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QUINTIC DEFICIENT SPLINE WAVELETS

F. BASTIN and P. LAUBIN*

Abstract

Weshow explicitely how to construct scaling functions and wavelets which
are quintic deficient splines with compact support and symmetry properties

1 Introduction

For m e IN, it is xvell known that the functions Ny,.:1(. — k) (k € Z), where

Nt = xp*  Xoa (m 1 factors), constitute a Riesz basis d the set of
smoothest splinesd degree m,

Vo={f € La(R) : flppsy =P, ke Zand f € Cn_s(R)}

where P™ is a polynomial d degree at most m; for m = 0, it is simply the set
d functions in L2(IR) which are constant on every interval [k, k+1], k¥ € Z
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Moreover, if we define
Vi={feL(R): f27)eW}, jek

then the sets V; (j € Z ) constitute a multiresolution analysis of L2(IR) and the
function Np,41 is a scaling function for it; hence one gets bases of wavelets from
standard constructions ([6]; Chui-Wang biorthogonal wavelets,[2]; Battle-Lemarié
orthonormal wavelets, [7]).

For numerical analysis purposes, splines of odd degree are of special interest;
moreover, it is also useful to consider the set of deficient splines of degree 2m + 1
(m € IN), that is to say

Vo= {f € Ly(R) : flpwssny = B,k € Z and f € Crsi(R)}

(see [3], [8]). As for the space Vj, a standard argument shows that the space V; is a
closed subspace of L?(IR). For m = 1, this is the set of smoothest cubic splines; for
[m = 2], we denote this set as the set of

I deficient quintic splines.

In what follows, we want to show explicitely how to construct scaling functions
and wavelets which are quintic deficient splines with compact support and symmetry
properties.

We go straithforward to the heart of the problem of the construction of the
multiresolution analysis, with all direct computations and without referring or using
other results. The construction of the wavelets is also a direct computation adapted
to the problem. The idea of the proof that they are a Riesz basis comes from {4},
[5]. For the sake of completeness, we give here all the justifications.

2 Definitions and notations

We say that a sequence of functions f, (k€ Z ) in a Hilbert space (H, ||.|l) satisfies
the Riesz condition if they are A, B > 0, A < B such that

AYlal <1 ahl? < BY laf (RC)
(k) (k) (k)

for every finite sequence (¢) of complex numbers. If we denote by L the closed
linear hull of the fi (k € Z) then the map

+00

T:02 > L (Ck)kez — Z crfr

k=-—00
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is then a topological isomorphism. We say that the functions fi (k € Z ) constitute
a Riesz basis for L.

We use the notation f(€) for the Fourier transform [ e~®¢f(z) da of f.

In case H = L*(R) and fix(z) = f(z — k) (k € Z), taking Fourier transforms,
the inequality (RC) of the Riesz condition can be written as follows

A lel® < llpvwllZagom < B lexl? (RCF)
) (k)

with
+oo .
w() = Y fE+2Am € Ly, pE) =D cre™

=—00 (k)
Finally, using a classical argument (based on Fejer kernel for example), one shows
that (RFC) is satisfied for every finite sequence (c) if and only if

A<w(E)<B ae

(see for example [1],[7]).

For the sake of completeness, we also recall the standard definition of multires-
olution analysis. We say that a sequence of closed linear subspaces V; (j € Z )
of L2(IR) constitutes a multiresolution analysis of L*(IR) if the following properties
hold: .

OV, CVimVi€Z, U_zV,=IR), MgV =1{0}

(i) feVh & fl—-keWVkel

(i)Viez, feV; & f277)eV

(iv) there is ¢ € L*(R) such that the functions ¢(. — k), k € Z, are a Riesz basis
for V5.

From a mutiresolution analysis, one constructs a Riesz basis of L*(IR) from
a standard procedure (see for example [6], [7]), using the spaces W}, orthogonal
complement of V; in Vj4; (j€Z).

Here we use this procedure but with two functions instead of one for property

(iv).

3 Construction of a multiresolution analysis
Let us denote by V} the following set of quintic splines

Voi={f € Ly(R) : flpwsry =P, k€ Zand f € C3(R)}.
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Looking for f € V, with support [0, 3] (smaller interval does not give anything), we
are lead to a homogenous linear system of 18 unknowns and 16 equations; this let
us think that two scaling functions will be needed to generate Vj.

Proposition 3.1 A function f with support [0, 3] belongs to Vy if and only if

nz' +az’ if z € [0,1]
bz=3) +e(s-3) +d(z-3)’
f@) = +6($—-) f( —%) g ifzell,2
W3 —2)* +j(3 - z)° if z €[2,3]
0 if 2 &[0, 3]
with
b= 19 + ¥n c=L¥q+1n d=-%4-2p e=-Bg— By
f — 11365a+ 167’1 g= 117a -+ 660” h = 15a + 1072 ] = _loa_ %@n

Proof. The particular form in which we write the polynomials are due to the fact that
we have in mind to construct functions with symmetry. Moreover, the polynomial
on [0, 1] (resp. [2,3]) can immediately be written in this form because we want Cs
regularity at the point 0 (resp. 3) and support in [0, 3].

The coefficients are obtained using the definition of the quintic splines; we get
an homogenous system of 8 linear equations with 10 unknowns.Ol

Among the functions described above, there exists symmetric and antisymmetric
ones (the symmetry is naturally considered relatively to %) We are also going to
show that they generate V4.

Theorem 3.2 The following functions ¢, and @

at - 52 it 7 €10,1]

ulz)= ) 3@ D+ =3 - Fla- PP Hael2

-@-x)'+ 5B -z) if z € [2,3]

0 ifz<Oorz>3
2o fxe
g-f@=-3+ (@~ el

-} = 80 2 2 5 ,
P=) G- {3-aop ifze[2,3]
0 ifr<Oorz>3
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are respectively antisymmetric and symmetric with respect to % and the family
{pa. = k), ke Z}U{ps(.— k), keZ}
constitutes a Riesz basis of Vp.

Here is a picture of @, ¢q.

O O OO
N > O 00

0.4
O.,2 ’/\‘

0.2 0.5 1 1)5\/2/% 3
-0.4

Proof. Construction of @q, s.
‘We use the notations and the result of Proposition (3. 1). We look for a,n such

that

n=~h n=—h
a=j a=—j
b=0 (resp. e=0 ).
d=0 d=20
This system is equivalent to the single equation
S5a+3n=90 (resp. 15a+ 11n = 0).

With n=1,a=—$ (resp. n =1,a = —), we get @, (1esp. @a).

Riesz condition.
For every k € ZZ , we define

Poi(z) = pa(z — k) and  @uu(z) = ¢s(z — k)
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We first prove that the functions ¢,k (k € Z ) (resp. s (k € Z)) form a Riesz
family. Indeed, since we have

I ch%,k”%%m) ” che W o ”L2(IR) = —“|| che zks\/‘*’a( “L2(021r])
(k)
for every finite sequence (c;) of complex numbers and where
+oo
= Y. |z +2m)p,
l=—00

it suffices to show that there are constants ¢, C > 0 such that
c L we(§) <C, £€[0,2n].
Using the definition of ¢,, we get

Gale) = %fie-&f/? (3§(cos(?;—€)+9(:os(g))— 1lsin(3§) —27sin(§)>

= 2.—1526“3"5/2 <6§ cos(g)(él +cosé) — 2sm(§)(19 +11cos f))

Using

w_l =y, €N, EcR\Z
l=§--:oo (E+E)y+2 T (r+ 1) Csin’(n€)’ T , € : ,

some computations lead to

= 23247 — 21362 cos & — 385 cos(2
wa(€) = D> |Zal€ +2m)P = 3118550 (2¢)

I=—00

hence to the conclusion. The same can be done for ¢,. We get

P:(&) = -£6‘3i5/2 sin(g) (€(2 + cos€) — 3sin€)
- % 14445 + 7678 cos £ + 53 cos(2€)
= 2 + cos & + 53 cos
= 2 [P+ anp = 34650 :

Now, let us consider both families v, (k € Z ) and s (k € Z ) together. For
every finite sequence (¢r) and (di) of complex numbers, we have

+o0
1D (ko + drpsi)liom = > | %(Ck%,k—i + depoi-i) 1220,y
(k) j==00 (k
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On [0, 1], only @q1, sy with I = =2, —1,0 are not identically 0; moreover, these func-
tions are linearly independant (see appendix for a proof). As on a finite dimensional
space, all norms are equivalent, we get that there are 7, R > 0 such that

T (“ Z Ck%,k—viH%?([o,l]) + |l Z dk<Ps)k—7'||QL2([o,1])>

(k) (k)

< ” z(ck§9a,k—j -+ dk‘t?s‘k-j)”%%[o,l])
(k)

<R (H > cwtan-illzzgony + I Zdws,k—jll%zqo,u)> ‘

(k) (k)

Now, writing again

+o0
Z I ch’v9a.k—i||2L2([o,1]) = || Z%%,k”%?(m),

j=—cc (k) (k)

+c0 9 9

Z [ Z dk%,k—j“m([o ) = I Z dk‘Ps,k“Lz(m
j=—00 (k) (k)

and using what has been done on each family separately, we conclude.

Riesz basis for Vy.

Let us show that Vj is the closed linear hull of the ¢o, @5 (K € Z ).

On one hand, as the set ¥ is a closed subspace of L*(R) containing each vk
and sk, it contains the closed linear hull of these functions.

On the other hand, using Fourier transforms, we see that it suffices to show that
for every f € Vp, there are p,q € L? . and 2m— periodic such that

(&) = p(&)@s(€) + a()Fu(e) ae.

Let f € V. Because of the definition of V5, there are (r)peZ » (e € 1% such
that ’ '

m
6 ¢ s 1
D°f = ml—lg-loo k;m(Ckék -+ dk5k)
in the distribution sense, where &; and &, are respectively the Dirac and the deriva-
tive of the Dirac distribution at k (see appendix for proof). Taking Fourier trans-
forms, we get also

(7'5)6]‘.(5) = lim f: (cke“ikﬁ + Z'dkge—-ikg);

m-—+00 ke—m
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it follows that there are m(€), n(€) € L2, and 2r— periodic such that

(i)°f(6) =m() +€n(®) ae
Hence the problem is to find p,q € L2, and 27— periodic such that

_%{2@ = p()F(E) + a(&)Fa(€).

Using the explicit expression of the Fourier transform of o, and @,, we are lead to
look for p, ¢ such that

{ —m(£) = -32‘6/25 3 96sin € sin(§)p(€) + 16i(11 sin(%) + 27sin(§))q(€))
(€

—n(§) = e¥%/2(96(2 + cos€)sin(§)p(€) — 48i(cos(%) + 9cos(§))g )) (x)

For fixed &, this is a linear system of two equations and two unknowns; as

-3. 96sinésin(5) 16i(11sin(%) +27sm(§)) ) _ st €

et ( 96(2 + cos€) sin(§)  —48i(cos(3) + 9cos(§)) sin® o

with C' = —3 2'%, we get

167e%4/2

PlE) = C'sin (5)

<3m(§)(cos(32—§) + 9cos(§)) +n(€)(11 sin(-32—€) + 27sin(g))>

and
96 = 9683( 9 <3n(§) singsin($) + m(e)(2 + cost) Smé)) |

These functions are 27— periodic; it remains to prove that they are L. Indeed,

using m(€) = —€n(e) — £9F(€) we get
3m(E)(cos( ) +9cos(S)) + n(e)(115in( %) )

= -3¢5f(¢) (cos(gg) + 9005(%)) + n(€) [2—8—66 + 0(59)]

+ 27sin(2

and

B fony

3n(€)sinésin(2) + m(€)(2 + cos€) sin(-g-)

-~

= sin(g) <—§6(2 + cos&) f(€) + n(é) [_61655 + O(é’)D

and we conclude.O0
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Remark 3.3 1) The previous proof also shows that a function f of L*(R) belongs
to Vp if and only if there exist m,n € L%, 2m— periodic such that

(i€)°F(€) = m(&) +&n() ae

2) Since
3¢ (cos(%é) + 9003(%)) -1 sin(%é) - 27sin( ) = —2%57 +0(£%
and
£(2+ cos€) — 3siné = 61655 +0(¢")
we get

—~ — 4
%a(0) =0, 25(0) = 5

For every j € Z we define

={fe*(R) : f(27) eV}

Proposition 3.4 The sequence V; (j € Z } is an increasing sequence of closed sets
of L*(R) and

Nv={0}, U= LQ(IR)
jeZl jeZl

Moreover, the functions @,, s satisfy the following scaling relation

P:(2€) ?s(8)
= My(¢)
%a(26) Za(8)

where My(€) is the matriz (called filter matriz)

i) ( & cos(5)(19 + 13 cos§) =2 cos?(§) sin(§) )

My(€)

% sin(§ £)(16 + 11cosé) 32cos( }(8 — 7cosé))

, (
% ( 51cos(§) + 13cos(%) —9i(sin(§) +sin(%)) )
64 )

i(11sin(%) + 21sin(§)) —7cos(%) +9cos(§))
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Ezxpressed in terms of the functions instead of the Fourier transform, the scaling
relation can be written as follows

0i(3) = 2300+ Blpla — 1)+ Slp(e - 2) + 13p.( - 3)

—904(2) = 9pa(z — 1) + 9pa(@ — 2) + Ipu(z — 3))
1
QDa(E) = 64(11<ps(x) + 21908(‘7; -1)~ 21598('77 - 2) - 11905(3’ -3)
—70a(z) + 90a(z ~ 1) + 9pa (T ~ 2) — Tipu(z —~ 3))
Proof. Using the definition of V; and of the V; (j € Z ), it is clear that V; C Vi
for every j € Z . The density of the union is due to the facts that a smoothest spline
is also a deficient spline (V; C V;) and that the union U, ;7 Vi is dense in L*(RR).

Now, let f € N,z V;. For every j <0, there is then a polynomial P; (resp. Q;)

such that f = P; on [0,277] (Iesp f=Qjon[-27,0]) It follows that P; = Pj
(resp. Q; = Q,) for every j,j' < 0 hence f is a polynomial on [0, +oo[ (resp
]=00,0]). Since f € L*(IR), this implies f = 0 on [0, +oo[ (resp. ]—o0, 0]).

Let us show how to obtain the scaling relation. We have

3~ sin & (2 + cos(2¢)) _ 9e”*% sin¢ sin(2€)

?s(26) = & 26
op . —3ie™%%(cos(3€) + 9cos ) ze"3’f(11 sin(3¢) + 27sin &)
Soa(zé) - 265 - 466

We define

ms(f) = ;Z_e--sig sin€sin(26),  ny(€) = —3e 7% sin€ (2 + cos(2€))
Ma(€) = —Le~%¢(11 sin(3€) +27sing), (&) = %e"‘""f(cos(%) +9cosé)

and use the 1esolut1on of the linear system (*) occuring in the proof of Theorem 3.2
to get

_9-83E/2 3 3 .
PO = et (3ms<s><cos<—’5> #9eos($) + )11 ) + 2750
-—316/2

= 5 cos( 5) (19+ 13 cos¢)

2= 728325/2

gs(§) = W <3n-s(£) sinfsin(g) +ms(€)(2 + cos€) sin(%)) .
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Pa(€)

%(6)

—Qp—3i¢/
= 96163 ; 2- 0032(5) sin(—g—)
98 3iE/2 3¢ 3 ' 3¢ 3
m— <3ma(§)(cos(?) + 9cos(§)) +ng(€)(11 sin(—z—) +27 sin(a))>
3 .

ie—3i§/2 ) § 6
= ~33 sm(-2—) (16 + 11 cos€)
0=1;3i€/2
sin®(§)
o-3i€/2 ¢

= T(QCOS(E) - 7cos(%§))

(3na(§) sinfsin(g) + mqa(€)(2 + cos§) sin(%)) .

such that

Za(26) = ps(O)FH(E) + ¢s(6)FalE)
Zal26) Za

it
S
5]
—
2
=
)
20
o
&
+
e
-
o
&0

The scaling relation leads to the following formula*

Property 3.5 We have

W(26) = Mo(©W(E)M;(§) + Mo(€ +mW(E+m)Mg(§+ ) (Rl)

where
_ .“’S(g) Wm(g)
W(f)‘<wm<é> wa@))
with
o= 12 23247 = 21362 cos € — 385 cos(2¢)
@) = > |eale+2mi = 311850

=00 :

11n case Vp is generated by one single function ¢, we recall that we have

mo(€)Pw(€) + Imo(§ + m)Pwl(€ + m) = w(2€)

where my is the filter and where

+00 .
W) = 3 |+ 2kn)

k=-c0
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teo 14445 + 7678 cos € + 53 cos(2€)

— i - 2_
ws() = l;@lws(ﬁﬁlﬂ)l = 34650
+00 —_— ;
“nl€) = 3 Bale+AmBEF ) = — oo sing (6910 +193cos€)

Proof. Define
_ [ &(&)
¢(§) - ( @(E) )

Using the scaling relation, we have

B(26) ¢7(26) = Mo(£)8(€) #* ()M (€) (%x)
As we also have

ey 1Z:(8)I 2:(€) Zal€)
9lE) ¢(8) = ( HOHE  BOP )
hence oo
D (€ +2m) ¢*(€ +2m) = W(E)
=00

we finally get from (**)

W(28) = Mo(§)W (§) Mg (8) + Mo(§ + m)W (€ + m) MG (€ + ).

From the previous results, we obtain that the closed subspaces V; (j € Z ) form
a multiresolution analysis of L?(R) with the difference that V; is generated using
two functions.

A next step is then to define Wy as the orthogonal complement of Vj in V)
and to construct mother wavelets in that context, that is to say functions which
will genererate Wy and which will be compactly supported deficient splines with
symmetry properties.

4 Construction of wavelets

Proposition 4.1 A function f belongs to Wy if and only if there exists p,q € LZ,,
2m— periodic such that

-~

F(26) = p()%s (&) + a(€)a(8)
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and

0 W (1 ) + mEFn weEm (P10 ) =0ae (oo

9(é) g(§+m)

where My is the filter matriz obtained in Proposition 3.4 and W(§) is the matriz

defined in Property 3.5.
Proof. We have

feEW, & feViand f1lV .
& Ip,q € L, 2m —per. : f(26) = p(§)%:(€) +a(€)Za(€)end £ 1LV

Let us develop the orthogonality condition, assuming the decomposition of f
terms of p,g. We have

FLV & (fpu) =0and (f,pur) =0 VEEZ
& [ de FEPOFE) + OB =0 VEEZ

25(8)
P = < 25(8) ) '
using the scaling relation ¢(2€) = Mo(£)$(&) we get

11V & [ e P LEREFE + €73 =0 ke

z P(E)un(€) + a€Voml)
= [ dge”eM“( P(Eom(€) + (5)wa<s>) 0 VkeZ

where

We finally obtain

fiv, & /O ” d¢ e2ik€M0(g)W(§) ( 5&8 ) —0 VkeZ

in

e Mo(¢) W( zgg ) + My(E+7) W +m) ( gggig ) =0 a.e.

]

Property 4.2 Define

8 8
&) =S pre ™, q€&) =Y qe™™
k=0 k=0
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Then

>=

3889626976749167 g¢ ~ 131897103348532083 g7

O WO (P9 ) + T wEr (2T
e 9 +m)

if and only if

Po = T T5594130826128318 1998046608709606

_ 300465997116423653 g5 , 31475411718124505275 g7
b= 5004130826128813 5994130826128818

_ _2010616639302037153 g, , 98460203039930868151 gy
Py = 11988279652257636 3996093217419212

_ _63116209243402295 g, | 2752877157983350339 gy
Ps = T T1088279652257636 11988279652257636

_ 1001080766452619117 g 305442606074749693691 g7
P4 = TT3006003217419212 T 11988279652257636

_ 586477042773225505 g5 _ 18702491649774784079 g
Ps = T1988279652957636 3996093217419212

_ 8697¢; 815185 gy
Ps = o3 20166

_ @ T6Tlgr
P = 39166 T o022
ps = 0

_ 817983800541088 g, _ 83213460955642643 g,
© = T999023304354803 999023304354803

| _ 83213460955642643 g, _ 8464081159439223030 g7

@ = T999023304354803 999023304354803

_ 3076490626603617437 g5 312581647446378659929 g
2 T TT3506003217419212 3006093217410212

_ 6206512064613183305 g 627609716223521838081 g
© = TT3906003217419212 3096093217419212

_ 3093733577622211520 g5 307145202058857943389 g
% = TT3906003217410212 3096003217419212

_ 318992113046003613 g5 _ 28693660332222110321 gy
& = T3306003217419212 3996093217419212
g = 0

It follows that there exists deficient spline wavelets with support in [0,5], i.e.
functions 1 such that

7
$(26) = Zpke TMGHE) + > e * 55 (€)

k=0 k=0
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or
7
—z/z (z) = Zpkw(Q:r, —k) + Y qpa(2z — k).
k=0
Proof. The degree of the polynomlals p,q are due to a look to the system that has
to be solved. The resolution of the linear system is a Mathematica computation.t

Property 4.3 For every gs, 7, the function ¢ has (at least) one vanishing moment.

Proof. We have ~
¥(2€) = p(§)Z:(§) + a(§)%a(8)

with

7 7

=Y ™™, g(€) = qre™™.
k=0 k=0

As

2a(0) =0, 7(0) £ 0
it suffices to check that p(0) = 0.

To obtain this property, we just use the relation (***) with £ = 0 (the relation is
in fact an equality everywhere since p, g are polynomials in that case. Indeed, since

_A[0(0)=<(1) %) 1\[0(71'):(3_(5)2 8>

wo= (7 iy ) 0= e )

from (***) we obtain we(0)p(0) = 0 hence the conclusion. O

and

Moreover, syminetric compactly supported wavelets can be constructed: take
g6, g7 such that po = p7; then p1 = pe.p2 = P5,Ps =P, Q0 = —¢1, @1 = —G6: P2 =

~gs; g3 = —qq (we denote these coefficients with an “s”) and we get (after some
normalisation)
1 =
5#’3(5) 506
12632556065
= —17951959(ps(z) + ¢s(z — 7)) — —5_'—(»%(3: - 1) + sz - 6))
16090899067 61066820897
———(psle =) + oz = 5)) + ——g—(ps(z = ) + ps(z — 4))
67958549 ‘
e (a(@) — @alz — 7)) + 2276806815(xwa(z — 1) — pa(z — 6))
57273621163

——( (T = 2) = oz — 5)) + 21550944929(po(x — 3) — wa(z — 4))
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In the same way, antisymmetric compactly supported wavelets can be con-
structed: take gs,g7 such that po = —pr; then py = —ps, p2 = —ps,P3 = —ps, Qo =
g, @1 = 6, Q2 = g5, 93 = g4 {we denote these coefficients with an “a”) and we get
(after some normalisation)

1 z
§¢a(§)
= —28619155(ps(z) — 25(z ~ 7)) — 2316324977 (ips(x — 1) — @s(z — 6))
25729208221(p (6-2) — oz —5)) = 22560506027 (ol = 3) — ou(z — )
+36109536(24(2) + ¢a(z — 7)) T3717522762(W(x— 1) + @a(z — 6))
+74946(2)39675( oz —2)+~pa($—5)) 205272609199( ra(z — 3) + galz — 4))

Here are s, 1, (up to a multiplicative constant)

400

200

ST N1

~200

~100

-200

-400

The preceeding definitions can also be written using Founez transfoxms We
define

7
ps(§) = Zpie"“. 0(6) = Y_qte™
k=0 k=0

7

7
=S pRe T, gu(6) = Y qfe ¢
k=0 k=0

wige)= (28 3 )

With

we get (from (***))
MW (MG () + My +m)W(E+m)Mg(§+7) =0  (R2)

and

136



(565) - o (E§)

Now, we want to show that the family {¥sr : k¥ € Z}U{thep: k€ Z} is
a Riesz basis for Wy First, we give a lemma which will be of great help to get
the Riesz condition. We note here that this way of proving the Riesz condition is
different from the one used for the scaling functions. We could have used the same
method but computations became much more complicated; that’s why we tried to
get the result through another way.

Lemma 4.4 ([5]) Let f,g € L*(R). We define fi(z) = f(z—k), gr(z) = g(z—k),

e ©) €
- | Yt Wg
e = (248 g )
where
+oo
wrp(§) = k_Z | (€ +2km)[?
+00
weg(§) = k; |5(€ + 2km))?
+oo -
wrg(€) = > F(€+2km) GE + 2km).
k=00

The following properties are equivalent:
(i) the family {fi: k€ Z}U{gx: k € ZL} satisfies the Riesz condition
(i) there exists A, B > 0 such that

o < [ (e (78, (7€)
A+ < [ (a0 (7 ). (59 ) « < Bleor-ia@R)

for every finite sequences (¢x), (di) and where

p(&) = S cke™, q€) = 3 dpe¢
(k) . (%)

(iii) there exists A, B > 0 such that
ASNE B  (i=12)
where Ay (€), A2(€) are the eigenvalues of H(E).
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Proof. We have

1D crfe + D drgilliegm
(k) (k)

= "“H Socre ®flg) + > dee™ ™G 2 my
(k) (k)

= /0 IP(O)Peos5(€) + 1a(6)Pwaa(€) + P(€)aE)wr,(6) + PE)a(E)oz(E) de
_ L p(§) \ ( )
- 277/0 <H(§) ( q(€) ) ( q(¢) )> %,

which shows that (i) and (ii) are equivalent.
Now, for every ¢, the matrix H(€) is hermitian. Therefore, for every &, there is

2 unitary matrix U(€) such that U*(€) H(€)U(€) = diag(A1(€), A2(€)). As we have
P, = Lo (28 )ve (28)) «
- [{(58) () =
- ()1

IHew)lizz + (i)l

we obtain that (ii) is equivalent to

L2([0,27])

L2([0,27))

Aol + IADIE) < [ Oa@ple) + 20(E)a(6)) de < BB + I (@)I)

for every finite sequences (cx), (di). Now, it is clear that (iii) implies (ii). To get
that (i) implies (iii), it suffices for example to use the Fejer kernel as p,q (same
proof as for the Riesz condition). O

Now we want to use this lemma to obtain the desired result about the wavelets.
Let us give some notations: define the matrix

o wy,(§)  wyg,(6)
(&) = (w%,wa_(a o (©) )
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where

too

onle) = 3 [ule+2m)P
+oo

we,(8) = D s(E+2m)P
l=-oc

—_— —

Wy o () = D Ps(€ + 2Um)a (€ + 2im).

{=~00

Theorem 4.5 The family {5 : k € Z }U{wer : k € Z } constitutes a Riesz basis
for Wy. The functions with index s (resp. a) are symmetric (resp. antisymmetric).
The support of weo and wa o 18 included in [0, 5] '

It follows that the functions

212 (2T — k), V(P2 —k) (keZ)

form a Riesz basis of compactly supported deficient splines of L?(R) with symmetry
properties.

Proof. Using the expression of w,., s in terms of ,, s, i.€.

V(20 \ _ apqe [ PO
(@;@a) - (2

and by a computation similar to the oue leading to (R1), we get
Wy (26) = Mi(W(E)Mi*(€) + M(E+mW(E+m)M™(E+m).  (R3)

Then, since W (€) is hermitian positive definite for every £, the matrix Wy has the
same property if and only if the matrices M;(£) and M, (§+n) are not simultaneously
singular. This is the case since we have (up to an exponential function and a
multiplicative constant)

det M:1(§)
= sin?(£/2) (—64944404321059950
+1483142106949117120 cos € + 1192353539007974745 cos(2€)
+605163081148101400 cos(3€) + 249900649739435294 cos(4€)
+25542907675492680 cos(5€) + 250030917177111 cos(6€))

which gives the graph for 103" (det M;(€))? + (det M1 (€ + 7))?
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Finally, since the elements of W, are trigonometric 2n-periodic polynomials,
the eigenvalues are also periodic and continuous. Since they are strictly positive,
condition (iii) of Lemma 4.4 follows. Hence the family of wavelets satisfies the Riesz
condition.

To prove that the closure of the linear hull of the functions W4, Yor (k€ Z) is
W, it remains to show that

<f9ws,k:)=0 _
feWo,{U’%M:O = f=0

For f € Wy, we have (see Proposition 4.1) p,q € L., 2r— periodic such that

-~

f(28) = p(§)Zs(&) + ¢(§)%a(§)

and

_Mo@)'m( 28 )+ e e ( M ) m0ae O

The same computation as the one leading to the equality above in Proposition 4.1,
but using orthogonality to ¥4, ¥,k instead of to @k, @ar, leads to

AGRAG) ( {;gg ) L LE T WETT) ( f]’g ! :g ) —0ae (2

Then (1) and (2) are equivalent to

(&)
( My(E) W(E)  Mo(E+7) W(E+m) ) q(€) —0ae 3)
Mi(€) W(E) Mi(E+7) W(E+m) pE€ + rrg ‘
glé+m

We have

( My(§) W) Mo(+7) W(E+n) >
Mi(§) W) M(E+m) W(E+m)

- (28 ) (" v )

0 W+n
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Using the relations (R1), (R2), (R3), we get
(Mﬁ) %@+ﬂ)<W@ 0 )(Mﬁ)4%@+ﬂy
) .

Mi(§)  My(&+T) 0 W(+m)

_<Wm) 0 )
T\ 0 W20 )
For every &, the matrices W (E), Wy(€) are not singular. Hence, for every § the
matrix .
< Mo(§) Mo(€+m) )
Mi(§)  M(E+m)

is not singular. The conclusion follows: from (3) we obtain p(§) = ¢(§) = 0 a.e.0

5 Appendix

Property 5.1 The functions Palje ol with | = —2,—1,0 dare linearly inde-
pendant.

Proof. For z € [0, 1], we have

Poo(@) = ap(z) = pule) = z*— %ws
Py1(z) = pa1() = pale +1) = —g(x 3+ - - E;g(x -3
Po_a(z) = po2(2) = pa(z+2) = —(1-2)*+ %(1 —z)
Pao = u(e) = pula) = z* = 32°
Potim pori@ = pule+1) = = 2@ 27+ (-t

3
Pypi=, o(z) =ps(a+2) = (1-2)" - 3(3 —z)°
Ifr; (j=1,...,6) are such that

71P,0 + 9Py 1+ 13Pa—2 +74Pap +75Ps 1 +76F5,-2 =0
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then the coefficients of z7 (j =0,...,5) are equal to 0. We get the system

3ry + 313 + 2r5 — 2rg
3rg —3rs+ 15+ 16

Ts — T

—~3rg + 4rg — 5r5 — 5ryg
3r1 +3rg —6r3 +4ry+ 1915+ 8rg =
—91‘1 + 97‘3 - 117'4 - 387’5 - 117‘6

]
coocoocoo

which is easy to solve; the unique solution is
r=re=13=T4 =75 =7 =0.

Property 5.2 For every f € Vo, there are (ck)czz » (d) ez, € 1 such that

m
6 : !
D°f= ml—lvr-ll-loo Z (ckék -+ dkék)
k=-m
in the distribution sense, where &, and &}, are respectively the Dirac and the derivative
of the Dirac distribution at k.

Proof. Let f € Vg and, for every k € ZZ , let f|p sy = Pék) = polynomial of degree
at most 5. If af{”, agk) are respectively the coefficients of 7%, 2% in P5(k), then

D*PP(z) =516 z + 41af®

and, for h € Coo(R) with compact support,

/m #(2)D%h(z) de
= 51 Y (af? —af*™) A(k) + (4(a§” = aff V) + 5lk(al” — of*™)) Dh(k).
ke
For every k € ZZ , we define
c = 5@ — oMy,
di. = —4!(a(()k) - a(()k_l)) - 5!k(a§k) - agk_l))

—4! ((af)k) +5ka{®) — (@Y + 5ka§k_1)))
hence to conclude, it suffices to prove that

(), g €F (A +5kal?),_y €l
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Do obtain this, we first remark that, on the linear space of polynomials of degree
at most 5, all norms are equivalent. Hence, there are 7, R > 0 such that

5 1 5
r 4R < [ IP@P de < RY AL
7=0 0 i=0

for every polynomial P(z) = Zf;}=o Ajz?. Next, for f € Vj, using the same notations
as just above, we have

IflZemy = Z/ [P ()2 dx

k=00
= }: / |9z + &) da.
h=—cc

Moreover, in Pék)(:z: + k), the coefficient of z° is a{®) and the coefficient of z*

a(()k) + 5ka(1k) It follows that
2 02 W ()2 P 2 Lyen2
5 P+ + 5k < 2 S [1AO G+ R s < B
k=-oc k—-oc

Hence the conclusion.O
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