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Abstract
We present a machine learning based pipeline to analyze unmodeled gravitational wave (GW)
transients of less than 10 s. The convolutional neural network (CNN) is based on a U-NET
architecture and takes as input data from GW interferometers represented as time-frequency
maps, returning a spectrogram without the background noise. The CNN has been trained on
simulated data, using a generated Gaussian background noise and injecting GW signals from
core-collapse supernovae (CCSNe) simulations. The pipeline is able to successfully denoise
spectrograms and recognize as signals also CCSNe waveforms for which it has not been trained
on.
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1. Introduction
The difficulty of detecting unmodeled gravitational wave (GW) transients, commonly

named GW bursts, lies mostly in the impracticability of performing a matched filtering search.
The main problem is therefore to find a way to distinguish a potential GW signal from a detector
noise transient. Convolutional Neural Networks (CNN) can be suitably used to overcome this
problem, as they are frequently used as noise-removal filters in image processing [1]. The work
we present here is about a prototype adaptation of a CNN named ALBUS (Anomaly detection
for Long-duration BUrsts Searches [2]) to the search for short-duration GW bursts, i.e., unmod-
eled GW transients with a duration of 10 s. Both ALBUS and its new companion, which we
will call ASBUS, act as denoisers in the GW-detection pipeline named GWpyxel [3].

2. GW Data
In order to be analyzed through our neural network, the data from a single GW detector

is first whitened. A short fast Fourier transform is then applied and the result is displayed in
a 10.375 s long spectrogram covering the 0–2048 Hz frequency range. The data used for the
results presented here is fully simulated. We sample the Gaussian noise from a given power
spectral density (“aLIGO175MpcT1800545” from the PyCBC library [4]).
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Figure 1: (Left) Time–frequency map of a CCSN gravitational wave-
form (s18; [6]) injected in Gaussian noise that is given as an input to
ASBUS. (Right) Corresponding output map showing the injected GW
signal extracted from the noise.

3. CNN and Training
The architecture of ASBUS is based on a pixel-to-pixel U-Net CNN [5], taking spectro-

grams as inputs and ideally returning a spectrogram containing only the GW signal. An ex-
ample is shown in Fig. 1. The target maps are generated from spectrograms containing just a
simulated GW transient without noise. Those images are passed through an edge-detecting al-
gorithm, with a threshold on the edge strength depending on the strain amplitude of the injected
signal. The pixel regions found this way are then clustered together. For this test of the CNN,
we trained it on four different models of Core-Collapse SuperNovae (CCSNe) waveforms: s25,
s9 [7]; mesa20_pert [8]; s18 [6]. The training and validation loss curves are displayed in Fig. 2.

4. Results
The CNN successfully detects CCSNe waveforms, both for models used in the training

set and for other CCSNe waveform models. Figure 3 shows the sigmoid fit for the detection
efficiency curve as a function of distance for the s18 waveform from [6]. Table 1 shows the
10%, 50% and 90% exclusion distances corresponding to other CCSNe GW waveform models.

5. Conclusions
We showed that a U-Net CNN architecture can successfully act as a noise-removal filter

for short, unmodeled GW transients represented in spectrograms. We plan to train ASBUS on
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Figure 2: Training and validation loss curves for the training of AS-
BUS.
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Figure 3: GWpyxel detection efficiency curves for the s18 CCSN wave-
form [6]. The green and the orange curves are, respectively, obtained
with and without putting a threshold on detection statistics obtained
simulating five years of background. The black, red and blue dots rep-
resent, respectively, the 10%, 50% and 90% exclusion distances.
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Table 1: Preliminary exclusion distances for some test
CCSNe-waveform models.

Exclusion distances [kpc]
Waveform model Ref. 10% 50% 90%
mesa_pert 20 [8] 0.26 0.13 0.06
s18 [6] 1.34 0.62 0.22
s3.5∗ [6] 0.75 0.35 0.11
m39∗ [9] 4.41 1.76 0.76
∗ Models not used in the training set.

other simulated waveforms from possible GW sources, like eccentric CBCs, cosmic strings or
pulsar glitches. The choice of analyzing single detector data is challenging, due to the presence
of glitches (non-Gaussian and non-stationary noise transients) which can mimic GW transients
and cannot be suppressed using cross-correlated data between two detectors. However, given
the ability of the ALBUS/ASBUS CNN architecture to be trained to identify and even classify
glitches [10], the pipeline looks promising for the analysis of single-detector data.
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