CINETIQUE DU CONCRETIONNEMENT DANS QUELQUES GROTTES BELGES : APPORT DES DATATIONS ¹⁴ C ET ²³⁰ Th/²³⁴ U ¹

par

Michel GEWELT²

(3 figures et 2 tableaux)

RESUME.- Plusieurs dizaines de datations ¹⁴C, effectuées dans des concrétions de grottes belges, montrent que la période comprise entre 0 et 10 ka BP est très favorable au concrétionnement stalagmitique. Les résultats préliminaires des datations ²³⁰Th/²³⁴U effectuées pour la première fois en Belgique semblent indiquer une période de formation de concrétions entre 85 et 130 ka BP environ. On observe jusqu'ici un très faible concrétionnement durant les périodes froides du Quaternaire couvertes par les méthodes de datation utilisées (0-30 ka BP pour le ¹⁴C et 5-350 ka BP environ pour la méthode ²³⁰Th/²³⁴U).

Au sein des concrétions développées pendant l'Holocène et l'Eemien, des vitesses de croissance verticale ont été calculées sur base des datations. Ces vitesses varient de 0,2 à 9,3 cm/100 ans et peuvent aussi se modifier au sein d'une même stalagmite. Des interruptions de croissance sont fréquentes et un hiatus d'environ 100 ka a été mis en évidence dans une stalagmite et dans un plancher stalagmitique.

ABSTRACT.- Kinetics of speleothems growth in some belgian caves as inferred from ¹⁴C and U-series dating. More than 60 ¹⁴C analyses carried out on speleothems from Belgium show an intense speleothem development during 0 to 10 ka BP. First preliminary results of ²³⁰Th/²³⁴U dating seem to indicate a period of speleothem growth between 85 and 130 ka BP. A slowdown or maybe an interruption of the calcite deposition in Belgian caves is observed during the cold phases of the Quaternary which are in the range of the applied dating methods (about 0-30 ka BP for ¹⁴C dating and 5-350 ka BP for ²³⁰Th/²³⁴U dating).

Speleothems developping during Holocene and Eemian show vertical growth rates ranging from 0.2 to 9.3 cm. 100 Years⁻¹. Those observed values can also vary inside a single stalagmite. Growth hiatus are frequent. In a stalagmite and a flowstone they are more than 100 ka long.

INTRODUCTION

La croissance des concrétions a déjà fait l'objet de plusieurs études théoriques (par exemple, Franke, 1965; Dreybrodt, 1980 et 1981). Les nombreux paramètres régissant le développement des concrétions stalagmitiques conduisent nécessairement à adopter certaines hypothèses simplificatrices. A côté de cet aspect théorique, il est également possible, grâce aux méthodes de datations radiométriques, de calculer la vitesse du concrétionnement.

Cet article fournit les quelques premières données obtenues dans des concrétions de grottes belges. Deux aspects de la cinétique du concrétionnement sont envisagés : la vitesse de croissance verticale des concrétions (principalement des stalagmites) et la répartition du concrétionnement dans le temps, qui peut être interprétée comme une indication de l'intensité du concrétionnement.

Communication présentée au Colloque International de Karstologie Appliquée, Liège, 31 mai - 3 juin 1984.

LE CONCRETIONNEMENT DURANT L'HOLOCENE

METHODE UTILISEE : LE 14C

La datation par le ¹⁴C permet, avec l'installation utilisée au Centre d'Etude de l'Energie Nucléaire à Mol (CEN) de dater les concrétions stalagmitiques jusqu'à 30 ka BP environ. La méthode utilisée – comptage de l'activité du ¹⁴C dans un spectromètre à scintillation liquide – a été décrite ailleurs (Gewelt, 1983).

Les activités 14 C ont été normalisées en suivant la procédure préconisée par Stuiver & Polach (1977). Quand le δ^{13} C est mesuré (comme c'est le cas pour RSM II et RSM V), on utilise :

$$A_{\text{\'ech. normalis\'ee}} = A_{\text{\'ech.}} \left(1 - \frac{2(25 + \delta^{13}C_{\text{\'ech.}})}{1000}\right)$$

2 Aspirant FNRS. Laboratoire de Géomorphologie et Géologie du Quaternaire, Université de Liège, place du 20 Août 7, B-4000 Liège et CEN/SCK, Section mesures bas niveaux, Boeretang, 200, B-2400 Mol. Pour les autres échantillons dont le δ^{13} C n'a pas été mesuré, on a pris la valeur moyenne de la calcite stalagmitique ($-8\pm2^{\,0}$ /oo), ce qui revient à ajouter 275 \pm 50 ans aux âges 14 C bruts.

D'autre part, les datations au radiocarbone ont été corrigées pour la contribution du carbone mort issu de la dissolution du bedrock calcaire (radioactivement mort quant à son contenu 14C). Le facteur de correction adopté ici est q = 0,85, ce qui revient à retrancher 1306 ans aux âges 14C conventionnels. Les différentes façons d'estimer cette correction ont été discutées récemment (Gewelt, 1985; Gewelt et al., 1984). Ce facteur de correction semble également se retrouver par une nouvelle méthode d'estimation basée sur la comparaison des datations ¹⁴C avec les spectres polliniques obtenus dans des concrétions stalagmitiques (Bastin & Gewelt, en préparation). En effet, pour la majorité des concrétions holocènes étudiées, la meilleure concordance entre les données de la palynologie et celles fournies par le carbone-14 s'obtient en donnant au facteur de correction q la valeur de 0,85.

RESULTATS ET DISCUSSION

En effectuant plusieurs datations dans des couches de croissance distinctes d'une même concrétion, il est possible de calculer les vitesses de développement vertical entre points datés (fig. 1).

L'interpolation entre datations doit être effectuée prudemment étant donné les fréquentes interruptions de croissance (hiatus) révélées par l'analyse microstratigraphique des concrétions en coupe longitudinale. Les principaux résultats obtenus (tab. I) indiquent que les vitesses de croissance verticale sont fort variables (de 0,22 à 9,29 cm/100 ans pour les stalagmites). Certaines des valeurs calculées sont biaisées par la présence d'hiatus entre couches datées (dans CPL2 et RSM V par exemple).

Les volumes de calcite précipitée ont été calculés en assimilant les stalagmites à des cylindres. Cette approximation a été utilisée car les stalagmites étudiées ont dans la plupart des cas un diamètre presque constant.

Fréquemment, on observe des variations de la vitesse de croissance verticale au sein d'une même stalagmite, même si son diamètre est pour ainsi dire uniforme. L'amplitude des variations est de l'ordre de 2 dans RSM II et FRSM 9. L'idée généralement admise est que les stalagmites de diamètre constant en forme de cierge représentent des conditions de formation constantes (Franke, 1965). Il semble cependant que des variations non négligeables de la vitesse de croissance verticale (donc des conditions de précipitation de la calcite) puissent se produire, sans que le diamètre de la concrétion ne subisse de modification significative.

S'il est évident que le concrétionnement est principalement conditionné par les facteurs climatiques (quantité d'eau, température, teneur en CO_2 à la fois du sol, de la solution et de l'air de la grotte . . .), des

STALAGMITE FRSM 9 : DATATIONS 14C ET VITESSES DE CROISSANCE

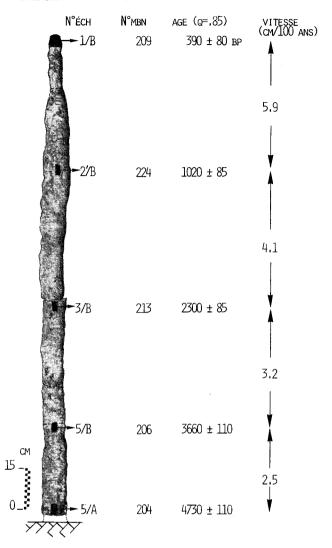


Figure 1 Datations ¹⁴C et vitesses de croissance verticale dans une stalagmite en forme de cierge prélevée en place dans la grotte de la Fontaine de Rivîre à Hamoir (Gewelt, 1984).

¹⁴C dating and vertical growth rates of columnar stalagmite from Fontaine de Rivîre Cave, Hamoir (Gewelt, 1984).

facteurs lithologiques peuvent aussi influencer les vitesses de croissance des concrétions. Par exemple, la croissance lente (0,22 cm/100 ans) et sans hiatus observée dans RSM 6 est à mettre en relation avec son développement sous une faible épaisseur de calcschiste (Gewelt, 1985).

Morphologie et vitesse de croissance des concrétions dépendent donc d'un nombre important de paramètres climatiques, hydrogéologiques, lithologiques et géochimiques. Ces facteurs ont été discutés ailleurs (Gewelt, 1985).

L'ensemble des données rassemblées dans-le tableau I permet de mettre en évidence la variabilité du colmatage chimique des cavernes. En extrapolant ces données à l'Holocène entier, on peut calculer certains paramètres

Tableau I.- Datations ¹⁴C de concrétions stalagmitiques holocènes : vitesses de croissance verticale et volumes de calcite précipitée. (D'après Gewelt, 1985 et résultats inédits).

Hv : Hannovre, datations de M.A. Geyh (Gewelt, 1981 et Bastin, 1982). MBN : Mol. Mesures Bas Niveaux. Département de Métrologie nucléaire, CEN.

 $^{^{14}}$ C ages for Belgian speleothems (corrected for a bedrock carbonate-dilution factor of q = 0.85) and vertical growth rates. (After Gewelt, 1985 and unpublished results).

(After Geweit, 1965 and unpublished results).												
Nº éch.	Description des prélèvements	Nº labo.	Age 14C (q = 0,85) + 1 \sigma	Vitesse de croissance (cm/100 ans)	Volume moyen de calcite préc. cm³/an	Localisation						
CPL2-H1 CPL2-E/D CPL2-A/B	sommet (hiatus) "milieu" (hiatus) base	MBN 177 MBN 179 MBN 178	350 <u>+</u> 85 5820 <u>+</u> 110 7750 <u>+</u> 130	0,14 0,35	-	Abîme de Comblain-au-Pont						
RSMII/E RSMII/D RSMII/B RSMII/A	sommet milieu sup. milieu inf. base	MBN 182 MBN 183 MBN 184 MBN 180	2080 ± 90 2470 ± 95 2790 ± 95 3070 ± 85	1,03 2,13 1,11	0,18	Grotte de Remouchamps						
RSMV/I RSMV/C RSMV/A	sommet milieu inf. (hiatus) base	Hv 9686 Hv 9685 Hv 9684	3750 <u>+</u> 175 8630 <u>+</u> 160 9870 <u>+</u> 335	0,86	0,23	Grotte de Remouchamps						
RSM8/F2 RSM8/B1	milieu sup. au dessus hiatus	MBN 200 MBN 192	7520 <u>+</u> 100 9430 <u>+</u> 95	1,20	0,21	Grotte de Remouchamps						
RSM6/A RSM6/C	sommet base	MBN 225 MBN 190	2850 <u>+</u> 85 9370 <u>+</u> 130	0,22	0,06	Grotte de Remouchamps						
BSM1/E BSM1/A	"milieu?" base	мви 197 мви 195	5970 <u>+</u> 70 7490 <u>+</u> 80	0,99	0,78	Grotte de Brialmont (Tilff)						
FRSM9-1/B FRSM9-2'/B FRSM9-3/B FRSM9-5/B FRSM9-5/A	sommet milieu sup. milieu milieu inf. base	MBN 209 MBN 224 MBN 213 MBN 206 MBN 204	390 ± 80 1020 ± 85 2300 ± 85 3660 ± 110 4730 ± 110	5,90 4,14 3,22 2,49	1,28	Grotte de la Fontaine de Rívîre (Hamoir)						
VKSM1/C VKSM1/A	sommet base	MBN 217 MBN 211	470 <u>+</u> 80 1130 <u>+</u> 80	4,03	1,14	Grotte Véronika (Tilff)						
TCSM1/A TCSM1/B TCSM1/C	sommet 2 sommet 1 "base"	MBN 233 MBN 232 MBN 236	4070 ± 90 4140 ± 110 5300 ± 100	9,29 1,55	0,53	Trou des Crevés (Wavreille)						
PNST4/16 PNST4/8.9	sommet	MBN 274 MBN 275	5210 <u>+</u> 110 6410 <u>+</u> 110	~ 6,3		Grotte du Père Noë: (Belvaux)						

de l'accumulation de la calcite pendant 10 ka. Ainsi, pour un point d'alimentation unique et en tenant compte de la section des stalagmites étudiées, on pourrait avoir une accumulation de 12800 cm³ au maximum et de 600 cm³ au minimum. De même, une stalagmite en forme de cierge qui se serait développée de façon continue durant la même période, pourrait avoir une hauteur de 9,3 m au maximum et de 22 cm au minimum. Cette valeur maximale est à notre connaissance

très rarement rencontrée dans les grottes belges; par contre, des valeurs de 2 à 4 mètres sont plus fréquentes et correspondraient dès lors à des vitesses de croissance verticale de 2 à 4 cm/100 ans. Signalons que des calculs effectués par Dreybrodt (1980) ont déterminé des vitesses de croissance maximales de 10 cm/100 ans. Cette valeur semble bien constituer un maximum qui n'a d'ailleurs été rencontré qu'une seule fois dans les concrétions étudiées ici (TCSM 1).

270 Michel GEWELT

La rapidité du colmatage chimique des galeries non noyées dépendra aussi, toutes conditions restant égales, du nombre de points de percolation favorables à la précipitation de la calcite.

La répartition de plus de 60 datations ¹⁴C indique que l'Holocène est une période favorable au concrétionnement dans les grottes belges (fig. 3B). Par contre, nous n'avons trouvé jusqu'ici qu'un seul échantilon dont l'âge corrigé (13810 ± 120 BP) soit compris entre 10 ka et 30 ka BP (limite de notre méthode de datation au ¹⁴C), ce qui peut indiquer un fort ralentissement – voire une interruption – de la croissance des concrétions pendant cette période. Il est clair que cette répartition est en étroite relation avec les paléoclimats.

APPORT DE LA METHODE DE DATATION 230 Th/ 234 U

METHODE

Les composés de l'uranium sont légèrement solubles dans l'eau et ceux du thorium le sont très peu. Lors de la précipitation, la calcite des concrétions contient donc seulement les isotopes de l'uranium. Si le système reste clos, la mesure de l'accumulation du ²³⁰Th à partir de ²³⁴U permet de dater la fermeture du système. Depuis l'application de cette méthode de datation aux concrétions par les pionniers (Rosholt & Antal, 1962; Cherdyntsev *et al.,* 1965; Komura & Sakanoue, 1967 . . .), les études se sont multipliées (voir la revue de Gascoyne & Schwarcz, 1982).

En Belgique cependant, son utilisation est très récente (Gewelt et al., 1984). La technique mise au point au CEN diffère légèrement des autres méthodes publiées. Les détails la concernant feront l'objet d'une autre publication (Gewelt & Hurtgen, en préparation). Le schéma général est le suivant :

- détermination de la concentration en uranium par fluorimétrie et calcul du poids d'échantillon nécessaire pour la datation.
- dissolution de l'échantillon dans HNO₃ et adjonction des traceurs (²²⁹Th et ²³²U); centrifugation éventuel-

Tableau II.- Ages ²³⁰Th/²³⁴U de concrétions de grottes belges (Gewelt, 1984 et résultats inédits). Les équations suivantes ont été utilisées pour corriger les âges lorsque la calcite est contaminée par des matières détritiques :

(*)
$$Th \, seul : ^{230}Th_c = ^{230}Th_s - ^{232}Th_s (^{230}Th/^{232}Th)_r (1)$$
 (**) $U \, et \, Th : \acute{e}quation (1) \, et : ^{234}U_c = ^{234}U_s - ^{232}Th_s (^{234}U/^{232}Th)_r$ $^{238}U_c = ^{238}U_s - ^{232}Th_s (^{238}U/^{232}Th)_r$

où les indices c, s et r représentent respectivement le carbonate pur (c'est-à-dire l'activité corrigée), la solution après attaque acide et centrifugation, et le résidu de l'attaque acide (d'après Liritzis & Galloway, 1982 et Ku & Liang, 1984).

²³⁰Th/ ²³⁴U ages for Belgian speleothems (Gewelt, 1984 and unpublished results). Equations used for the detrital corrections : see the french text.

N° éch.	CU) (ppm)	234 _U / ²³⁸ U ± σ	²³⁰ _{Th} / ²³² _{Th} + σ	²³⁰ Th/ ²³⁴ U <u>+</u> σ	Age + σ (x 10 ³ ans)	Age corrigé (*) Th seul (**) U-Th	Description
[FRSM1	0.184	1.845 <u>+</u> 0.072	190 <u>+</u> 50	0.559 <u>+</u> 0.024	84.2+8	-	1/2 stalagmite total
FRSM1/B	0.191	1.874 <u>+</u> 0.060	496 <u>+</u> 166	0.565 <u>+</u> 0.019	85.3 <u>+</u> 6	-	base
FRSM1/A	0.196	1.904 <u>+</u> 0.063	454 <u>+</u> 186	0.561 <u>+</u> 0.020	84.3+7	-	sommet
BRPL2/1	0.384	1.113 ± 0.036	59 <u>+</u> 8	1.072 <u>+</u> 0.040	> 350	-	plancher
3BRPL2/1	0.397	1.160 ± 0.037	97 <u>+</u> 16	1.054 <u>+</u> 0.037	> 350	-	plancher (double)
CPL3A/5	0.235	1.293 <u>+</u> 0.044	269 <u>+</u> 86	0.652 <u>+</u> 0.024	111+11	-	plancher partie inf.
RPL2/1	0.062	1.417 ± 0.047	12 <u>+</u> 1	0.639 <u>+</u> 0.020	106+9	92 ⁺⁸ (**)	base plancher
RPL3/1	0.048	1.544 <u>+</u> 0.053	1.1 <u>+</u> 0.1	0.114 <u>+</u> 0.005	13.3 <u>+</u> 0.8	6.7 <u>+</u> 0.8(**)	plancher
FRC01.1/1	0.140	1.511 <u>+</u> 0.048	27 <u>+</u> 2	0.881 <u>+</u> 0.029	189+26	183 ⁺²⁶ ₋₂₀ (**)	coulée de paroi
RSM7/A	0.123	1.316 <u>+</u> 0.042	25 <u>+</u> 2	0.718 <u>+</u> 0.022	130+12	127+12 (**)	base
RSM7/B	0.136	1.541 <u>+</u> 0.057	179 <u>+</u> 35	0.438 <u>+</u> 0.015	61.5 <u>+</u> 4	-	part.inf. au-dessus
RSM7/C2	0.147	1.568 <u>+</u> 0.051	115 <u>+</u> 30	0.401 <u>+</u> 0.016	55 <u>+</u> 4	-	hiatus sommet
RSM8/A	0.093	1.328 <u>+</u> 0.042	100 <u>+</u> 13	0.668 <u>+</u> 0.021	115+10	-	base
2ROSM2/A	0.386	1.037 <u>+</u> 0.036	441 <u>+</u> 181	0.695 <u>+</u> 0.026	130 ⁺¹⁷	-	base
ROSM2/D	0.152	1.082 <u>+</u> 0.035	32 <u>+</u> 4	0.511 <u>+</u> 0.020	78.5 ⁺⁷	-	sommet
RSM17.1/C	0.153	1.341 <u>+</u> 0.054	318 <u>+</u> 75	0.706 <u>+</u> 0.025	126+14	-	partie inférieure
RSM17.4/2	0.126	1.403 <u>+</u> 0.046	140 <u>+</u> 19	0.671 + 0.021	114+10	_	partie supérieure
RSM17.4/1	0.099	1.386 <u>+</u> 0.046	36 <u>+</u> 4	0.639 + 0.022	106 ⁺⁹	95.3 ⁺⁹ (*)	sommet
SCPL1.3/B	0.826	1.097 <u>+</u> 0.038	173 <u>+</u> 25	0.789 + 0.026	-8 166 ⁺²⁴ -18	-8 '	base plancher
SCPLF17/4C	0.323	1.088 <u>+</u> 0.035	29 <u>+</u> 3	0.642 <u>+</u> 0.021	112 ⁺¹¹	103 ⁺¹⁰ (**)	plancher part, inf.

- Extraction de U et Th dans un mélange de méthyliso-butylcétone (85 °/o) et de tributyle phosphate (15 °/o); réextraction par H₂ O et HCl 1M.
- Séparation de U et Th sur résines échangeuses d'ions anioniques (Bio Rad AG1-X2, 50-100 mesh).
- Electrodéposition sur coupelles en acier inoxydable poli et comptage en spectrométrie α.

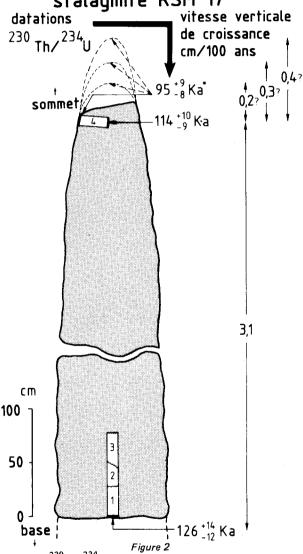
RESULTATS ET DISCUSSION

Les premiers résultats obtenus en Belgique (tab.II) sont tous basés sur des analyses dont les rendements chimiques sont supérieurs à 20 $^{\rm O}$ /o (53 $^{\rm O}$ /o en moyenne) pour le thorium et supérieurs à 41 $^{\rm O}$ /o (83 $^{\rm O}$ /o en moyenne) pour l'uranium. Lorsque la calcite contient une fraction non négligeable de matières insolubles (principalement de l'argile et de la silice), les résidus de la dissolution ont été traités avec $\rm HClO_4$ et $\rm HF$. Ils ont fait l'objet d'analyses séparées en spectrométrie α et le schéma de correction des activités utilisé par Liritzis & Galloway (1982) a été employé (voir aussi Ku & Liang, 1984).

- Concentration en uranium et rapport ²³⁴ U/²³⁸ U. La concentration en uranium dans les concrétions étudiées est faible et varie de 0,048 à 0,826 ppm. Les variations au sein d'une même grotte paraissent plus atténuées (Remouchamps possède les teneurs les plus basses et Sclayn les plus élevées). Les rapports ²³⁴ U/²³⁸ U varient de 1,037 à 1,904. Il semble cependant prématuré de vouloir dégager des tendances régionales de ces premières données.

Quelques vitesses de croissance ont été calculées à partir des premiers résultats consignés dans le tableau II.

- RSM 17. Stalagmite éboulée dans la Salle des Ruines de la grotte de Remouchamps. Quatre carottes de 10 cm de diamètre sur environ 30 cm de long y ont été forées au moyen d'un carottier électrique selon le schéma de la figure 2. La base réelle ainsi que le sommet de la stalagmite n'ont pas été échantillonnés car non retrouvés. Cependant, la partie externe de la carotte 4 représente approximativement la calcite du sommet de la concrétion. La vitesse de croissance verticale calculée entre la base de la carotte 1 et le coeur de la carotte 4 est de 3.1 cm/100 ans. Les vitesses de croissance verticale de la partie supérieure, calculées pour diverses extrapolations concernant la position réelle du sommet, varient de 0,2 à 0,4 cm/100 ans. Elles marquent de toute façon un ralentissement de croissance pour la période 114 ka à 95 ka BP. Les deux datations de la carotte 4 ont aussi permis de calculer la vitesse de croissance latérale qui est de 0,15 cm/100 ans.


Si la stalagmite était encore en développement à l'époque de sa chute, l'âge déterminé sur son sommet date l'éboulement qui peut sans doute être attribué à un tremblement de terre.

- FRSM 1. Petite stalagmite de 24 cm de haut

prélevée non en place dans la grotte de la Fontaine de Rivîre et constituée de calcite très pure ($^{230}\,\mathrm{Th}/^{232}\,\mathrm{Th}>450$). Bien que les datations de la base et du sommet soient très proches et dans les limites de l'erreur, elles sont en concordance stratigraphique. La vitesse de croissance verticale est de 2,5 cm/ 100 ans.

Ces vitesses de croissance sont tout à fait comparables avec celles trouvées pour les stalagmites holocènes (tab. 1).

GROTTE DE REMOUCHAMPS stalagmite RSM 17

Datations 230 Th/234 U et vitesses de croissance verticale d'une stalagmite éboulée dans la grotte de Remouchamps.

* : datation corrigée pour le Th seul.

1, 2, 3, 4 : numérotation des carottes prélevées.

En pointillé : hypothèses sur la position réelle du sommet; les vitesses de croissance calculées en fonction de ces différentes hypothèses sont suivies d'un point d'interrogation.

L'erreur sur les datations est prise au niveau de 1 C.

U-Series dating and vertical growth rates of a collapsed stalagmite from Remouchamps Cave.

* : correction for detrital Th only.

1, 2, 3, 4: number of the core-samples.

Dotted lines represent hypothetical localisations for the actual position of the top; vertical growth rates calculated according those hypotheses are followed by a question mark.

Error limits are \pm 1 α

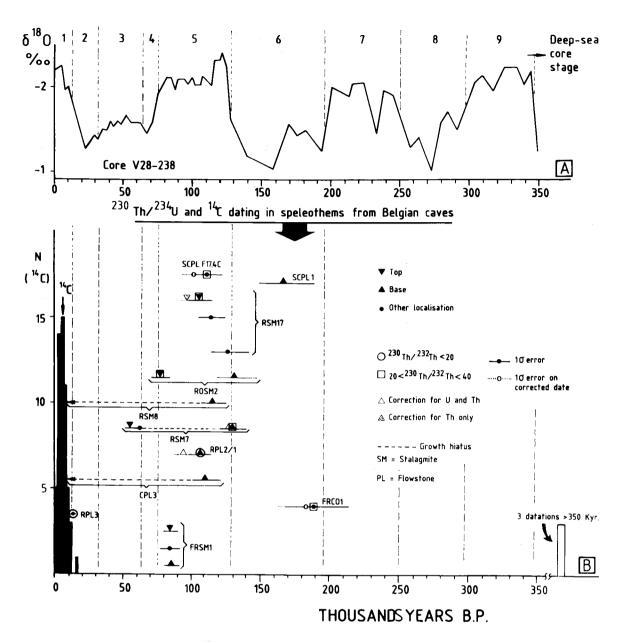


Figure 3. A.~ Variations du δ¹⁸O dans la carotte océanique V28-238 (d'après Shackleton & Opdyke, 1973).

Figure 3. B.- Répartition des âges de concrétions prélevées dans des grottes belges. A gauche, histogramme des âges ¹⁴C conventionnels (Gewelt, 1984, 1985 et résultats inédits).

A. – δ^{18} O and isotopic stages of the Equatorial Pacific Core V28-238 (after Shackleton & Opdyke, 1973). B. – Distribution of ages for Belgian speleothems. The left part of the figure represents the raw histogram of apparent (conventional) 14 C ages. (Gewelt, 1984, 1985 and unpublished results).

– **Répartition des datations.** La distribution des âges obtenus soit par 14 C soit par 230 Th/ 234 U (fig. 3B) peut être comparée par exemple avec la courbe de variation des δ^{18} O de la carotte V28-238 du Pacifique équatorial (Shackleton & Opdyke, 1973) qui représente un indice fiable des fluctuations paléoclimatiques ou en tout cas des variations du volume des glaces (fig. 3A). L'histogramme des dates 14 C correspond très bien avec le stade isotopique 1. Il marque clairement une reprise intense du concrétionnement dès le début de l'Holocène, vers 10 ka BP.

La plupart des dates ²³⁰Th/²³⁴U obtenues jusqu'ici se situent entre 85 et 130 ka BP, dans le stade isotopique 5. Ceci tend à démontrer que cette période (l'Eemien sensu lato ?) était également favorable au développement des concrétions stalagmitiques en Belgique. Cette distribution, sans doute encore peu significative car basée sur un nombre d'échantillons relativement petit, complète les données rassemblées par Hennig *et al.* (1983).

Deux hiatus de croissance de plus de 100 ka ont été mis en évidence dans une stalagmite (RSM 8) et dans un plancher (CPL 3).

CONCLUSION

La croissance des concrétions dépend étroitement des facteurs climatiques. Cependant, même si les périodes de concrétionnement paraissent suivre les variations climatiques à grande échelle, il ne faut pas exclure l'influence des facteurs paléoclimatiques locaux (pergélisol, végétation, circulation de l'eau . . .).

La croissance des concrétions de grottes, envisagée sur un laps de temps suffisamment long n'est donc pas un phénomène continu : croissance à vitesse variable et interruptions de croissance sont fréquemment rencontrées.

REMERCIEMENTS

Ce travail a bénéficié d'un crédit de la Commission des Communautés Européennes (contrat CLI-103-B) ainsi que d'un crédit aux chercheurs accordé par le FNRS au Professeur A. Pissart. Nous remercions ce dernier ainsi que le Dr. C. Ek pour leur soutien dans ce travail. Le CEN à Mol et plus particulièrement le Dr. G. Koch nous ont donné accès aux laboratoires de la Section Mesures Bas Niveaux. Nous remercions l'ensemble du personnel de cette section et plus particulièrement le Dr. C. Hurtgen qui nous a considérablement aidé dans la mise au point de la méthode de datation Th/U. Nous remercions aussi le Dr. B. Bastin qui a accepté d'effectuer des analyses polliniques dans plusieurs échantillons et qui nous a donné à dater la stalagmite PNst 4. L'Administration communale d'Aywaille et la Société anonyme des Grottes de Remouchamps nous ont autorisé à prendre des échantillons dans les grottes de Comblain-au-Pont et de Remouchamps.

BIBLIOGRAPHIE

- BASTIN, B., 1982. Premier bilan de l'analyse pollinique de stalagmites holocènes en provenance de grottes belges. Rev. belg. de Géographie, 106 (1): 87-97.
- CHERDYNTSEV, V.V., KAZACHEVSKIY, I.V. & KUZMINA, Ye.A., 1965. Dating of Pleistocene carbonate formations by the thorium and uranium isotopes. Geochemistry International, 2:794-801.
- DREYBRODT, W., 1980. Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chem. Geol., 29:80-105.
- DREYBRODT, W., 1981. The kinetics of calcite precipitation from thin films of calcareous solutions and the growth of speleothems: revisited. Chem. Geol., 32: 237-245.

- FRANKE, H.W., 1965. The theory behind stalagmite shapes. Studies in Speleology, 1 (2-3): 89-95.
- GASCOYNE, M. & SCHWARCZ, H.P., 1982. Uranium series dating of speleothems. In: Uranium series disequilibrium. Applications to environmental problems, M. Ivanovich & R.S. Harmon, édit., Clarendon Press, Oxford: 270-287.
- GEWELT, M., 1981. Les variations isotopiques du carbone et de l'oxygène dans une stalagmite de la grotte de Remouchamps (Belgique). Méthodes et premiers résultats. Ann. Soc. géol. Belg., 104 : 269-279.
- GEWELT, M., 1983. Nouvelle datation ¹⁴C d'une couche de tourbe d'une butte périglaciaire fossile de la Konnerzvenn (Hautes Fagnes, Belgique). Ann. Soc. géol. Belg., 106: 331-333.
- GEWELT, M., 1984. Les datations radiométriques ¹⁴ C et ²³⁰Th/²³⁴U. In : Livret-guide des excursions, Colloque international de Karstologie appliquée, Liège (31 mai-3 juin 1984) : 9–14 et 22–23; Fieldtrips guide-book : 12–16 et 24–25.
- GEWELT, M., 1985. Datations ¹⁴C de concrétions de grottes belges : vitesses de croissance durant l'Holocène et implications paléoclimatiques. In : New Directions in Karst. Proceed. 2nd. Anglo-French Karst Symposium, Oxford 1983. K. Paterson & M. Sweeting, édit. Geo Books / Geo Abstracts Ltd, Norwich (sous presse).
- GEWELT, M., GASCOYNE, M., QUINIF, Y. & CANTILLANA, R., 1984. Les datations radiométriques. Kölner Geogr. Arb., 45: 95–104.
- HENNIG, G.J., GRÜN, R. & BRUNNACKER, K., 1983. Speleothems, Travertines and Paleoclimates. Quat. Res., 20:1-29.
- KOMURA, K. & SAKANOUE, M., 1967. Studies in the dating methods for Quaternary samples by natural alpha-radio-active nuclides. Sci. Rep. Kanazawa Univ., 12 (1): 21-66
- KU, T.L. & LIANG, Z.C., 1984. The dating of impure carbonates with decay-series isotopes. Nuclear Instruments and Methods in Physics Research, 223: 563-571.
- LIRITZIS, Y. & GALLOWAY, R.B., 1982. The $^{230} \mathrm{Th}/^{234} \mathrm{U}$ disequilibrium dating of cave travertines. Nuclear Instruments and Methods, 201 : 507–510.
- ROSHOLT, J.N. & ANTAL, P.S., 1962. Evaluation of the $Pa^{231}/U \sim Th^{230}/U$ method for dating Pleistocene carbonate rocks. U.S. Geol. Survey, Prof. Paper, 450–E: E 108–E 111.
- SHACKLETON, N.J. & OPDYKE, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes of a 10⁵ year and 10⁶ year scale. Quat. Res., 3: 39-55.
- STUIVER, M. & POLACH, H.A., 1977. Discussion Reporting of ¹⁴C data. Radiocarbon, 19 (3): 355-363.