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Abstract
The International Liquid Mirror Telescope (ILMT) project is a scientific collaboration in obser-
vational astrophysics between the Liège Institute of Astrophysics and Geophysics (Liège Uni-
versity, Belgium), the Aryabatta Research Institute of observational sciencES (ARIES, Nainital,
India) and several Canadian universities (British Columbia, Laval, Montréal, Toronto, Victoria
and York). Meanwhile, several other institutes have joined the project: the Royal Observatory
of Belgium, the National University of Uzbekistan and the Ulugh Beg Astronomical Institute
(Uzbekistan) as well as the Poznań Observatory (Poland). The Liège company AMOS (Ad-
vanced Mechanical and Optical Systems) has built the telescope structure that has been erected
on the ARIES site in Devasthal (Uttarakhand, India). It is the first liquid mirror telescope be-
ing dedicated to astronomical observations. First light was obtained on 29th April 2022 and
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commissioning is being conducted at the present time. In this short article, we describe and il-
lustrate the main components of the ILMT. We also highlight the ILMT papers presented during
the third BINA workshop, which discuss various aspects of the ILMT science programs.
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1. Introduction
The ILMT is a 4-metre zenith-pointing liquid-mirror telescope located at Devasthal Peak

in the Indian Himalayas. Taking advantage of the best seeing conditions and atmospheric ab-
sorption towards the zenith, it is being used to conduct a deep survey consisting of high S/N
photometric and astrometric observations in the SDSS g, r or i spectral bands of a narrow
strip of sky (22′ in declination). In combination with an efficient 4k× 4k CCD camera and a
unique prime-focus optical corrector, the images are obtained using the Time Delayed Integra-
tion (TDI) technique. The singly-scanned CCD frames correspond to an integration time of
102 s, corresponding to the time the image of an object crosses the active area of the detector.
The ILMT presently reaches V ≃ 22 mag (i-band) in a single scan but this limiting magnitude
can be further improved by co-adding the nightly recorded images.

The uniqueness of good cadence (one day) and deeper imaging with the ILMT make it
possible to detect and characterize artificial satellites and space debris (Hickson et al., 2024),
solar system (Pospieszalska-Surdej et al., 2024), galactic (Grewal et al., 2024) and extra-galactic
objects (Akhunov et al., 2024; Sun et al., 2024; Kumar et al., 2024). The field covered by the
ILMT during a full year is represented in equatorial, ecliptic and galactic coordinates in Dubey
et al. (2024). The fast f/D ≃ 2.4 focal ratio of this telescope is particularly well adapted to the
detection and characterization of low surface brightness objects (Fu et al., 2024).

An image subtraction technique is also being applied to the nightly recorded observations
in order to detect transients, objects exhibiting variations in flux or position (Pranshu et al.,
2024).

ILMT data acquired during the fall of 2022 are being made freely available to the scientific
community (Misra et al., 2024).

Following a campaign of observations that took place during the first commissioning period
of the ILMT in October–November 2022, an astrometric and photometric pipeline has been
developed to reduce and analyse the data (Ailawadhi et al., 2024; Dukiya et al., 2024; Negi
et al., 2024). Some preliminary scientific results based upon these observations are presented in
the different ILMT poster papers in these proceedings.

After briefly reviewing the working principle of a liquid mirror, we describe and illustrate
in the present paper the different components of the telescope.

2. Working Principle of the ILMT
A perfect reflective paraboloid represents the ideal reference surface for an optical device

to focus a beam of parallel light rays to a single point. This is how astronomical mirrors form
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Figure 1: (Left) Mercury placed in a circular container spinning around
the vertical axis focuses a beam of parallel light rays in the focal plane
at a distance F from the vertex of the mirror (see text). (Right) The
main components of a liquid mirror telescope: the mirror, the metallic
structure and the upper end installed at the level of the prime focus.

images of distant stars in their focal plane. In this context, it is amazing that the surface of a
liquid rotating around a vertical axis takes the shape of a paraboloid under the constant pull of
gravity and centrifugal acceleration, the latter growing stronger at distances further from the
central axis. The parabolic surface occurs because a liquid always sets its surface perpendicular
to the net acceleration it experiences, which in this case is increasingly tilted and enhanced with
distance from the central axis. The focal length F is proportional to the gravity acceleration g
and inversely proportional to the square of the angular velocity ω (see Fig. 1, left). In the case
of the ILMT, the angular velocity ω is about 8 turns per minute, resulting in a focal length of
about 8 m. Given the action of the optical corrector, the effective focal length f of the D = 4 m
telescope is about 9.44 m, resulting in the widely open ratio f/D≃ 2.4. In the case of the ILMT,
a thin rotating layer of mercury naturally focuses the light from a distant star at its focal point
located at ∼ 8 m just above the mirror, with the natural constraint that such a telescope always
observes at the zenith.

Thanks to the rotation of the Earth, the telescope scans a strip of sky centred at a declination
equal to the latitude of the observatory (+29◦ 21′ 41.4′′ for the ARIES Devasthal observatory).
The angular width of the strip is about 22′, a size limited by that of the detector (4k×4k) used in
the focal plane of the telescope. Since the ILMT observes the same region of the sky night after
night, it is possible either to co-add the images taken on different nights in order to improve
the limiting magnitude or to subtract images taken on different nights to make a variability
study of the corresponding strip of sky. Consequently, the ILMT is very well-suited to perform
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Figure 2: (Left) Top view of the ILMT structure and mirror filled with
mercury and covered with mylar. (Right) The g, r and i Sloan filters
installed in a tray just below the Spectral Instruments CCD camera.

variability studies of the strip of sky it observes. While the ILMT mirror is rotating, the linear
speed at its rim is about 5.6 km/hr, i.e., the speed of a walking person.

3. Technologies Used for the ILMT
The technology of liquid mirrors has been developed by the teams of Prof. E. Borra at

Laval University and Prof. P. Hickson at the University of British Columbia (UBC, see Hickson
et al., 1994). Liquid mirror Telescopes are relatively simple. Three components are required
(see Fig. 1, right): a fixed metallic structure, an upper hand comprising a TDI optical corrector,
a CCD camera and alignment mechanisms, and a mirror. The latter is made of a dish containing
a reflecting metal liquid (mercury), an air bearing that supports the mirror, and a drive system.
The choice of an air bearing system has been made in order to avoid as much as possible
the transmission of vibrations from the turntable to the mercury. The air bearing is driven by
a synchronous motor controlled by a variable-frequency AC power supply stabilised with a
crystal oscillator. It has to support the weight of the mercury (∼ 650 kg). To avoid transitory
effects in the mercury, the rotation speed must be very stable. Relative variations in the rotation
period must be smaller than typically one part in a million (Surdej et al., 2006).

The left panel of Fig. 2 shows a top view of the ILMT. We see the mirror filled with mercury
and covered with a very thin film of mylar in order to prevent any friction between the mercury
and the ambient air that could produce ripples at its surface. The right picture of Fig. 2 shows
the filter tray placed just under the CCD camera inside an interface structure at the prime focus.
This interface is equipped with mechanisms to focus the stellar images on the CCD and also to
eventually translate and rotate the camera in the focal plane.
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4. Conclusions
Based upon ILMT observations that have been collected during nine consecutive nights in

October–November 2022 through the Sloan g, r and i spectral filters, composite CCD frames
have been produced after correction for dark current, flat field, cosmic rays. They have been
astrometrically and photometrically calibrated (Surdej et al., 2022). Preliminary investigations
have led to the following results: hundreds of transients and known asteroids have been identi-
fied and more than 80 satellite and space debris streaks have been detected. Very nice extended
nebulae have also been imaged.
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