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ELECTROMAGNETIC FIELDS AND POTENTIALS
INVARIANT UNDER E(38) AND ITS SUBGROUPS

by S. SINZINKAYO (%)

ABSTRACT

Physical constraints (Maxwell theory) are imposed on invariant skewsymmetric
tensors of order 2 and on invariant four-vectors but when E(8)-subsymmetries are taken
into consideration. The corresponding physical fields and potentials are summarized in
Tables and their connections are discussed. :

1. INTRODUCTION

Invariance under the conformal and Poincaré groups or under their subgroups
has recently been applied to different kinds of fensor and spinor fields [119]. More
precisely, let us mention that necessary and sufficient. conditions of inwvariance on
four-vectors under the (connected) Poincaré group have been established and
applied [¥] when the considered Poincaré subgroup is the Euclidean group in three
dimensions E(3). Such a Poincaré subgroup is an interesting one in connection, for
example, with nonrelativistic quantum mechanics. Indeed, E(3) is the symmetry
group of the free time-independent Schrédinger equation ; its subgroups have already
been studied [11] in connection with explicit symmetry breaking terms associated

with scalar (V) and vector (X) « potentials ».

As everybody knows, the scalar and vector « potentials » do form a four-vector
in the context of restricted relativity. Such a remark is sufficient in order to justify
an interrelation between the studies of invariant four-vectors [8] and the explicit
symmetry breakings [11] when E(3) is the general symmetry required for a free
particle description. Parts of this program are included in the work of Beckers and
Hussin [8] but they do not consider physical four-vectors, i.e. electromagnetic four-
potentials which have to be solutions of Maxwell theory. The aim of this note is
precisely to add physical informations to these contributions and, moreover, to
learn more deeply what are the connections between invariant electromagnetic
fields and potentials. Such a study can also give a better understanding of minimal
electromagnetic coupling schemes as those discussed by Combe and Richard [12],
Hoogland [13], and Hussin [14]. The so-called compensating gauge transforma-
tions [1516] can finally be exploited in such a context in order to give a precise
meaning of the symmetry groups of the four-potentials A.

(*) Boursier A.G.C.D.
Présenté par J. Beckers, le 21 janvier 1982.
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The contents of this note are distributed as follows : in Section 2 we recall
the notations and the essential results of Beckers and Hussin [8] when invariance

conditions under E(3) and its subgroups are expressed on vectors X = _]>*], —]>3,_:& and
on scalars V. The results are summarized in Table I. Section 3 deals with invariant
electromagnetic fields and potentials when Maxwell theory is taken into account
outside the charge and current distributions : the invariant fields (Table II) and
potentials (Table III) are explicitly given when invariance under the ten K(3)-
subgroups is considered. Evidently, only static fields are concerned in the case of
E(3) and its subgroups. The explicit case of the SO(2)-invariance is treated as an

example in the Appendix A and the Maxwell ﬁ, ﬁ, K-vectors and V-scalars are
completely determined. In section 4, we discuss how to use the Tables IT and III
and their interest in connection with physical theories. Through an explicit example
(T(2)-invariance) we give different informations on connections between invariant
fields and their associated (invariant or not) potentials. Compensating gauge trans-
formations are also mentioned and can be easily calculated.

2. VECTORS AND SCALARS INVARIANT UNDER THE K(3)-SUBGROUPS

Tn order to relate this contribution with the work of Beckers and Hussin [2],
Tet us recall some definitions and conventions in the context of the symmetry group
E(3) of Euclidean space in three (spatial) dimensions and its subsymmetries. The
group E(3) corresponds to the set of transformations (@, R) :

3% =Rx+a (2.1)

leaving invariant the Euclidean distance between two points of the three-dimensional
real vector space. Its Lie algebra is generated by six operators : three (infinitesimal)
spatial translations P? (¢ =1, 2, 3) associated with the parameters af and three
{infinitesimal) spatial rotations J° associated with the parameters 6¢ so that its

commutation relations are :
[Pi, P¥] = 0, [J?, J¥] = ikl [J¢, PF] = gl Pl (2.2)

As already recalled [8], the E(3)-subgroup structure is well-known; there are fen
nontrivial and nonequivalent subgroups

— T(1) = {P3},80(2) = {J3},50(2) = {J? + aP3,a # 0},

— T@) = {PL, P2}, 80(2) ® T(1) = {J3, P3},

— T(3) = {P1, P2, P3},80(3) = ), E@) = (33, P, P2}, 23)
E@2) = {J3 + aP3, P, P2 a # 0},

— E@)®T(Q) = {J5, P}

More precisely the SO(2)- and E(2)-cases correspond to infinite families parametrized
by the nonzero real quantity a.

As particular cases of more general studies [24] the invariance conditions on
skewsymmetric tensors F of order two and on four-vectors A can immediately be
written in the E(3)-context. With the usual notations F o= (]:i, ‘E) and A = (V, A),
these relations are of the following form :

>

FAX+DX=0,X=E3824 2.4)
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DV =0, (2.5)
where

i

D=(al— a).%, (2.6)
sy _[3)_ (2 @ 8

Conditions (2.4) (when X = K) and (2.5) have already been exploited [8] 80 that
we_can summarize these results in Table I. We give there the vectors X= A E

or B and scalars V invariant under each of the ten above mentioned subgroups of
E(3). Their explicit dependence in terms of cartesian (z,y,2), cylindrical

’ 1 1
— (22 2 o — g1 Y i - = (2 —
<p (@2 4+ y2)2, o = lg > z), helical (p, u=g (z + agp), v % (z acp) or

spherical (r = (22 + y2 -+ 22)1/2, 0, ) coordinates is also given. The different C, ¢/
are arbitrary constants.

Let us notice that at the level of the quantities A = (V, K), there is a one-to-one
correspondence between the invariant A and the E(3)-subgroups but not at the level
of only invariant scalars A® = V. Such a remark is directly connected with another
approach [11] when symmetry breaking terms have been introduced in the time-
independent Schrodinger equation. Finally, let us add that this one-to-one corres-

pondence is already effective at the level of invariant 3-vectors X = E, BorA.

3. INVARIANT PHYSICAL FIELDS AND POTENTIALS

In Section 2, physical informations on «fields» and « potentials » have really
not been included. In order to get physical results, we have to give to F and A the
meaning of an eleciromagnetic tensor and electromagnetic four-potential respectively
by requiring that F and A are solutions of the Maxwell theory. In fact, when time

independence is imposed, the physical tensor F = (J:E, ﬁ) has to be solution of the
following set of Maxwell equations (in Gaussian units) :

> >
rot & = 0, div E = 4xp, 3.1)

rob—ﬁ:ilcfi,div_ﬁzo

and the four-potential A = (V _>) has to satisfy the equations
AV = —d4mp, (3.2)
AR =25
c

The problem we have now to solve is the following : « what is the form of
explicit solutions of Egs. (8.1) or (3.2) invariant under the different E(3) subgroups? ».

Such a problem is directly related to the explicitly given sources (p and ]:3 and is
difficult in general. We shall determine here static fields outside charge and current
distributions. Consequently, these cases correspond to solve the following Maxwell

equations on the fields E, B
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TABLE I

Invariant « Fields » and « Potentials »

Subgroups Invariant vectors Invariant
X = E’ ]§>’ A scalars
- >
1. T(1) X = X(x, y) V = V(z,y)
Xt = 4 [f(p, 2) 6" — g(p, 2) €]
2. 80(2) X = f(p,2) 6 + g(p,2) € V = Ve, 2)
X = h(p, 2)
I Xt =i [f (e, v) €% —g(p, v) €]
3. 80(2) X2 = f(p, v) €% + g(p, v) &% V = V(e, )
X3 = h(p, v)
- >
4. T(2) X = X(2) V = V(z)
Xt =4 [f (p) 6% — g(p) 7]
5:80(2) @ T(1) | X*=f(p) ¢ + g(p) €@ V = V(p)
X® = h(p)
= 7
6. SO(3) X = f(r) - V = V{r)
r
Xi=0
7. B(2) X2=0 V = V(z)
X3 = X(2)
- >
8. T(3) X=C V=C
. X1 = ¢ [Celu+) — (Ve—tu+v)]
9. E(2) X2 = Celutd) 4 (Clg—i(utv) V=¢C
X3 =C
X1 —
10. E(2) ® T(1) X2 == V =C,
X8 =

roti:O, divf)(_——O, ?(:E),B

>

or on the potentials V, A

AV =0, AA =0

(3.3)

(3.4)

So, at this stage, what we shall call the «invariant physical fields » are the invariant
fields of Table I submitted to the conditions (3.3) and the «invariant physical po-
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tentials » are the invariant vectors A and scalar V of Table I submitted to the con-
ditions (3.4). All the results are summarized in Tables IT and III respectively.
Letters without explicit dependence are arbitrary constants.

TABLE II
Invariant Fields
> - >
Subgroups Fields X = E, B
X1 = (Cyeth¥ + Cpe7tkY) (Cyek 4 Cueh?)
1. T(1) X2 = 4 (Ceth¥ — C,e—tky) (C0k% — C e k%)
XE=C
X1 =4[J, kp) {Crehe + Cue k2 & - T, (ko) {Creh2 + Coeh2} ¢™?
— {C e + }e—w]
2.80(2) X2 = J,(kp) {Clekz + Cyeke} & — J (ko) {0167‘3 + Cyeke} ¢l
+ {Csp + "“} e~
X8 = - 24 (Clekz — Cpe 2y J (ko)
X1 = [(il tu—v) % e—-i(u—v):|
—_ e P
3. 80(2) X2 — C‘ ot 9_ e—t{u—v)
e e
XP=C
.
4. T(2) X = (Cy, Cs, C)
X =4 l:——l &% — C: “P]
3 4
5.50@ @TM) | o G G s
e <
X3 =C
= C#
6. SO(3) X o=
r2y
>
7. B(2) X =(0,0,0)
>
8. T(3) X = (Cy, Cs, Cy)
— >
9. B(©2) X =(0,0,0)
>
10. E(2) ® T(1) X = (0, 0,C)
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TABLE III

Invariant Potentials

Subgroups Scalars V Vectors Z
1. T(1) V = (C,etky L Cye—ikY) Al = (C{eilc’:y + Cii‘e—ikjy) (Cgew +
' (Cogh? + Cye™k2) |+ Cyle k™)
Al = 4 [Jy(kp) {Cie#% + Chokz} g8
~— J1(mp) {Csemz + C4e—mz} e_icp]
2. 80(2) V = Jolkep) {C1ek? + Coek2} | A2 = J,(kp) {Ciek? 4 Cheke} oo L
+ Ji(mp) {Cyem? 4 C,emz} ¢~0¢
AP = Jy(k'p) {Cyek? + Cyeh'z}
h
Al = 4 [<h19 + _2) eiw—v)
e
— (hsp + @f) e~ Hu—)]
P
— WLE . hs\
3. 80(2) V = Jwo o {d,etkv + A = [ hjp + =) etu—)
a P
—~ikv
dee } + <h39 + ZL_‘*) et (u—v)
e
ke i o
A3 — J;Lnod - {dgem'” + d4e—zk’v}
(27
4.T(2) V =0Cgz + C, Al =gz 4 b (1 = 1,2, 3)
C.\
Al =4 [(Czp + ——2> e’
e
C )
- <Csp -+ -4> ]
5. 80(2) @ T(1) | V= Cylnp + C, CP o
A? = <019+~—2> ei<9+,<039+___4> et
e e
A% = Cilnp + Cy
C C/ > >
6. SO(3) V=240, A=l 1 qpl
r rr r
-
7.E(2) V= Cgz+ G, A =(0,0,Clz + C)
>
8.T(3) V=2=C A = (G, Gy, Cy)
— >
9. E(2) V=¢C A =(0,0,C)
>
10. B2) @ T(1)) | V=C A = (0,0,C)
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The explicit calculations are sometimes simple or sophisticated depending on the
subgroup under consideration. For brevity, as an illustration, we only give in the

Appendix a complete treatment of a significative case : the SO(2)-subgroup and

the determination of &, ]—3>, Vand A

In the Tables II and IIT enter relatively simple coordinate dependences and
the only functions on which we have to give more informations are those denoted
by J, and Jumod (5 = 0,1, 2,...) : these are respectively the usual and modified
Bessel functions [17]. The different calculations do use generalities on partial differ-
ential equations and we especially refer to Webster’s standard book [18] In particular,
in order to be as complete as possible, let us mention that we often use the fact
that the radial part of the Laplace equation can always be written as :

1 d av

when the Euclidean space is of dimension n. Finally, let us add a general comment
on constant and uniform fields such as those obtained in Table IT (cf. cases 4, 7, 8,
9 and 10) : such fields can be directly deduced from the so-called symmetric
gauge [15:16] corresponding to the relativistic writing (Fuy = 0vAy — 0uAy)

1
Ap =5 F® (p=10,1,2,3) (3.6)
when F0 = K¢, Bl = % gk Py, 123 = 1.

In terms of (V, K) and (E), ]—?:) corresponding to a time independent theory, we
have [19] :

>

Ve—TB.7 A=-BAr 3.7)

RO =

Let us also notice that regularity conditions (at infinity, for example) can be

imposed on the potentials V and A : then we get informations on the arbitrary
constants entering in Table III.

Before studying the connections between our results contained in Tables 1L
and TI1, let us consider more particularly some of the physical fields given in Table II.
The reason is, as everybody knows, that the fundamental physical entities are
fields, whereas potentials fall into equivalence classes through gauge transformations.
Then field symmetry is more interesting and our solutions show specific physical
peculiarities in some cases. For example when S0(3)-invariance is required, we
recover the fields generated by electric or magnetic monopoles (remember that

X=FEor _ﬁ) when, as it is in our case, we study the Maxwell theory outside the
charge distributions. Moreover we notice that the smallest required invariance in
order to get constant physical fields is the T(2)-invariance, a result which was un-
expected before our study. Let us also remark that this T(2)-invariance is associated
with charge and current distributions on an infinite plane (which can be seen as the
limit of a slab of finite thickness). More generally, let us mention that each potential
and its associated field can easily be put in correspondence with specific charge and
current distributions : for example, the SO(2) ® T(1) case is associated with cylin-
drical distributions, etc ..
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4. HOW TO USE THE RESULTS OF TABLES II AND III?

From Tables IT and IIT there are different ways to exploit the results and to
extract some conclusions. First, let us notice that, at the level of « invariant physical
fields », we loose the one-to-one correspondence with the different subgroups (cf.

Table II) : the cases 4 and 8 lead to the same field as also the cases 7, 9 and 10
give another one. From Table III, the correspondence is still one-to-one at the level
of «invariant physical potentials » except for the case 9 and 10. From Tables II

and III we also remark that the vector potentials X have more general forms than

the field vectors K and B : this was expected because solutions of AA = 0 are more
general than those of Egs. (3.3). The last ones appear as particular because let us
remember that

> - >
AX = grad div X — rot rot X. 4.1)

Such differences disappear when the symmetries become stronger and stronger as
it directly appears from the Tables (cf. cases 8, 9, 10).

Secondly, let us use elementary vector analysis in order to simplify and exploit
the results of Tables IT and IIT. We know the two following properties.: -

i) a null (magnetic) field B can always be written in the form :
B=rotA=0=2=grado (4.2)
where ¢ is a scalar space-dependent function;

ii) an indivergential (magnetic) field B can always be derived from a vector
potential A with one component identical to zero :
divB =0 B =rot A with A = (AL, A2, 0). (4.3)

The simultaneous use of the above properties can make clear the connections between
invariant fields and potentials. Let us illustrate these considerations on a specific
example : T(2)-invariance.

a) From Table II, we have the invariant fields :
> >
E = (Cy, Ca, C3), B = (Dy, Dy, D3) (4.4)

where the C; and D; (4 = 1, 2, 3) are constants. From the general remark (3.7), we
can easily determine the potentials V and A leading to the fields (4.4). These are :

V= —(Ciz + Coy + Cs2) + Cy, (4.5)
-~ 1 ‘
A= é (Dgz — Dgy + Dy, Dgx — Dyz + D5, D1y — Doz + Dg), (4.6)
where the constants C4, Dy, D5 and Dg are added in all generality;

b) From Table III, T(2)-invariance says that the invariant potentials are :

V =1z + ¢, (4.7)
R = (Ah), Ab=aiz + b, (i = 1,2,3), (4.8)
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leading to the physical fields :

B =00 —c), B=(—azat0). (4.9)
So they coincide with the invariant fields (4.4) when
01 == O, Cz == O, 03 = — 1, (4“10) )

Dl —1 -—a,z, Dz .—_-al, D3 f—3 07

¢) Let us now combine the implications of the two Tables. We notice that the
(nonnecessarily invariant) potentials given by Eqs. (4.5) and (4.6) and leading to
the (invariant) fields (4.9) (i.e. (4.4) with (4.10)) have the following form :

V=—Cg+C (411)

1
A — - (Doz + Dy, — D1z + D, D1y — Doz + Dg). (4.12)

5 (
If Egs. (4.7) and (4.11) are identical, we point out that there are differences
—_
in the forms (4.8) and (4.12) of the vector potential A. So let us impose a gauge
—

transformation on A :

AsRX =K+3% (4.13)
such that through the properties (4.2) and (4.3) we have
By = rot Ag = 0 — Ao = grad ¢ = (A}, AZ, A}) (4.14)
and
- = —> - -
divB = 0— B = rot A’ =rot A with A’ = (A1, A’2,0). (4.15)

With A given by Eq. (4.12), we choose :
. 1
A§ = 5 (— Diy + Dyz — De) (4.16)

ensuring that Eq. (4 15) is satisfied. The simple implications of Eqs. (4.14) and
(4.16) lead us to

0 = = (Dgz + 2 f y)dy, — D1z + 2f(z, y), — D1y + Dox — Dg). (4.17)
So we finally get :

- 1 0 1
K = (s + 5 Du+ [ 52 fe, vMy, — D+ 5 Ds + fi@,9), )

bij 1
= (Daz + Dy, — D1z + Ds, aBz + b3) + (f P fz, y)dy — 5 Dy, f(z, y)
_% Ds, — (232 + b3)> (4.18)

= Ainol?) + grad y(, y, 2) (4.19)

when Kinv is given by Eq. (4.8) with
D; = —a?, Dy = al, Dy = b1, D5 = b2 (4 20)
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Eq. (4.19) shows the connection between the (nonnecessarily invariant) vector
potential A= (4.12) leading to particular invariant fields and the invariant vector

potential Kmv = (4.8). It illustrates their physical equivalence up to a gauge trans-
formation fixed by the function y(x, y, 2) easily calculated from (4.18) and (4.19).

Such an approach can be related to the study of invariant fields and potentials
through minimal coupling schemes as those discussed by Combe-Richard [12], Hoog-
land [18] and more recently by Hussin [14] applying Poincaré considerations. The
constant field (4.9) can be associated with the orthogonal case (choose — ¢; = al =
Dy =C3=E, Dy =—a?2=0):in that case we know [!] that its kinematical
group is G = {Pv, J2 4 K3, J3 — K2}, isomorphic to the group Gg as mentioned in
Hussin’s Work [14] Now in our context of E(3)-symmetry, the kinematical group
reduces to {P} = ) as a consequence of time-independence and it is easy to show
that the correspondmg potential admits a subsymmetry as expected. In fact, if we
search for the (orthogonal) field :

E=(0,0,E) and B=(0,E,o0), (4.21)
the corresponding invariant potential has the essential form
V=—E:, A=Ez0,0) (4.22)

and its symmetry group becomes the set {P;, Ps} = T(2) as it can be deduced
from Egs. (2.4) and (2.5). From Table III, this result was evidently expected.

Thirdly, let us notice that we also get here ad-hoc results in order to illustrate
the meaning of compensating gauge transformations as developed by Janner and

Janssen [15]. If we limit ourselves once again to T(2)-invariance on (E B) it is very

easy to calculate the compensating gauge for V = (4.5) and A= (4.6) according
to Janner-Janssen notations :

gA — A = dyy, VgeT(2), (4.23)
when

x 7 ¥ =ux+H (4.24)

g ,
y——y =yt
We want to express our hearty thanks to Professor J. Beckers for stimulating
discussions.

APPENDIX : INVARIANCE UNDER SO(2) = (J3 + aP3; ¢ # 0)

Table I says that under SO(2) the invariant vectors X = ]:i I§>, A are of the
form
X1l = ZU(P: U)eiu _—g(P? v)e—iu],
X2 = f(p, v)et* + g(p, v)e~™, (AL)
X3 = h(p, v),
and the invariant scalar V is given by
V = V(p, v), (A.2)
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where (g, u, v) are helical coordinates :
1 1
= (g2 - 22 g = - (z—
o= (22 + g2 u =g (z+ag), v =5 (2 —a9) (A.3)

well adapted for the treatment of (J3 - aP?)-invariance.

a) Physical fields invariant under SO?). NN
Outside the source distributions in the Maxwell theory, the vectors X = E, B

have to satisfy the following equations :
rot X = 0 (A.4)

, divX =0

in order to describe physical field. N
Let us put in (A.4) the values of X = (A.1). Combining the first two com-

ponents of rot X = 0, we obtain :

12 w12 ) |
[ 2 o)+ e ) [ = (35— 1) (A5)
and
1 0 0 ) 1/.0
[ e —g e v)]e@ = (z 2+ 1)ote.n (4.6)
from which it follows that :
0 ; .0 ) .0 )
< hlp,0) = {[(z o~ 1)f]ew + [( ot 1)g]e-w}~ (A7)

The third component of rot X=0 gives :

{2+ +i2) e+ 4[5+ ta(1=mig)fpee=0 @9

From div X = 0, we obtain :

Then Egs. (A.7) and (A.9) give :

-

9 . 0 0 w_ (0 9,9 i
{l_% + 5;——0,2(219 % + z——a—v)]f}e = {[z — 55—(%(229 % + 7+ av)]g}e v,

(A.10)
From Egs. (A.9) and (A.10), we get :
' 0 0 0 0
— — —— ~0 = 20 — ) 108 Al
(Ceg r1 =gl =[Cog 1+ a) ) R
Let us now search for (particular) solutions of the form
flp, v) = gme~™, g(p, v) = phe®. (A12)
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It is easily verified that we must have m = n = — 1 s0 that we find :
flo,v) = 91 e, glp, v) = gz €%, ¢1, co = constants. (A.13)
e P
Furthermore, by (A.6), (A.7), and (A.13), one can verify that
X3 = C = constant. (A.14)

So the components of the physical fields X = ﬁ, B invariant under SO(Z) are
those given in Table II, namely :

X1 — @[gl et(u—v) 92_ e—i(u—v)}

p P
X2 — _C_l i) L % e—iu—v), ; (A.15)
P e '
X3 =C.

b) Scalar potential invariant under SO(2).

If the invariant scalar V corresponds to a free electric field, then it satisfies
the particular Laplace equation :

02 19 1 22 1 o2 :
AV = (z;‘p‘z e é—vz)V(p, v)=0. (A.16)
In order to solve this equation, let us make a separation of variables by putting
V = R(p)T(v). | (A17)
We obtain the following equations :
d2T
R .
Tot ‘k T (A.18)
and
2R . 1dR k2 k2 :
w e (iR (419
where k2 is the constant of separation.
The general solution of (A.18) is
T = dye%? - doe—tkv. (A.20)
In order to solve Eq. (A.19), we put :
k2 k2
— = 2 = 2 f—=3
i m2, 1 ne, mp = x (A.21)
and finally obtain the equation : ;
2R 1dR n?

The solutions of this equation are the so-called modified Bessel functions of order »
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denoted by « J24 5 [17). Thus, the electromagnetic scalar potential invariant under
SO(2) takes the form :

Vip, v) = Jmod (k ) (d1e™® + dge=v) (A.23)
as given in Table ILL

c) - Vector potential tnvariant under SO(2).

If the vector potential A has to describe free magnetic field, it must satisfy :
AA=0. (A.24)

Using the second component of A given by (A.1), Eq. (A.24) implies that :

o2 120 1/1 1 02 1 (1 1\ @
Gtipilara) 1-am)— sE-@ay=0 o

2 1o 11 1 @2\ i(1 1\a,
Gotrailpra) (o) rsGa)av-0 m

With a solution of the kind :

and

~ flp, v) = g™, (A.27)
Eq. (A 25) leads to the conditions : . '
m—1=0—=>m= 41, (A.28)
so that we get : | k
flp, v) = (klp -+ L?)e‘i?), (h1, e = constants). (A.29)

In a similar way, one can find from Eq. (A.26) that :
h
glp, v) = <h3p -+ f)e“‘, (h3, ks = constants). (A.30)

Finally, let us notice that the case of the third component of Ris exactly similar
to that of V since A3 = h(p, v) has to verify AA3 = 0.

Thus we obtain the results collected in Table IIL, namely :
Al — 7/[(”/19 + @)ei(u—v) — <k3p + ,}B)e—'i(u—v)],
P P
ks , ha\ _,
A2 = [{ hip _|_. —Yeitw—v) 4+ { hgo + = Je~tw—0)], (A.31)
A3 Jmod( ){d3ezk v - dye uc/v}
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