité carbonatée (4) présente beaucoup d’analogies avec la formation de calcaires, dite de Fosse, qui vers l’ouest atteint un développement remarquable entre Puange et Fosse (MICHOT, 1928) et que MICHOT (1934) a pu suivre jusqu’à Faulx. De plus, la base de celle-ci est soulignée par le Poudingue de Cocrimont (STAINIER, 1926), en tous points similaires au lit conglomératique reconnu en forage à Ombret. Cette formation, autrefois rattachée au Caradocien est attribuée, après une étude approfondie de ses lithologies et de ses calcaires, à la portion inférieure ou moyenne de l’Ashgillien (pré-Hirnantien) (SHEEHAN, 1987; LESPERANCE et SHEEHAN, 1987). Elle est le résultat d’un mouvement eustatique dont la trace a été repérée dans le Massif du Brabant sous un faciès moins carbonaté.

2.2.2 Comparaison avec les données d’affleurement

Le parallélisme entre les données de forages en Meuse et les affleurements de la rive droite est aisé à établir (fig. 2).

- Les unités 2 et 3 correspondent respectivement aux roches quartzo-phyladeuses qui constituent la Colline 118 et aux shales qui affleurent immédiatement au sud. L’unité pélitique 1 qui passe au nord de la colline pourrait être l’équivalent de celle qui est rencontrée au sud, repêchée par plissement.
- Des calcaires ashgilliens affleurent à Tihanap (MICHOT, 1932); ils correspondent à l’unité 4.

<table>
<thead>
<tr>
<th>UNITÉS</th>
<th>FORAGES</th>
<th>AGES</th>
<th>I.A.T.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2-3</td>
<td></td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>501</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>491</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>451</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>441</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>422</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>411</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>381</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>361</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>351</td>
<td>Stérile</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>342</td>
<td>Stérile</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>341</td>
<td>Stérile</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>331</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>311</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>291</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>232</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>161</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>Ordovicien sup.</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>Ordovicien</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>Ordovicien sup.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21 II</td>
<td>Llandov. Wenlock.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21 III</td>
<td>Llandov. Wenlock.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21 I</td>
<td>Llandov. Wenlock.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Llandov. Wenlock.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Llandov. Wenlock.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Llandov. Wenlock.</td>
<td>-</td>
</tr>
</tbody>
</table>

- Des shales bordeaux et des shales verts affleurent à Tihange, dans le Parc de la Neuville et dans les 2 ravines qui lui font suite vers l’est. MICHOT (1932) attribue ces roches au Silurien inférieur. L’unité 5 représente sans doute un niveau équivalent. Les forages n’ont pas atteint une profondeur suffisante pour contrôler la présence de niveaux volcano-sédimentaires comme c’est le cas à Tihange (voir MAES et al., 1979).

En résumé, une coupe transversale orientée NW-SE rencontre du N vers le S (voir fig. 2) :

1. une unité à dominante pélitique d’âge ordovicien supérieur ;
2. une unité grése-pélitique d’âge ordovicien supérieur ;
3. une unité à dominante pélitique d’âge ordovicien supérieur ;
4. des calcaires et des calcshales d’âge ordovicien (cf. Ashgillien) ;
5. des shales gris-vert, des shales verts et des shales rouges d’âge silurien (Llandovérien) ;

2.3. Le bord sud de la Bande de Sambre-et-Meuse au contact avec le Synclinorium de Dinant dans le Ri de Mer.

Très récemment, de nouveaux chemins ont été créés sur les versants du Ri de Mer (fig. 2) pour des besoins d’exploitation forestière. Ces travaux ont considérablement refait la coupe décrite par MICHOT (1969) et dégagé beaucoup de nouveaux affleurements. En particulier, le contact entre le Poudingue d’Ombret (prémé Lochkovien) et les shales calédoniens est maintenant bien visible (fig. 4 et 5).

La coupe débute dans des shales brunâtres sans stratification distincte et débités par plusieurs réseaux de joints que l’on ne peut interpréter. À 168 m au sud de l’axe de la route Huy-Ombret, en rive gauche du ruisseau, les shales sont en contact avec le Poudingue d’Ombret, disposé verticalement et dont l’épaisseur maximum est de 2 mètres environ. La base du conglomérat est nettement ravinante dans les shales sous-jacents ; le contact est stratigraphique. Au-dessus du conglomérat viennent des shales rouges et
VERTS qui incorporent des grès grossiers kaolinoïques lenticulaires (3,4 m). Ensuite, au sud d'une large zone broyée bien visible à l'affleurement, des shales rouges, des shales verts nodulaires, des grès verts et des quartzites décrivent une allure plissée, localement confuse et où s'est développée une schistosité en éventail. Le Poudingue d'Ombret affleure également sur le flanc droit du Ri de Mer, une trentaine de mètres à l'aval de la discordance de la rive gauche; il y est en position subhorizontale. Le contact avec les shales brunâtres est donc plissé.

2.3.1. Interprétation stratigraphique


Les couches lochkoviennes en contact stratigraphique avec le Silurien de la Bande de Sambre-et-Meuse ne renferment pas de roches propices à une étude palynologique. Au sud de la zone faillée par contre, la biozone M (Lochkovien; STEEMANS, 1989) a été reconnue (3 éch.).

Selon MICHOT (1989), le Poudingue d'Ombret est inclu dans un lambeau pincé dans la faille eifélienne. Si la zone broyée bien visible au sud du poudingue peut correspondre à un accident important, il est difficile, par contre, de ne pas admettre que le poudingue repose par contact stratigraphique sur les shales siluriens.

3. DEGREE D'ÉVOLUTION DES SÉDIMENTS ET IMPLICATIONS STRUCTURALES

3.1. Degré d'évolution des sédiments

Des indications sur le degré d'évolution des sédiments ont été obtenues par 3 techniques différentes : l'estimation du taux de carbonisation des palynomorphes (ou I.A.T. : indice d'altération thermique), le pouvoir réflecteur de la matière organique et la cristallinité des illites. Les résultats doivent être intégrés dans une coupe générale (fig. 6a.) qui comporte du nord au sud :

A) Le soubassement calédonien du Massif du Brabant, affecté par une schistosité de flux calédonienne (MORTEL MANS, 1958; VANDENVEN, 1971; VERNIERS, 1983).

B) Les couches dévo-no-carbonifères du Synclinorium de Namur, généralement sans schistosité ou avec le développement local d'une schistosité grossière espacée (FOURMARIER, 1931, 1939).
3.1.1. Taux de carbonisation des palynomorphes (tabl. 2)

Le taux de carbonisation de palynomorphes est déterminé de façon qualitative par l’estimation du temps de réoxydation. La réoxydation constitue une manipulation postérieure au traitement palynologique standard, lequel inclut une première oxydation de la matière organique en milieu aqueux. Si celle-ci ne se révèle pas suffisante, une réoxydation à sec est opérée sur l’échantillon. Le temps de cette réoxydation, fixé empiriquement, est égal au temps nécessaire pour obtenir un degré suffisant de transparence de la matière organique. Il ne constitue donc qu’une mesure très approximative du taux d’évolution de la matière organique.

Le Massif du Brabant (A) considéré ici dans son ensemble est caractérisé par un état de conservation de la matière organique généralement médiocre. En effet, les palynomorphes du Cambro-silurien y sont opaques et doivent être réoxydés pendant 30 sec à plus d’une minute.

Le Synclinorium de Namur (B) est constitué de couches du Dévonien-Carbonifère. La série débute à l’Eifelien. Les microfossiles sont remarquablement bien conservés, de couleur jaune à orange de sorte que l’observation des microstructures ne nécessite pas de réoxydation préalable. Les principales données palynologiques relatives à cette unité ont fait l’objet des travaux de STREEL (notamment STREEL, 1986) et tout près de la région d’Ombret de VANGUESTAINE et al. (1983) dans le Frasnien-Famennien de la coupe de Huy.

La partie septentrionale de la Bande de Sambre-et-Meuse (C) a livré un matériel palynologique fortement carbonisé, qui a dû être soumis à une réoxydation d’environ 40 sec.

La partie méridionale de la Bande de Sambre-et-Meuse (D1) renferme des palynomorphes très bien conservés, de couleur jaune-rouge ou brune. Certains échantillons ont toutefois été soumis à une réoxydation de 4 sec pour améliorer la transparence des spécimens. Trois échantillons prélevés dans le vallon qui fait suite au RI de Mer vers l’ouest (‘travin 1200’ de MICHOT) confirment cette tendance, également pour les acritarches ordoviciens remaniés.

La couverture lochkovienne autochtone de la Bande de Sambre-et-Meuse (D2) n’a malheureusement pas livré d’échantillon.

Le matériel palynologique des couches éodévonniennes du Synclinorium de Dinant (E) présente un taux de carbonisation élevé qui a nécessité 20 sec de réoxydation.
Enfin, les couches orдовiciennes du Fond d'Oxhe (F) sont caractérisées par des acritarches fortement carbonisés (temps de réoxydation > 10 s, VAN GUESTAINE, inédit).

3.1.2. Pouvoir réflecteur

Les mesures de pouvoir réflecteur (PR) effectuées sur la matière organique très finement dispersée (chitinozoaires et graptolites principalement) indiquent un degré d'évolution très élevé pour divers échantillons cambro-siluriens du Massif du Brabant (A). Les valeurs obtenues dépassent généralement 4,0 % de PR aléatoire (ALLEMAN, 1989, SOMERS, inédit) ou 4,5 % de PR maximum (M. & R. TEICHMÜLLER, 1979) et sont de l'ordre de 5,0 % PR al (4,0 % à 5,7 %) dans la partie sud du massif : le stade mét้าanthracitique est atteint.

Dans le Dévon-Dinantien du synclinorium de Namur (B), l'évolution est plus faible (début du stade anthracitique) avec des valeurs de ± 2,5 % PR al ou ± 2,8 % PR max au Viséen supérieur (M. & R. TEICHMÜLLER, 1979) et de 2,3 à 2,9 % PR al ou 2,5 à 3,2 % PR max du Tournaisien au Givetien (G. DELVILLE, 1982). La matière organique mesurée est typiquement de type charbonneux (vitrinite).

L'unique échantillon de l'unité C analysé dans le cadre de cette étude montre un réflectogramme bimodal avec d'un côté des particules homogènes à contour géométrique (bitumen-liké) et à anisotropie massive dont le % PR al = 4,85 et d'un autre côté des particules très allongées à extinction irrégulière (algale particules ?) dont le % PR al = 3,4. Le degré de carbonisation atteint par la matière organique est ici très élevé.

Deux échantillons de la sous-unité D1 ont été analysés : le degré d'évolution est faible avec dans les deux cas un % PR al = 2,4.

Le seul résultat obtenu dans l'unité E montre à nouveau un très fort degré de carbonisation avec un % PR al = 4,0.

Aucune analyse n'a été effectuée dans l'unité F.

3.1.3. Indice de cristallinité (IC) des ilites

Toutes les unités ont été échantillonnées et analysées, à l'exception de l'unité B (Synclinorium de Namur).

Les ilites du Calédonien (Ordovicien) du Massif du Brabant (A; 9 éch.) présentent une forte cristallinité caractérisant le domaine épizonal (IC : 0,2 à 0,39°2E).

Deux échantillons prélevés dans la partie septentrionale de la Bande de Sambre-et-Meuse (C) ont livré des ilites appartenant au domaine de la diagenèse profonde (IC : 0,7 à 0,76°2E).

La partie méridionale de la Bande de Sambre-et-Meuse (D1; 5 éch.) et sa couverture lochkoviennne (D2; 2 éch.) renferment des ilites caractérisées par un degré diagenétique faible (IC > 0,86°2E) et une grande dispersion des valeurs de cristallinité.

Les ilites extraites des roches du Lochkovien du Synclinorium de Dinant (E; 2 éch.) sont caractérisées par un indice de cristallinité faible et appartiennent au domaine archizonal (IC : 0,44 à 0,51°2E).

Le substratum orдовicien du Fond d'Oxhe (F; 2 éch.) a livré des ilites à faible indice de cristallinité (IC ≥ 1°2E). Nous y avons également remarqué la présence de pyrophyllite.

4. DISCUSSION

Les données sur le degré d'évolution de la matière organique et la cristallinité des ilites sont résumées dans le tableau 2. Les sédiments des 7 unités et sous-unités présentent des degrés d'évolution différents qui ont d'importantes implications structurales.

Le degré d'évolution des sédiments reflété par le taux de carbonisation des palynomorphes, par la cristallinité des ilites et par le pouvoir réflecteur est en relation directe avec l'historie thermique des dépôts. Dans la plupart des cas, l'enfouissement est l'élément majeur, un faible degré d'évolution des sédiments étant en relation avec une couverture lithostatique peu épaisse.

Dans ce contexte, il est difficile d'admettre qu'une forte épaisseur de Dévonien inférieur ait pu recouvrir la partie méridionale de la Bande de Sambre-et-Meuse. Par ailleurs, le congolomérite lochkovien en position autochtone au bord sud de la Bande de Sambre-et-Meuse indique la proximité de la ligne de rivage. L'augmentation rapide des puissances vers le sud s'explique alors de façon satisfaisante par le jeu de failles listriques synsédimentaires. On rejoint ainsi le schéma développé par BLESS et al. (1989) qui minimise le rejet de la faille du Midi. La Bande de Sambre-et-Meuse a donc eu un comportement positif (horst structure ?) dont l'incidence est déjà perceptible au cours de l'Ordovicien. Sans doute faut-il lui imputer la lacune de l'Arenigien (GRAULICH, 1961) et la sensible réduction de puissance de la série calédonienne par rapport à celle du Massif du Brabant (MICHOT, 1979). Les faciès calcaires ashygilliens y sont peut-être également liés, bien qu'il soit difficile de faire la part des mouvements eustatiques et tectoniques. Dans ce contexte, des failles synsédimentaires auraient pu affecter...
(1) taux de carbonisation des palynomorphes remaniés.

<table>
<thead>
<tr>
<th>UNITÉS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D1</th>
<th>D2</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taux de carbonisation</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>des palynomorphes (1)</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Indice de cristallinité</td>
<td>+</td>
<td>?</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>des illites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pouvoir réflecteur (%)</td>
<td>4</td>
<td>2.3</td>
<td>4.9</td>
<td>2.4</td>
<td>?</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>à 5</td>
<td>à 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

egalement la sédimentation de l'Ordovicien supérieur, ce qui fournirait une explication satisfaisante à l'individualisation de la Pointe de Puagne où le faciès calcaire ashgillien est bien développé (MICHOT, 1928) dans une série à degré d'évolution plus marqué que dans la Bande de Sambre-et-Meuse (STEEMANS, inédit).

Le taux de carbonisation des palynomorphes ordoviciens remaniés indique quant à lui que les roches qui les ont livré au bassin silurien de la Bande de Sambre-et-Meuse étaient dans un état d'évolution égal ou inférieur à celui atteint ensuite par les sédiments de la Bande de Sambre-et-Meuse.

4.1. Implications structurales

Compte tenu d'un degré d'évolution très différent des sédiments, la partie septentrionale de la Bande de Sambre-et-Meuse (C) doit être séparée de la partie méridionale (D1-D2) par une faille importante, orientée sensiblement NE-SW mais dont le sens et l'inclinaison du pendage ne sont pas connus. C'est la faille déduite de la figure 6a.

Quatre hypothèses au moins peuvent être formulées.

a. L'unité C est en position allochtone et constitue une klippe à rattacher au soubassement calédonien du Synclinorium de Dinant, limitée à sa base par une faille de charriage importante qui pourrait être la faille de charriage Midi-Eifel (fig. 6b.). Cette hypothèse rejoint donc l'opinion de MARTIN et al. (1970), mais la klippe aurait une extension beaucoup plus large que la colline 118, englobant aussi les unités ordoviciennes qui l'entourent. L'émergence septentrionale de la faille de charriage se situerait alors très près du bord sud du Synclinorium de Namur. Vers l'ouest, elle n'atteindrait pas Huy, où les allures plissées ne sont pas affectées par un charriage important.

b. La faille qui divise la Bande de Sambre-et-Meuse met en contact une série peu évoluée au sud, avec une série nettement évoluée au nord. Une situation équivalente existe au sondage de Wépion (GRAULICH, 1963) dans lequel du Trémadocien dépourvu de schistosité repose sur du LLanviralnien à schistosité calédonienne bien développée, par l'intermédiaire de la faille de Buzet à 424 m. Pour MICHOT (1979), cette situation est le fait d'une faille de charriage néocalédonienne à faible inclinaison sud, la faille mosane, qui au cours de l'Emsien moyen a refoulé vers le nord les formations peu évoluées de la Bande de Sambre-et-Meuse sur les couches évoluées du Massif du Brabant (fig. 6c). Dans cette hypothèse, l'unité C serait à rattacher au Massif du Brabant.

c. On pourrait également attribuer à une faille de charriage varisque (charriage Midi-Eifel ou un de ses satellites) le refoulement de l'unité D1 vers le nord (fig. 6d).

d. La présence de failles longitudinales parallèles à la stratification, d'âge éoc., méso- ou tardicalédoniennes ou varisques, ne peut être exclue à priori. La faille bordière qui court le long du bord sud du Massif du Brabant est un accident de ce type qui s'est développé lors de l'orogenèse varisque (LEGRAND, 1968).

Toutes ces hypothèses font appel à des accidents calédoniens ou varisques traduisant un chevauchement du sud vers le nord. Elles n'excluent pas le jeu de failles synsédimentaires (failles listriques ou failles normales en relation avec du block faulting) qui auraient été réactivées lors des orogenèses ultérieures.

Au stade actuel de nos investigations, il est prématuré d'opter pour l'une ou l'autre hypothèse. Cependant, la relation étroite entre l'unité C et un domaine méridional du Massif du Brabant est une hypothèse de travail intéressante. Signalons par ailleurs la récente découverte d'un faciès turbiditique dans l'Ordovicien du Massif du Brabant (SERVAIS, 1991), comparable à celui de la colline 118 à Ombret.
Une seconde faille importante inclinée vers le sud a été observée entre la sous-unité D2 et l'unité E. Elle fut mise en évidence par Michot (1969) et désignée sous le nom de faille d'Ombret, considérée comme un tronçon de la faille eifélienne. Son importance est confirmée entre autres par une cristallinité des litties très différente de part et d'autre, nettement plus faible au nord.

En revanche, dans le Ri de Mer, il n'existe pas de faille entre les sous-unités D1 et D2, le Poudingue d'Ombret repose par contact stratigraphique sur le Silurien de la Bande de Sambre-et-Meuse, contrairement à ce que MICHOT (1969) supposait.

Les considérations développées ci-dessus devront être élargies à l'ensemble de la Bande de Sambre-et-Meuse. Les résultats préliminaires obtenus par l'un de nous (P.S.) et basés sur le taux de carbonisation des palynomorphes et sur le pouvoir réflecteur de la matière organique indiquent que les sédiments peu évolus ont constitué la quasi totalité de la Bande de Sambre-et-Meuse. Des sédiments plus évolus n'ont été rétrouvés à ce jour que dans la région d'Ombret et dans la Pointe de Puagne, à l'extrémité occidentale de la bande.

5. CONCLUSIONS

L'interprétation de la Bande de Sambre-et-Meuse doit être repensée à la lumière de ces nouvelles données. Il ne fait pas de doute que la problématique du Front varisque en Belgique y trouvera un éclairage différent. Contrairement à l'opinion de RAOUlt et MEILLIEZ (1987), il est maintenant bien établi que la Bande de Sambre-et-Meuse a dû jouer un rôle paléogéographique important, auquel est sans doute lié l'absence ou le très faible développement du Dévonien inférieur dans le Synclinorium de Namur.

REMERCIEMENTS


BIBLIOGRAPHIE

AZZAOUI, I.R., 1986 - Contribution à l'étude micropaléontologique des calcais d'Éternes de la formation de Fosse sulle dans la région de Presles et le Roux. Mémoire de fin d'études, Université de Liège, 1-60.


SERVAIS, T., 1991 - Discovery of turbiditid levels in the Late Ordovician of the Sennette Valley (Brabant Massif, Belgium). In. L. André, A. Herbosch, M. Vanguestaine and J. Verniers (eds), Proceedings


