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Abstract
We present coronal imaging of the ultra-fast rotator, LO Peg, using the X-ray observations from
XMM-Newton. The X-ray light curves show one strong flare at the end of observation, as
reported in an earlier study. On removal of flaring events, the quiescent state light curve shows
rotational modulations, which are modelled using a maximum likelihood model. The results
obtained from modelling show that the corona of LO Peg is not uniform. Active regions are
concentrated around two longitudes, where one active region appears to be compact. The large
coronal area that covers almost 60 degrees along longitude from the poles to the equator does
not consist of active regions.

Keywords: Stellar activity — Stellar Coronae — X-ray star — X-ray astronomy — Stellar
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1. Introduction
The light curves of late-type active stars exhibit a wide range of temporal variability across

the electromagnetic spectrum, spanning from minutes to decades. This variability can be cat-
egorized into short-term variability (STV) and long-term variability (LTV), which are mani-
festations of different magnetic activities. STV, lasting from a few minutes to a few days, is
primarily attributed to flaring activity and rotational modulation caused by inhomogeneities
in the corona. Extensive studies and modelling of STVs due to flares have been conducted,
shedding light on the extreme physical conditions of solar-type stars (e.g., Haisch et al., 1991;
Reale, 2007; Pandey and Singh, 2008, 2012). Several techniques have been employed to ex-
tract information from periodic STVs resulting from rotational modulations of active regions in
stellar atmospheres. These include Doppler imaging using X-ray data (Brickhouse et al., 2001),
extrapolation of surface magnetic maps (Hussain et al., 2007; Johnstone et al., 2010; Cohen
et al., 2010, etc.), and light curve inversion techniques (Siarkowski, 1992; Siarkowski et al.,
1996; Drake et al., 2014; Singh and Pandey, 2022). However, each technique has its limita-
tions. Doppler imaging of X-ray data requires high-spectral resolution, often unavailable due to
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instrumental and observing constraints. Inferring coronal structures based on magnetic surface
maps necessitates simultaneous observations in optical and X-ray bands. Light-curve inversion
techniques (LCITs) pose a mathematically ill-posed problem, extracting 3-D information from
1-D time-series data. Despite these challenges and reasonable inputs, the LCITs have gained
popularity due to the increasing availability of time-series data.

This paper presents the results obtained by an X-ray LCIT for an ultra-fast rotator (UFR)
LO Peg. LO Peg is a K5-8V type UFR with a rotation period of 0.423 d (Karmakar et al., 2016).
The active nature of LO Peg in optical and X-ray bands has been studied in detail in the past
(e.g., Jetsu et al., 1994; Eibe et al., 1999; Pandey et al., 2005, 2009; Karmakar et al., 2016).
The Doppler imaging of LO Peg has shown high-latitude spots (Lister et al., 1999; Piluso et al.,
2008). Based on long-term optical data, Karmakar et al. (2016) has shown an excess of X-ray
emission in spotted regions where the spotted regions can cover the stellar surface from 9 to
26%. They have also found evidence of the presence of the flip-flop-like phenomenon.

We organise our paper as follows: Section 2 shows observations and data reduction, and
Section 3 presents the analysis and results. The coronal imaging method is described in Sec-
tion 4, and application to this method is shown in Section 5. We conclude in Section 6 with the
key findings from this research.

2. Observations and Data Reduction
The XMM-Newton observatory observed LO Peg for 42 ks on 30 November 2014. XMM-

Newton is equipped with three X-ray telescopes featuring five detectors: 2 MOS (Turner et al.,
2001), 1 PN (Strüder et al., 2001), and 2 RGS (den Herder et al., 2001). These detectors cover
an energy range of 0.15–15 keV. In addition to the X-ray detectors, XMM-Newton also includes
an optical monitor payload (OM; Mason et al., 2001), enabling simultaneous observations in the
UV and optical bands.

The raw data obtained from the observation was processed using the Science Analysis
System (SAS) v18.0.0 software (https://www.cosmos.esa.int/web/xmm-newton/sas). Standard
procedures provided by the software were applied to generate the science products. The source
light curves were created by considering the X-ray counts within a circular region of radius 42′′.
Similarly, background light curves were generated from source-free regions in the same CCD,
utilizing an extracted area similar to the source. Subsequently, the background subtraction and
detector response effects were corrected using the EPICLCCORR task.

3. Analysis and Results
The background corrected light curves for LO Peg are shown in Fig. 1 in three energy bands,

namely a broad band which covers 0.3–10.0 keV energy range, a soft band with an energy band
of 0.3–2.0 keV, and a hard band containing photons of energy 2.0–10.0 keV. The light curves in
all three bands show one standard flare-like time profile marked as blue-shaded regions in Fig. 1.
This detected flare also shows temperature variations indicated by the hardness ratio (HR) plot
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Figure 1: EPIC-PN X-ray light curve of LO Peg with a time bin size
of 300 sec. Panel (A) shows an X-ray light curve in 0.3–10.0 keV, with
panels (B) and (C) showing soft (0.3–2.0 keV) and hard (2.0–10.0 keV)
bands. The lowermost panel (D) shows the hardness ratio (HR). The
blue-shaded regions correspond to flaring episodes.

and shown in the lowermost panel of Fig. 1. The HR is defined as Hard-Soft/Hard+Soft, where
Hard and Soft are count rates in 2.0–10.0 keV and 0.3–2.0 keV energy bands, respectively. From
the HR plot, the mean value of HR ∼ −0.9 indicates that LO Peg’s corona is predominantly
populated by low-energy photons with energy less than 2 keV. The ratio of median values of
soft counts and total band counts shows that photons with energy less than 2 keV contribute
96% of the total band energy spectrum. Thus, the quiescent corona of LO Peg predominantly
consists of plasma with a temperature of less than 2 keV.

If we exclude the flaring part from the light curve, the quiescent state light curve appears
variable in the time scale of its rotation period. Therefore, we have phase-folded the quiescent
light curve to check for the rotationally modulated signal with ephemeris given by Dal and Tas
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(2003) with the rotational period obtained by Karmakar et al. (2016). The phase folded light
curve is shown in Fig. 2(a), and rotational modulation was found to be present with an ampli-
tude of > 20% about the mean value. Estimating rotational modulation from a single rotation
period is prone to small-scale fluctuations. However, it is essential to note that the rotational
modulation for the same observation was previously reported by Lalitha et al. (2017). Addi-
tionally, to mitigate the influence of short-term stochastic variability in the folded light curve,
we have phase-folded the light curve into 30 bins, corresponding to a 1.22 ks time interval. This
process allows for averaging stochastic variability caused by micro- and nano-flares, emphasis-
ing only the large-scale variations. The phase-folded quiescent light curve was modelled using
a maximum likelihood algorithm, which is discussed briefly as follows.

4. Coronal Imaging: Model
We have assumed that the coronal plasma is optically thin and rotates rigidly, and the vari-

ability seen in quiescent emission is mainly due to the active regions in the corona, which are
being eclipsed by the cylindrical shadow cast by the stellar photosphere during observation.
Further, we divide the volume around the star into a total of B cubical boxes, each associated
with an emission density f . The boxes around the star are distributed up to a height h above
the stellar photosphere. The number of photons emitted by a cubical box (b) follows a Poisson
distribution with a mean value of f (b), which is given as

P(n(b) = k) = e− f (b) f (b)k

k!
, k = 0,1,2, . . .

We aim to find each box’s f (b). For instance, there are ’N’ observations during one rotational
phase, and then different parts of the star become visible with the progressing rotational phase.
As the plasma is assumed to be optically thin at any given phase value (φ), the total emission
can be calculated by adding all the visible cubical boxes. To calculate which box is visible at
any given phase, we assume that the only occulter to the corona is the stellar photosphere, which
casts a cylindrical shadow on the corona. We calculate an occultation matrix M(b,φ) consisting
of weights assigned to each box equal to 1 if visible and 0 if occulted. So, the total emission at
any given phase is given by

F(φ) = ∑
b

f (b)M(b,φ)db

Due to the inclination angle of the star, some boxes are never seen during the whole observation,
and some boxes are always visible. The boxes not seen should be excluded from the solution
grid as they do not contribute to any of the variability seen in the light curves if we assume
the emission from each box is stable during the observation. The conditional probability of
observing counts Fo(φi) at phase φi with known emissions in each box f (b) and occultation
matrix M(b,φi) can be written as

Pi(Fo(φi)| f ,M(φi)) = e−λ λ Fo(φi)

Fo(φi)!
, λ = ∑

b
f (b)M(b,φi)db
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Figure 2: Results from coronal imaging of LO Peg: (a) observed and
the best fit modelled X-ray light curves, (b) ∆ log(L) vs iteration show-
ing likelihood is strictly increasing in each iteration, and (c) projected
coronal image of LO Peg. Here, the colour bar shows emission values
at each latitude and longitude. The black-shaded regions correspond to
latitudes which do not contribute to rotational modulation.
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The log-likelihood function can be written as

log(L) = ∑
i

log(Pi) = ∑
i

(
−λ +Fo(φi) log(λ )− log(Γ(Fo(φi)+1))

)
(1)

We now describe an iterative scheme that maximises the above-said setup’s likelihood.

f n+1(b) = f n(b)×
∑i

Fo(φi)
∑b f n(b)M(b,φ)dbM(b,φi)

∑i M(b,φi)
(2)

The above equation updates the old estimate for emission in box b by considering the previous
value of f at point b, scaling it based on the ratio of Fo(φi) to the weighted average of Fo for the
all b boxes, and then normalising it by the sum of the weighting function M for all phases φi.

5. Coronal Imaging of LO Peg
For the current solution, we have used a resolution of 0.05×0.05×0.05R⊙, with an incli-

nation angle fixed to 45◦ and radius of 0.72R⊙ for LO Peg (Pandey et al., 2005) with coronal
height up to 1R∗. We start with a uniform emission in each box for the first iteration step, which
is then updated according to Eqn. (2). At each iteration step, we also calculate the log-likelihood
as per Eqn. (1). The iteration was stopped when observed, and modelled count rates were fitted
well as per the standard χ2 scheme. The coronal image and modelled light curves are shown
in Fig. 2. In the same Figure, we plot the log-likelihood function’s positive difference, showing
that each iteration strictly increases the likelihood.

From Fig. 2(c), the corona of LO Peg shows active regions are not uniformly distributed
across the corona. Active regions are located between the longitudes −120◦ to +120◦ with
brighter active regions around +60◦. Around −90 to −60◦ longitude, the corona has a fainter
active region. Similar longitudinal distribution in the photosphere is also reported for LO Peg
during the year 2014–2015 (Savanov et al., 2016). Active regions appear to be absent around
the longitudes +120◦ to +180◦, which may be an indication of a coronal hole.

6. Conclusions
We have found that the quiescent emission of LO Peg is not constant but shows rotational

modulation with an amplitude of > 20% about the mean value. This modulation is modelled
by a maximum-likelihood method, revealing that the corona of LO Peg is not uniform but
is concentrated towards two longitudes. Active regions are concentrated in the two different
longitudes.
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