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TWO CONGRUENCES ON DISTRIBUTIVE LATTICES
by T. P. SPEED (¥)
RESUME

Soient & = (L; vV, A, 0) un lattis distributif avec zéro, S un A -sous-demi-lattis
de & et J un idéal de #. Alors nous pouvons définir deux familles de congruences
s et RY par :

(a, b)e‘lfsl.)=_éfilexisteseStelquea As=0bAs;

(d, b)ERJ]ﬁa A z€ J siet seulement si b A z€J (Vz € L).
{3

Ces congruences ont de multiples propriétés qui facilitent I’étude de la structure
des idéaux premiers et premiers-minimaux de .%. En particulier, l’espace des idéaux
premiers de % modulo WS est homéomorphe au sous-espace des idéaux premiers de

ne rencontrant pas S, chacun de ces espaces étant muni de la topologie habituelle.
L’espace des idéaux premiers-minimaux de .% est homéomorphe & Pespace des idéaux
premiers-minimaux de % modulo RO = R. Ce dernier résultat est le point de départ
de quelques théorémes relatifs & Pespace des idéaux premiers-minimaux de .#. Lorsque
% modulo R est un lattis de Boole, le cas est particuliérement intéressant et quelques
résultats nouveaux sont fournis ici.

INTRODUCTION

In the course of some work on the prime ideals of distributive lattices [7], two
families of congruences appeared useful in illustrating the concepts under discussion.
Neither of these congruences has been studied in much detail on distributive lattices,
although both have appeared before in various forms, see [2], [4]. We shall define
and discuss these congruences in some detail, relating them to the other work
mentioned. Throughout this note, ¥ = (L; v, A, 0) will be a distributive laitice
with zero.

1. NOTATION AND DEFINITIONS

The empty set is always denoted []. Lattices are always written in script
(e. g. &, Z[R) and the corresponding Roman letter (e. g., L, L/R) is used for the
carrier (basic set). The set of all ideals of a lattice & is written I(.¥) and forms a
lattice .# 4. The set of all prime ideals (resp. minimal prime ideals) of .# is denoted
Py (vesp. M ).

For A, B subsets of L, we write (A:B)* = {xeL:zAaeB for all ae A}.

Présenté par F. Jongmans, le 17 avril 1969,
(*) Monash University, Clayton, Viectoria, Australia.
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If A = {a}, we write (¢ :B)* and if B = {0} we employ A* instead of (A:{oh*
and (a)* instead of {a}*.

When a € L, we write (a) for the principal ideal of & generated by a, and [a]
for the principal dual ideal of ¥ generated by a.

A congruence 7 on & with any given ideal J as a congruence class has been
defined in [2] and is equivalent to

(a,0)e0) =avj=>bvj for some jeJ.
Df '

The canonical epimorphism induced by 67 will be written 67. Tt is proved in [2]
that 67 is the smallest congruence with J as (zero) congruence class. Similarly (but
dually) one may define 0T for a dual ideal F, having similar properties.

Maps are always written on the right of elements from the domain. Further
details concerning lattices can be found in [1].

2. THE CONGRUENCE ¥'S : GENERALITIES

In this section, S ¢ L will be an arbitrary A -subsemilattice of & = (L; v, A ,0).
We define ¥ by

(@, b)e¥S =ans = bAs for some se8.
. DI

Prorosrrion 2.1. — The relation VS as defined above is a congruence on &%
and S s contained in a single congruence class.

Proof. WS is readily seen to be reflexive and symmetric. If, for a, b, ¢ in L we
have (@, b) e ¥ and (b, ¢c) € ¥'S, then there must exist s, s in S with aAs = bA s
and bAs = cAs’. Thus aAsSAs = bASAS — cAsAc and, since sAs €8, we
have proved that (a,c) € ¥ and so ¥'S is an equivalence.

Take a, b, ¢, d in L with (a, b) € ¥'S and (¢, d) € ¥8. Then aA s = bA s for some
se8 and cAs’ = dA s for some s’ € S. From this it follows that (@Ve)A(sAns) =
(bvd)A(sAs’) and (anc)A(sAs’) = (bAd)A (sAs’) which proves that WS is a
congruence.

Finally, if s, s’ €S then sA (sA §') = s'A(sAs’) which proves that (s, s') e ¥S
and so 8 is contained in a single congruence class.

Nores. (i) We will write #//S instead of .#/¥S for the homomorphic image
of & and the epimorphism will be denoted {)S.

(i) If S is a dual ideal of &, WS coincides with the unique smallest congruence
having S as congruence class, see [2].

PropostTioN 2.2. — Let #1 and Lo be two lattices with S c Ly and T c Ly two
N -subsemalattices of L1, Lo respectively. If ¢ : L1~ Ly is a morphism with So c T,
then there is o unique morphism {33 such that JS o V8T = @ o OF. Further, if o is
an epimorphism so also is V3L, and of ¢ is a monomorphism with Se =T, then so
also is 3.

Proof. For a = ayfe Ly [/ S, define 43 by
Py = 2oy where z € L.

Then {5 is well-defined, for if @ = yyf for yely, i e if (z,y)eWs, there
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would be s S such that A s = yA s. In this case ; xo A s¢ = yp A s and, since
sp €T, we would have (z¢, yo) € 3 proving that the image of a under 3 is in-
dependent of the representative chosen. The fact that the mappings compose as
asserted is immediate.

If ¢ is an epimorphism, $$7 is also, since J is always an epimorphism. Suppose
now that o is a monomorphism, and Se = T. Assume adf = b{}d where
a=al$cli[/S and b=ylfcly//S, and z,yeLs. Then (by definition)
2T = yolT and so (vg, yo) € W3, i.e. At = yoAt for some t e T. If we write
t = s for s€ 8, we obtain zpA s@ = ypAsp or (xAs)o = (yA s)¢ which implies
that A s = yA s since ¢ is a monomorphism. Thus (z, y) e¥s and so 0 = adf =
y{$ = b proving that ¢$F is a monomorphism.

ProposITION 2.3. — Let & be a lattice and S a A -subsemilattice of L. If
J el |]S)and T = J'(8)3, then J € (L) and the canonical epimorphism 6 =07
L~ L|J induces

5.2 /18—>(2}) /] 86.
The map § has kernel J' and defines a canonical isomorphism
0:(Z 835 (&) ]| 86

Proof. Since J' e I(Z || 8) and {® is an epimorphism, J' (%1 is always an
ideal of .Z. Now for §. Consider the diagram

0 =07
L — LI
q)s i \‘L q)se ’
A
0
R R — (ZL[J) [] 86
Proposition 2.2 above gives the existence of an induced map b= %5 We

will look at the kernel of 8 (which exists since Z/J, and so (L [J) [/ 86, possesses

a lattice zero). For ac L [[ S, ab = 0 g5 s0 iff there is #e L with @ = ¢S and
20750 = 0 g5y s0- Bub this means there is s0 S0 with 2O A s6 = 0y ; which
gives us xAsed and so (xAs){Se J. It is readily checked that s{® behaves as
the (lattice) unit of % [/ S and so we deduce that x® = a €J’. Thus the kernel

of B is J’ as asserted.
Next consider the diagram

b
LS ——— (L}J) ]| 56

I/ ~
eJ/\ /‘/, e

N 7

~
Z|I8)

Define, for a c (£ [[ S)/J, a?) = 0 where @ = 26" Tt is straight-forward to check
that 9 is well-defined. We will show that 0, obviously an epimorphism, is an iso-
morphism. Suppose ab = bb where a = x0% and b = y0" for x, y in £ [/ S. Then
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~ ~
2

x = c{S and y = d{S for ¢, d in L and af = b0 means z8 = yB which is equivalent
to (c07, d67) e ¥'Y,;. Thus
(c87, d8%) e W'Y,
= c0IAk = dOT Ak for some k = s67  SO7,
= (cA8)0T = (dA )07,
= (eAs, dAs) e,
= (cAs)Vj= (dAs)vj for some jeJ. Apply {8 :
= [(ens) ViIP® = [(dA5) viILP,
= (P A s®) VS = (@45 A sd5) vigs,
= oS ViYS = S vies,
= vy =yvyj for j =j{¥e I = J{8,
= (z,y)€b”,
= 207 = yb7¥,

~
XN - . . i .
= a =b. Thus 0 is a monomorphism and so an isomorphism and our result is
proved.

3. PRIME IDEALS AND ¥'S

Next we discuss some relations between W and prime ideals — the original
motivation for looking at ¥'S, and the source of applications of the congruence.

ProrosiTiON 3.1. — Let £ be a lattice and let S, T be two A -subsemilattices
of & with S c T. Then the following are equivalent :

(1) 5T L[S L[| T 4s an isomorphism.
(ii) For any teT there is s€ S such that tAseS.
(iii) For any prime ideal of £, PN'T £ [ vmphies PN S =4 [

Proof. Suppose that ST is bijective. Then for a,beL [/ 8, alST = b{ST
implies @ = b, i.e. if o =25 and b = y}® then by (2.2) 2T = y¢T implies
@S = y{S. Thus, (ST being bijective means that ¥'T < WS, which, combined with
Sc T, implies that ' = W'S. Hence any ¢ T must be congruent to some ¢ €S
i.e. there is se€ S with tAs =s'Ase S, We have proved (i) = (ii).

To prove (ii) = (iii) we assume (ii) and take a prime ideal P such that
PNTz£[] Forte PN T we have s € S such that tAse S. Clearly éAse P and so
tAnse PN S proving that PN S =4[ .

Finally, we assume (iii) and prove YT = WS, Let (a, b)) e VT ie. aAt = bAt
for some ¢t € T. Suppose S N (£) = [J. Then there is a prime ideal P such that t€ P
and PN S = []. But this contradicts (iii) and so S N (¢) 5% [J. Then there is s < ¢,
seS and so aAs =aAiAs=bAtAs =bAs and (a, b) e ¥S. As noted above,
ScT implies ¥ <CWT and we have proved that ¥'® = ¥'T which is equivalent
to (i).

In the case when S = L\P is the set-complement of a prime ideal P of .Z,

we write (for brevity) #p instead of & [/ (L\P). Such lattices have a unique maximal
ideal.
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ProrosrtioN 3.2. — Let & be a lattice and S a A -subsemilattice of L.

(i) The map ({5)1:I(ZL [|S)— L) defines an order-isomorphism between
Pyysand {PePy,:PNS =[]}

(i) If P'ePgy s and P = P'({S)1 then there is a canonical isomorphism
w: Lp> (L |8y

Proof. (i) It is well known that the inverse image of a prime ideal under an
epimorphism is again a prime ideal. Since Sc1g/(¢5) and 1g ¢ P’ where
P’ e Py we deduce that P = P'({5)1 satisfies PN S = []. To show that (¢5)~1
is bijective (it is obviously order-preserving) when restricted to £, we will
prove that if PN S = [] for Pe #,, then PYS({¥)1 = P. Clearly PJS({5)-15P.
Suppose z € PYS({®)-1. Then x{Sec P{® and so there is peP and seS with
xAs=pAs But s¢P and pAseP and so z€ P proving the desired inclusion.
Thus the assertion of (i) is now proved.

(ii) Consider the diagram, where Q == L\P and Q' = (L //S)\P’. Define « in
the obvious manner i. e. for a = 2@ where z € L, we write ax = 2%, 5. A routine
check shows that o is well-defined and thence, since the diagram commutes, an
epimorphism. If ao = ba for @ = x{? and b = y¢® we deduce that

S
2 S
VR s
\
oL
L (L] S

(@45, y§®) e ¥Q. Or, for some ¢' € Q’ ,
2fSAg = ylSrg. Now ¢’ =q¢® for geQ=L\P and so (zAq)0® = (yAq)d°
proving that thereisse Swith2AgAs = yAgAs. Butlg s¢ P andso PN S =
which proves that S c L\P = Q. Hence gAse Q and (z, y) e ¥Q and so a = 2{? =
y¢4Q = b and this injectivity implies that « is an isomorphism.

Recall that A(P) = {P1e P, : P15 P}

ProrositioNn 3.3. — Let . be a lattice and P a prime ideal of L. For any
proper ideal I’ € I(Fp) the set J'(YINP)1 = J e I(.¥) and

~

(i) Le/J' > (L [I)ps5

(i) the map I’ — J (YENB)-L restricted to prime ideals of Lp is an order isomor-
phism between hW(P) and Py . Further, if R'€Py and R = R(YNF)L then
gR % (gP)RIn

Proof. Firstly (i) is an immediate consequence of (2.3) above with S = L\P.
Also (ii) follows from (3.2) (i) above which the final part is a case of (3.2) (ii).

4. THE CONGRUENCE R’ : GENERALITIES

The congruence which interests us in this section is defined for any ideal
JeIl(¥) by

(@, b)eRI = (a:J)* = (b:J)*
Dt
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Since this relation was proved to be a congruence in [4] we omit the routine proof
of this fact. We write DY = {aeL: (a:J)* = J}.

ProrosiTION 4.1. — For Z a lattice and J an ideal of £

(i) RY is the largest congruence with J as a congruence class.

(ii) D7 (when non-empty !) s the unit congruence class for R? and hence a dual
ideal.

(iil) .ZR7 is a disjunctive lattice with a wnit when DY £ [].

Proof. (i) Let @ be a congruence with J as a congruence class. Then (x,y) € ®

implies that (zA ¢, yAt) e @ for any £ € L. Thus we must have zAteJ iff ynted
and so (z:J)* = (y : J)*, giving (2, y) € RY. This proves that ® < R’

(ii) D7 is clearly a congruence class for RY since @ € D7 if and only if xAaed =
x € J. Moreover ¢ € D’ and b > a imply beD’. So D’ is the last congruence class
for R? and consequently a dual ideal.

(iii) We shall omit this since it follows from results in [4].

CorOLLARY 4.2. — If and = bAd for d € DY, then (a, b) € RY.
The canonical epimorphism associated with RY is written p’. There is also a

dual construction giving a congruence RF which is the largest congruence having
a given dual ideal F as a congruence class. We omit the details.

ProrosiTION 4.3. — For any ideal J of £, the following are equivalent :
(i) Z/R7 is a Boolean lattice ;

(i) For any xe L there 1s v’ eL:arz’ ed, xva' e DI,

(iii) For any x€ L there is &’ € Li: ((x: I)* : I)* = (2" : J)*.

Proof. (i) = (ii). If Z/RY is complemented then for any z e L there is 2’ e L
such that zp? and a'p’ are complements in L/R7 i e zp?Aa'p! =0g; and
zo? va'o? = 14,5 This means (by (4 1) above) that Az’ € J and xva'e D’.

(i) = (iii). Since zA 2z’ €J we already have (z) c (2’ : J)* and so ((z : J)*: J)* C
(((2" : HH* : y* : J)* = (2’ : J)* follows. For the reverse, suppose that tA 2" €J and
that we (x: J)*. Then tAuA (xva')ed and so, since zva' € D¥ we deduce that
tAnwe J proving that ¢ e ((x: J)y* : J)*. Thus the equality is proved.

(ii) = (i). The direct proof of this implication is longer and is omitted. It is
much easier to prove (iii) = (ii) and (ii) => (i) since the latter are the easy reverses
of proofs above ;

Our next proposition relates R? to congruences with DY as a specified congruence
class.

ProrosiTION 4.4. — Suppose that £ satisfies one (and hence all) of the conditions
of (4.3). Then RY is the largest congruence with D' as a congruence class

Proof. Let ® be a congruence on . with D7 as a congruence class. Then if
(,y)e D we have (Vi yvi)ed for any te L. This means that zvieD’ iff
y vte DI or, equivalently,

@VE: I =J iff (yve:J)*=J.
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Rewriting this as
:I)*N@: =T iff (y:I)y*N@E:NH*=J
we use (iii) of 4.3 above to obtain :
(@I (@ N Iyr=Jiff (( :H*:N*O (@ :N*:N*=J
e (@At )y Iy*=J iff (A :J)y*:N*r=J

Now this means ¢’ A2’ € J iff ' Ay’ € J and since any s € L is of the form ¢ we have
proved that

(@ Iy = (y' : J)*
which implies that
(:J)F = (@ 9 )k = (' - D Iy = (y = I)*
and so
(x,y) e RI.

Thus ® < RY.
The final result of this section tells us that we might as well continue to the
next paragraph.

ProrosiTion 4.5. — Let J be any ideal of the lattice &. Then the map
¢ : LIRI— (L[J)/R given by (xp”)p = x07p 4 ; defines an isomorphism

ZIRTE (LR
Proof. We have the diagram
07
£ —— LT

| P

We prove o is injective. If a1¢ = agp for a; € L/R? ¢ =1, 2. Then a; = x;p7
for z;eL i=1,2, and

21070 g5 = 22070 45
This means that (2107, 2:05) € R o5 or,
BT AL = 0g; iff 207N =0, for teL/J.
Now ¢ = s7 for some s€ L and so
7107 A 507 = 055 iff 2007 A 07 = 04 5 for any se L.
ie (mAs)8 =0g); iff (12A5)07 =04y for any se L
or
ziAsed iff zgAsed for any seL.

Thus (z1, 22) € R and so a1 = 2197 = 2207 = ap and ¢ is injective.
¢ is clearly an epimorphism and so our result is proved.
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5. THE CONGRUENCE R

Throughout this paragraph R = RO is the congruence defined by (z,y) € R
iff (x)* = (y)*. The dual ideal DO is written D and p© is written p. In some recent
works we have presented results concerning R which we now recall in the present
context ; some extensions are then noted.

Prorositron 5.1. — The map «: L/R— L** = {(@)** :x e L} given by
(@p) = (2)** defines an isomorphism L [R> Lr*,

Proof. This is a special case of Lemma 2.3 of [5].
Now the results concerning RJ can be strengthened for J = (0).

Prorosition 5.2 — Z[R 4s an m-complete Boolean lattice i1f for any AcL
with | A| < m, there is @’ € Li: A** = (a')*.

Proof. This is a special case of Theorem 2 of [5].

CoroLLARY 5.3. — If & is a distributive pseudo-complemented lattice that is closed
under the formation of m-ary joins, and that satisfies x AV y; = V a Ay, when | 1| < m,
; iel

then Z |R (= L**) is an m-complete Boolean lattice c

Proof. We must show that Z satisfies the condition of 5.2. Take A c L with
A< m and let a =V {&:2e A}. It is immediate that (¢*) = (2)* = A*, and
80 A** = (a*)* proving our result.

Remark. This Corollary tidies up G. Birkhoff’s treatment ([1] p. 130) of Glivenko’s
Theorem. In that treatment, the fact that % is Brouwerian (rather than just pseudo-
complemented) is not used, nor is the degree of completeness of #** (Cin the book)
clarified. A related result is :

CoroLLarY 54. — If & is pseudo-complemented, then the normal completion
of the Boolean lattice £ /R is the complete Boolean lattice .7 ,/R.

Proof. This proved exactly as in Theorem 3 of [3]
A sharpening of (4.4) is given in the following result from [6] :

Prorostrion 5.4. — Suppose that L [R s Boolean. Then P =R =RD, i e
R is the unique congruence with D as a congruence class.

We close this section by giving some results concerning the case when Z/R
is Boolean, which are not included in [¢]. Some of these refer to the spaces of prime
ideals and minimal prime ideals resp. of %, each equipped with the hull-kernel
topology. Rather than give full details of these spaces, we refer to the articles [7]
and [8] where full discussions are given. One result worth noting is that for any
distributive lattice &, .Z /R and . have canonically homeomorphic spaces of mini-
mal prime ideals ; this is proved in the paper [3] by J. Kist.

Prorosition 5.5. — Let £ be a distributive lattice with zero. Then the following
are equivalent :
(i) Z[R is Boolean and D is principal, 1.e. D = [d];
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(i) The set M  of all minimal prime ideals is a compact open subset of Spec (L),
the space of prime ideals of &L with the hull-kernel topology.

Proof. (i) implies (ii). Assume that .# /R is Boolean, and that D = [d]. Then
for any prime ideal P of &, if d ¢ P then P is minimal by Theorem 1 of []. Conversely,
if Pe # 4, then d¢ P since minimal prime ideals do not contain dense elements
— see [3]. This means that A4 = P(d) = {Pe Py :d ¢ P} and so A 4 is a compact-
open subset of Spec (.£) — see [8].

(ii) implies (i). If .# g is a compact open subset of Spec (%), then there is
d e L with A ¢ = P(d). By a known result on minimal prime ideals (see [3]) d must
satisfy (d)* = (0) since d belongs to no minimal prime ideal. Thus d €D and if a
prime ideal P contains a dense element less than d and does not contain d, P must
be minimal which is a contradiction. Hence d is the least dense element and so
D = [d]. Finally the reverse of Theorem 1 of [6] proves that Z/R is Boolean. Our
result is proved.

We now consider minimum elements of R-classes and relate them to the fore-
going. Write D = N {(d):d€ D}.

ProPOSITION 5.6. — Suppose that £ R is Boolean. Then D is the set of minimum
elements of R-classes of L.

Proof. If z is the minimum of zpp~! (the R-class containing x) then zeD.

For if 2 ¢ D there is d € D with xAd < 2. But (z, #A d) € R contradicting # being
the minimum element.

Conversely, if € D then x is the minimum element of zpp~t. For if (z,y)e R

there is (by (5.4) above) d € D such that xAd = yAd. But Ad = z since xz&€ D
and so # = yA d which proves that v < y.

COROLLARY 5.7. — No two distinct-elements of D are R-equivalent.

Our final result determines when R-classes possess minimum elements.

ProrosITioN 5.8. — Suppose that &£ [R is Boolean. Then the following are equi-
valent :

(i) A o is a compact-open subset of Spec (L) ;
(ii) D = [d], ¢. e. the dense dual ideal of & is principal ;
(iil) Bvery R-class possesses a minimum element.

Proof. (i) and (ii) are already shown to be equivalent.

(ii) implies (iii). For any R-class wpp~1 we assert that xAd is the minimum
element of 2pp~1. For, if y € zpp~1 then 2Ad = yAd and so y > xAd.

(iii) implies (i). If every R-class has a minimum element then D must also,
since D is an R-class, i. e. D = [d] for some d € L.

COROLLARY 5.9. — Under any of the equivalent conditions of 5.8, the map
o LIR— D given by (xp)ow = x A d defines an isomorphism
LR =D = (d).

Remark. These last few results are closely related to, and were stimulated by,
work of J. Varlet [9].
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