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Abstract
We present here preliminary results of stellar activities on three active M dwarfs having strong
magnetic fields using optical and Near-Infrared (NIR) (0.38 µm–2.5 µm) spectroscopic obser-
vational data using HFOSC on the 2-m HCT and TANSPEC on the 3.6-m DOT. The sample
includes new observations of AD Leo, EV Lac, and Stkm2-809 M dwarfs, including published
literature values of 89 M dwarfs. To understand the magnetic field activity on those dwarfs, we
used the equivalent widths of spectral features Ca IRT triplet (0.850 µm, 0.854 µm, 0.866 µm),
which are generally chromospheric and coronal indicators in M dwarfs, and investigate the
correlation between those line strengths with Rossby number, which is defined as the ratio of
rotation period (Prot) to convective turnover time (τconv). We find a strong correlation between
the equivalent widths of Ca IRT b and Ca IRT c and Rossby number (R0). The correlation
shows an increasing trend of equivalent widths of those lines with decreasing R0, and saturation
of the equivalent widths of those at lower R0 ≤ 0.1. To estimate R0, we estimate the rotation
periods of three observed M dwarfs in our sample from TESS data, and in the case of other
M dwarfs, we used the literature values. Interestingly, in TESS light curves of AD Leo, EV Lac,
and Stkm2-809 M dwarfs, we find several flare events. We estimated the bolometric flared en-
ergy in a range of 1034 to 1037 erg, which is in the superflare range (more than 1032 erg). We
estimate the highest flared energy of 1.22×1037 erg for EV Lac in TESS sector 57. To produce
such kind of high superflare event, we have estimated the required magnetic field strength of
10.53 kG, which will have an impact on the life habitability of planets around such M dwarfs.
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1. Introduction
M dwarfs are the lowest-mass hydrogen-burning stars, which are found at the bottom of the

main sequence in the H–R diagram, the most numerous stars in our Galaxy, about 40% in stellar
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mass (Kirkpatrick et al., 2012). These stars possess masses of 0.08–0.6 M⊙ and have Teff of
2500–4000 K (Pecaut and Mamajek, 2013). M dwarfs exhibit conspicuous evidence of surface
activity, e.g., flares, photometric rotational variability, enhanced chromospheric and coronal
emission in X-rays, UV, optical/IR, and radio (Hawley et al., 2014; Newton et al., 2016). An
interesting feature of the magnetic activity signature is the saturation with the Rossby number,
R0, which can be defined as the ratio of rotation period, Prot, and convective turnover time, τconv.
For R0 ≥ 0.1, stars show a log-linear relationship between the strength of magnetic indicators
and R0; however, for R0 ≤ 0.1, the relationship is flat (Muirhead et al., 2020). The saturation of
R0 is observed in Sun-like stars (Pallavicini et al., 1981), and similar behavior is also observed
for M dwarfs of the fully convective boundary (Newton et al., 2017).

Another exciting feature of stellar activity is the stellar flare, which occurs due to the mag-
netic reconnection in the stellar atmosphere accelerating charged particles into the photosphere,
heating the plasma, and releasing energy across the electromagnetic spectrum (Howard, 2022).
Low-mass stars can remain active for 10 Gyr (France et al., 2020) and frequently emit super-
flares 10 to 1000 times larger than flares from our Sun (Howard et al., 2018). Such kind of
superflares may affect the habitability of terrestrial planets orbiting in the liquid-water habitable
zones of these stars (Howard, 2022).

In this paper, we present preliminary results of stellar activities on three active M dwarfs
using optical and Near-IR (0.38–2.5 µm) spectroscopic observational data. The sample in this
study includes new observations of AD Leo, EV Lac, and Stkm2-809 M dwarfs, including 89
M dwarfs taken from the literature (Khata et al., 2021). We used the equivalent widths of spec-
tral features Ca IRT b (0.854 µm) and Ca IRT c (0.866 µm), which are generally chromospheric
and coronal indicators in M dwarfs. To understand the magnetic field activity on those dwarfs,
we investigate the correlation between those line strengths of Ca IRT and R0. We have also
analyzed the flared light curves of those dwarfs to estimate the flared energy and estimate the
magnetic fields to produce such kinds of flared events. Section 2 describes the spectroscopic
and photometric observations and data analysis. In Section 3, we discuss the preliminary results
of the above-mentioned studies. Finally, we have summarized our results in Section 4.

2. Observations and Data Reductions
2.1. Photometry

TESS (Ricker et al., 2014), which was launched in April 2018, has immensely magnified
the number of planets for detailed characterization, over 5000 extrasolar TESS Objects of In-
terest (TOI, (Guerrero et al., 2021)) have so far been detected. TESS searches the entire sky for
both transiting exoplanets and astrophysical variability in a tiling-based approach. The sky is
split into 24◦×96◦ sectors, each sector is observed for 27 d at a time with four onboard 10.5 cm
telescopes in a red (600–1000 nm) bandpass. First, we used the lightkurve package (Lightkurve
Collaboration et al., 2018) to download the TESS light curves of our targets such as AD Leo for
sector 48; EV Lac for sectors 7, 56, 57; Stkm2-809 for sectors 22, 48 from Mikulski Archive for
Space Telescopes (MAST archive). Then, the Science Processing Operations Center (SPOC)
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Figure 1: (left) An example of the TESS light curve. (middle) The
Lomb-Scargle Periodogram of that light curve. (right) The flare event
of EV Lac in Sector 56.

pipeline (Jenkins et al., 2016) extracts the data (see Fig. 1).

2.2. Spectroscopy

The Optical spectra of three M dwarfs are obtained using medium resolution (≈1200)
Hanle Faint Object Spectrograph and Camera (HFOSC) on the 2.0-m Himalayan Chandra Tele-
scope (HCT) located at Hanle, India. The spectra (350–900 nm) are taken with grism 7 and
grism 8. The optical and Near-Infrared (NIR) spectra are taken with cross-disperser mode with
a wavelength range of 0.55–2.5 µm with slit width 1 arcsec using medium resolution (≈ 2750)
TIFR-ARIES Near Infrared Spectrometer (TANSPEC) on the 3.6-m Devasthal Optical Tele-
scope (DOT) located at Devasthal, India during several observing nights over 2021 to 2023.
The TANSPEC data have been reduced with the TANSPEC pipeline (Ghosh et al., 2023), and
are cross-checked with the IRAF reduction (see Fig. 2). We measured the equivalent width
(EW ) of spectral features like Ca IRT b (0.854 µm) and Ca IRT c (0.866 µm) using the stan-
dard equation

EWλ =
∫

λ2

λ1

[1−F(λ )/Fc(λ )]dλ ,

where F(λ ) represents the flux across the wavelength range of the line (λ2–λ1), and Fc(λ )

stands for the estimated continuum flux on either side of the absorption line. The EW is mea-
sured using the Python-based package SPECUTILS for our observed samples.

3. Results and Discussion
3.1. Rotation periods

Periodic variation in light curves of low mass M-dwarfs can be observed due to rotation of
star. This is due to presence of large star-spot which is cooler than its surroundings, rotating in
and out of view (McQuillan et al., 2013). Flares originate in active regions of Sun where spots
found. Therefore, due to the presence of spots, large variations in brightness in the light curves
of M-dwarfs are observed (Doyle et al., 2019). To search for a significant periodic signal, we
used the Lomb-Scargle (LS) periodogram package from NASA Exoplanet Archive Periodogram
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Figure 2: The optical spectra of AD Leo taken from the 2-m HCT (top),
optical spectra of Stkm2-809 from 3.6-m DOT (middle) and Near-IR
spectra of Stkm2-809 from 3.6-m DOT (bottom) are shown here. Chro-
mospheric indicator’s spectral features are marked on those spectra.
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Table 1: Results for the rotation periods

Object TIC Sector Period Reference
This work Literature

(d) (d)
AD Leo 91531305 48 2.20 2.23 Lafarga et al. (2021)
EV Lac 154101678 56 4.35 4.38 Wright et al. (2011)

Stkm2-809 416538839 48 0.72 0.73 Ribas et al. (2023)

Table 2: Estimation of magnetic field of flared event

Object TIC Sector Highest Flare Energy Magnetic Field Flare Event
(erg) (kG)

AD Leo 91531305 48 2.08 × 1036 2.48
EV Lac 154101678 57 1.22 × 1037 10.53

Stkm2-809 416538839 48 5.23 × 1035 0.85

Service to find the significant periodic signal. The LS periodogram (Lomb, 1976; Scargle, 1982)
method uses a Fourier power spectrum estimator to find out significant periodicity, and it can
deal with the observed sparse data sets. In Table 1, the estimated rotation periods of three
M dwarfs in this work are listed, which are fairly close to previously estimated literature values.

3.2. Stellar flares

First, we estimated the equivalent duration (ED) of the flare, which is the equivalent time
during which a substellar object (in its quiescent state) would have emitted the same amount of
energy as the flare emitted, which is measured as flare energy (Gershberg, 1972):

ED =
∫

Fflare(t)/F0 dt,

where Ff lare is the integrated flare flux and F0 the median quiescent flux. To estimate ED,
we implemented the open-source Python software ALTAIPONY which is used to calculate the
energy of flares. Following the method from Shibayama et al. (2013), we calculate the flare
energy from the stellar luminosity and the best-fitting flare profile. Finally, we arrive at the
expression for the bolometric energy of the flare, given as

Eflare =
∫

L′
flare(t)dt,

where L′
flare is the bolometric flare luminosity. We estimated the flare energy of those M-dwarfs,

having E f lare in a range of 1034 to 1037 erg, which is in the superflare range (more than 1032 erg),
and listed in Table 2. Interestingly, we measured the highest flare of energy 1.22× 1037 erg in
TESS sector 57 for EV Lac.
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Figure 3: Equivalent width vs Rossby number R0 for Ca IRT b
(0.854 µm; left) and Ca IRT c (0.866 µm; right) lines.

3.3. Estimation of magnetic field with flared energy

According to Aulanier et al. (2013) and Paudel et al. (2018), considering the flare events
are similar to solar flares, we can roughly estimate the maximum strength of the magnetic field
(Bmax

z ) to produce such superflares following the relation

Eflare = 0.5×1032 ×
(

Bmax
Z

1000G

)2

×
(

Lbipole

50Mm

)3

erg,

where Eflare is the bolometric flare energy and Lbipole the linear separation between a pair of
magnetic poles on the surface of the objects, which is taken to be Lbipole = πR, with R being the
radius of the star. In Table 2, we have estimated the magnetic field of flared events in M dwarfs.
To produce the highest flare energy 1.22× 1037 erg like superflare event in EV Lac in TESS
sector 57, we have estimated the required magnetic field strength, which is coming out in order
of 10.53 kG.

3.4. Correlation of chromospheric line indicators with Rossby number

The Rossby number (R0) is defined as the ratio of rotation period (Prot) to convective
turnover time (τconv): R0 = Prot/τconv. To estimate R0, we have calculated τconv from the re-
lation given by Wright et al. (2011) using masses. Masses of all dwarfs are taken from Stassun
et al. (2019) by using the mass-MK relation from Mann et al. (2019). Because of parallax and
MK uncertaintities, the final uncertainties on masses are usually 3–4%. The rotation periods of
AD Leo, EV Lac and Stkm2-809 are measured in this work from the TESS light curves, and
those of the remaining 89 dwarfs are taken from Astudillo-Defru et al. (2017) with error bars
calculated by propagation. The uncertainty in measuring R0 are due to uncertainties in the es-
timations of mass and τconv. EW s of Ca IRT b (0.854 µm) and Ca IRT c (0.866 µm) of three
M dwarfs are measured in this work, and those of 89 M dwarfs are taken from Khata et al.
(2021). In Fig. 3, we preliminarily report the variation of EW of Ca IRT b and Ca IRT c with
R0. For comparison, we have also taken data for another 237 M dwarfs from Jackson and Jef-
fries (2010). We find that For R0 ≥ 0.1, it shows a log-linear relationship between the strength
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of magnetic indicators and R0. However, for R0 ≤ 0.1, the relationship is flat, indicating that
the magnetic fields in the photosphere itself are saturated (Reiners et al., 2009).

4. Summary and Conclusions
In this work, we present here preliminary results of stellar activities on three active

M dwarfs having strong magnetic fields using optical and Near-Infrared (NIR) (0.38–2.5 µm)
spectroscopic observational data. To understand the magnetic field activity on those dwarfs,
we used the correlation between equivalent widths of spectral features Ca IRT b and Ca IRT c
with Rossby number, which shows a log-linear relationship for R0 ≥ 0.1, while for R0 ≤ 0.1,
the relationship is saturated. The rotation periods of our sample are measured using the TESS
data. We measured the flare energy of three M-dwarfs, having the bolometric flared energy in
a range of 1034 to 1037 erg, which are in the superflare range (more than 1032 erg). We have
estimated the required magnetic field strength for such flare events, which is in the range of
0.85 to 10.5 kG.
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