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ABSTRACT

The relation between energy balance and projective extensions of the Poincaré and
the Galilei groups is formulated in a way which leads to further remarks on 5-dimen-
sional momentum spaces and to a possible non-singular metric for the Galilei group.

Présenté par J. Serpe, le 27 février 1969.

INTRODUCTION

The Newtonian energy balance for a free particle of mass m
| E = p?/2m )
can be obtained from the relativistic expression
E2 = p%2 -+ mPct. (2)
However in order to do so, it is not sufficient to consider ¢ as a parameter and to
let it go to infinity ; it is also necessary to replace the energy E by B = E — mc?
before the limiting process.

This well known result can receive a group theoretical interpretation. It corres-
ponds to the fact that for a particle of mass m, the Newtonian invariance group
is a nontrivial projective extension of the Galilei group [1-5] and that such an
extension cannot be obtained from a projective extension of the Poincaré group
unless the factor of the latter extension is different from zero. This was already
pointed out by Saletan [6], [7]. In the present paper, we formulate the same result
in a way which leads to further remarks on 5-dimensional momentum spaces and to

a possible non-singular metric for the Galilei group different from the one proposed
by Pinski [8].

1. FIVE-DIMENSIONAL MOMENTUM SPACES

A. Let us consider relation (2) and write it as follows

3 1 0 7",
2 k2 202 E. 1 ! b2
z i — —Eé -+ mécd = [pl, P2, P3, i, ] 1 Ps3 =0 (3)
< — 1/ E
(L m2c®_| |- 1 _|
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This formulation can be interpreted in two ways.

First we have an affine interpretation [9]. Let us write

[p1, P2, p3, B, 1] = [P1, Pe, P3, Py, P5] = P, (4)
and consider the 4-dimensional momentum space V; as the hyperplane w
Pi=1 (5)
of the 5-dimensional vector space Vi on R (real field) .
{[P1, ..., Ps]} = {B}. (6)
Then if we put
%1 = diag (1, 1, 1, — 1/c?, m2c?) = [g*], (7)
relation (3) becomes v
P,gwP, =0 wyv=1,..,5 (8)
Py =1

and tells us that the states of the particle of mass m are the points of intersection
of hyperplane © with the cone of equation ‘ ‘
PF1P =0 ' 9)

(¢t is the transposition symbol).

On the other hand, we have a projective interpretation [3]. We map the point
P = [Py, Py, P3, Py, 1] of = onto the line OP where O is the origin ¢[0, O, O, O, O].
This mapping is & one-to-one correspondence between the points of 7w and the lines
of V§ originating from O {set (0)} and not belonging to the hyperplane ., which
contains O and is parallel to 7. Thus we may represent any point P of © by a line
of the set (0), not belonging to 7, But this picture suggests that we could complete 7
by the elements of set (O) which are in 7. These elements are the elements at infinity
of 7, as can be verified. Now we remark that set (O) constitutes a realization of the
4-dimensional projective space & on R. Thus we distinguish in this way the points
of the affine hyperplane w as the points at finite distance of the projective space
realized by the set (O).

In this framework, the affine point P
[p1, P2, P3, pa = E] <= [Py, Py, P3, Py, 1]
can be characterized by any point of the line OP i.e. by any matrix of type
P’ = [P} = PPy, ..., Py = PPy, Py = P[1] (10)
The Pi’s are the homogeneous or projective coordinates of P.

The interpretation of ‘P’ with Py 5~ 0 (projective point at finite distance or
homogeneous affine point) can be made by going to the inhomogeneous affine point

P is thus seen to be a unit factor for the mass. The present point of view differs
from the one often adopted in which the fifth component is taken to be the mass
itself.

The equation '
P-1tP =0 (12)

represents then a projective hyperquadric in &, which is non-degenerate and of
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hyperbolic type (signature : +-+-+—-+). Its part at finite distance (i.e. its inter:
section with ) is characterized by the inhomogeneous equation (hyperquadric of 7)

E2
Z P} — g+ me = 0. | (13)

Now we consider a transformation Az} belonging to the homogeneous Lorentz group
and represented in the space V; by the matrix ?A such that

Al >tA: A= [af] wv=1..4 (14)
with
Pug*P, = Pi¥Py = Puatg™arP,
ie.
G1=AG1iA (15)
where :
G-l = diag (1, 1, 1, — 1/¢?) = [¢**] LK=1,..,4 (16)
If we go to the 5-component formulation, we obtain
A : :
Al tof 1o = LO (1)] = [a¥] v =1,...,5, ' - am
with
A—1
p o P P =t P
ie.
P = Po/.
We have
Gl=oAG 1A, (18)

These transformations constitute a subgroup of the group of automorphism of Vi
associated with the regular quadratic form

PY-1P. (19)

The transformations belonging to this subgroup are those which transform into
itself the hyperplane © and which leave the point [0, 0, 0, 0, 1] fixed.

B. Now, we perform in V; (or in £}) the active transformation

P = P
P ~1 0 0 O 0o | TP
. 01 0 0 0 ‘
P, 0 0 0 1 —mc Py
_P 00 0 O 1 | LPs_
such that

P} == Py — mc? Ps.
This transformation leads from the quadratic form
Py-1 P
to the form
PY1P, e1)



where

“1 0 0 0 0
’ 010 0 0
Gl=tP1g191= [0 01 0 0 ©2)
00 0 —1/@ —m
000 —m 0

As to the transformations (17) conserving the form (19), they are mapped onto
the transformations e/’

A atme?

agme?

tof' = P i P = agme? (23)

| agmc? — mc?

0 1

which conserve the quadratic form (21).

The transformations %o/’ constitute a subgroup associated with (21). They
transform into itself the hyperplane 7 and thus the intersection of 7 with the affine
cone

P g1ip = 0. (24)
This section is characterized by the equation '
> PE— 2—2 P2 —2mP,P; = 0 (25)
Pr=1
i.e., in inhomogeneous coordinates,
S Pty —2mE =0 126)
The quadratic part of this hyperquadric of V; is given by the matrix
diag (1, 1,1, — 1/c?) (27)
just as in the case of the hyperquadric section by = of the initial cone
PZ-1tp = .

Both hyperquadrics have the same affine nature ; (26) can be obtained from hyper-
quadrie (13) (the center of which is #[0, 0, 0, 0, 1]) by a translation parallel to the
fourth axis.

Let us point out that if we consider the transformations (23) as the « valid »
transformations in Vi, we must change the physical interpretation of Ps/Ps. The
values on the fourth axis are relativistic energies minus mc2.

C. We consider now ¢, not any more as a fixed value (in meters/second), but
as a parameter and we let it tend to infinity in (22). On the one hand, the quadratic
form (22) tends to the form

P g'-1ep (28)
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where .
—1

g1 = (29)°

'cooo

OO O
cCoOmROO
Jocoo
oczgooo

This form is regular.

On the other hand, the transformations teZ’ tend to transformations belonging
to the group which conserves this form. They still conserve the hyperplane = and
thus the section by = of the cone

Ell glf__,l t_]?_” = 0. R ' (30)
This section has the inhomogeneous equdtion ' .
3
p;?— 2m py = 0. (31)
i=1
The quadratic part of this hyperquadric of Vj is characterized by the matrix
diag (1,1, 1, 0). (32)
This matrix is.singular. The hyperquadric is of parabolic type.

We note however that the quadratic form (28) is regular and that we obtam
in this way for the homogeneous Galilei group a regular metric which seems to be
more natural than the one introduced by Pinski.

Now let us see how we can relate what has been said so far to projective exten-
sions of the Poincaré and the Galilei groups.

2. COORDINATE SPACES
We consider the Abelian 5-parameter group
(@, ..., a'Y) (@, ...,at) = (@5 + @5, ..., a’t + at). (33)

With this group are canonically associated the vector space (R, R) = Vs and
the affine space (T, RS, R).

In T, the translation (a5, ..., al) i$ represented by the matrix @ such that
& Qg.5=75+a, (34)
ie.
= . +
v 5 s |
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Let us consider the character space of this group. Its elements can be described
by the points

[P, ..., Ps] = P

of the dual space V3 of V5. In the character P, the translation (@3, ..., @) is repre-
sented by '

exp (2 Pya*) = exp (1 P . @). (35)
A. Let us consider the tranformation AZl of Vi given by

A—l .
t_:E “Top t_EI . tEI = tof tE’ PL,I = Pva,;, (36)

where o7 is the matrix (17),

This transformation in Vi can be induced by the automorphism Ay

Aop: & = Sa 37)
 of V5 defined by
exp (1 Pja*) = exp (1 P,a™). (38)
We have
P.a=Pda="P.a, g (39)
and thus
. @ = <Aa. (40)

The group of these operators A,, in Vj is isomorphic to the group of operators A,y
in Vi. We give the same name to corresponding elements. ’

We thus obtain for the homogeneous Lorentz group the representation

App—> oA = [OA (1)] (41)
by automorphisms of Vs satisfying the orthogonality condition h
G=td G, (42)
with (in the base adopted here)
9 = (g,, = diag (1,1, 1, — ¢2, 1 /m2c2). (43)
We turn now to the inhomogeneous transformation (a5, ..., al, Ayp) of T defined by
J = AT + a, (44)
The product (b5, ..., b1, Bop) (@5, ..., a1, Ayp) of two such transformations is
Z=BA% + Bi + b. (45).
If we use the symbol @5 for the matrix
@ = t[al, ..., a4],

(45) can be written
25 = BA#%> + Ba5 4 b5
25 = 25 + a5 L PS5
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We thus obtain the inhomogenous group

(5, ..., b1, Bop) (@5, ..., al, Ayp)
= (b5 + a5, b5 + Ba, BopAoy). (47)
It is a projective extension with zero factor of the Poincaré group

(55, Bop) (@5, Aop) = (55 + Ba®, BopAop) (48)

B. We proceed in the same way with the transformations Aj;? g‘ivén by (23).
To these correspond the transformation A7, of Vs characterized by the matrices

&' which satisfy (with supplementary conditions)

G =t G A (49)
with
1 0 0 0 0o -
010 0 0
%' =0 0 1 0 0 (9] (50)
00 0 0 — 1/m
0 0 0 —1/m 1/m3?

By going to the inhomogeneous transformations
(a5, @5, Alop) > = L% + a, (51)
we obtain the group obeying the law gsg: = g3 given by
(b5, 5, B.,,) (a5, @5, A},)
= (b5 + a® 4 B'@as, b5 + B'as, B,A,,), (52)
where we denote by B’@® the matrix given by the fourth row of B'.

This group is a projective extension of the Poincaré group (the group {Af } is
isomorphic to the group {Aep}, but now the extension factor is different from zero.
However this factor

4
(g2, 1) = BOG = > bldad (53)
X 2
=1
is trivial since it can be written as
X (92, 91) = 9'(g2) + ©'(91) — @’(g92 . 91) (54)
with

©'(g) = ¢'(a5, a8, ..., AL, Agp) = — mca (55)

C. Now we point out that, when we go to the limit ¢ >0, this factor ' tends
to a limit which is no longer trivial and which is precisely the characteristic factor
of the extended Galilei group for particles of mass m.

Suppose that Agp is, in Vs, the product of rotation R by the pure Lorentz
transformation 4.
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We have, by putting v = [l —22/c2]""% and % = [Z, x4, 25],

A 4
il I R TR 7 .
#EGy=RE+ v | 1y, Rx—l—cx:l
g _—
Ys = b
It results from (56), (23) and (53) that
‘x'(gz, 1) = Ymﬁ .R& -+ ch(Y — 1)a4 57)

Thus, when ¢—>oo, the factor ' tends to the Galilean factor
1
x"(92, g1) = m3 . R& + 5 mu2ad. (58)

Finally we point out that the matrices o7”, representing in V5 the elements of the
homogeneous Galilei group, are such that

g” j— td” gll %Il (59)
where " is the regular matrix
1 0 0 0 0 -
010 0 0
Y =0 0 1 0 0 = [gp]- (60)
0 00 0 —1/m
0 0 0 —1/m (U
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