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DEFINITION OF A CHARACTERISTIC REFERENCE CENTRE
AND CHARACTERISTIC EXTERIOR POTENTIAL COEFFICIENTS
Aum, Bam, MULTIPOLE MOMENTS)

by J. C. P. MIGNOLET

RESUME

A partir d’un ensemble donné de coefficients Ay, et By, du potentiel extérieur
d’une distribution de charge, il est possible de définir un centre de référerice caractéris-
tique et les valeurs caractéristiques correspondantes des coefficients. La définition pro-
posée repose sur la condition de minimum de I’énergie électrostatique relative & un
espace extérieur associé approprié. Les moments multipolaires caractéristiques s’obtiennent
& partir des coefficients Ayy, et Byy, caractéristiques par des relations connues. Les carac-
téristiques sont déterminées pour deux systémes constitués : (a) de deux charges, (b) de
deux dipdles dirigés suivant ’axe. Les formules de transformation relatives & une trans-
lation du centre de référence sont données pour les coefficients Ay, Bam, les polynomes
harmoniques et les dérivées correspondantes.

SUMMARY

From a given set of coefficients Ayy and Byy, of the exterior potential of a charge
distribution, 1t is possible to define a characteristic reference centre and corresponding
characteristic values of the coefficients. The definition proposed rests on the minimum
condition of the electrostatic energy relative to an appropriate associated exterior space.
The characteristic multipole moments are obtained from the characteristic coefficients
Ay and By, by known relations. The characteristics are determined for two systems
consisting in (a) two charges, (b) two dipoles parallel to the axis. Transformation formulae
relative to a translation of the reference centre are given for the coefficients Ay, Byms
the harmonic polynomials and their derivatives.

§ 1. — The following abbreviations will be used below.
EPC : exterior potential coefficients
CEPC : characteristic exterior potential coefficients
CRC : characteristic reference centre
RCQ : reference centre corresponding to Q
AES : associated exterior space

SES  : smallest excluded sphere
Let 0, 7, 9, ¢, 7', &, ¢’ denote the origin and spherical coordinates,
T=cosd; z=r1; 7 =cos¥; 2 =17 (L.1)
Manuscrit regu le 19 mai 1982,
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p(r’, 7', @), the space charge density of a system,
a, the radius of a sphere containing the whole of the charge,
V(r, 7, ¢), the potential in the space outside the sphere, produced by o(r’, </, ¢).

We first recall some classical results [1],[4] needed below. Using spherical harmonies

Youn(t, @) = cos (m@)P7(7); Yiu(v, @) = sin (me)Pi(r) (1.2)
the exterior potential is given by the expansion
o n
‘ 1
Vi, 7 0) = > D A Vo5 0) + BunYon(r, @)] 5 (13)
n=0 m=0
where
Anmé (n—m)! J'°° fl fz" cos (mo’)
= g A 7‘1’ /, 7 X , Pm ' 71 n+2d /d Idrl
P ST e D I W G} i ST i
o=1:em=2(m=123,..). v (1.5)

1t is to be noted that the charge density appears in V only through the integrals
A, and By, These are fundamental parameters of the charge distribution. Al-
ternately, V can be expressed as a Taylor expansion in cartesian coordinates with
multipoles as parameters. However, the set of functions is redundant. Therefore,
we choose expansion (1.3) for the discussion.

Set
ALy = Apm; Ay = Bam. (1.6)

The symbols Az, more compact and convenient (especially in Appendices A and B)
will be used below. In particular cases, when only the coefficients A}, differ from
zero, we will omit the useless superscript 4+ and thus return to the conventional
symbol. The above: coefficients will be called the exterior potential coefficients
(EPC’s).

Among the coefficients A, a few are independent of the reference centre
chosen. These are fundamental characteristics of the charge distribution. The others
vary. So the question arises : is it not possible to recognize or define a remarkable
reference system such that the corresponding non invariant coefficients AZ, can
be considered as valuable characteristics of the charge distribution ? Such a reference
system, its centre and the corresponding coefficients AZ, will be called « charae-

“teristic ». The problem to be studied in this note is the choice of the reference centre.
The orientation of the axes also deserves attention but in this respect, we simply
observe that the choice must be based on the symmetry of the system. There may
well be several orientations with different corresponding characteristic sets.

§ 2. — For a clear understanding of the problem consider the case of a system
possessing rotational symmetry around the z axis. We choose an origin more or

less arbltrarlly Symmetry allows the coefficients A}, to have arbitrary values but
requires the other coefficients A, to vanish. Accordmgly, (1.3) and (1.4) become

9= 3 s l] o
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Apo = 27tf J o(r’, v )Py (v") (" Y2421 dr’. (2.2)

The axial moments are given by
o = — (2.3)

Beside the initial coordinate system, consider another one with its centre at z == ¢.
The various symbols will be completed when necessary. As concerns A,g, we use
Auo(0) and Apglc). Auo(c) may be obtained from A,g(0) by

i '
Anolo) = Z - 171 O A(0) (2.4)
t=0

This relation is well known. It results from (A.21) in Appendix A.

From (24) we may draw some well known conclusions concerning the coeffi-
cients Ay and p, as well :

. (lay if the first k coefficients vanish for one value of ¢, the same is true for all
values of ¢;

(1b) the first coefficient different from zero is independent of c;

(lc) the coefficients of higher order have values depending upon c. Clearly,
the invariant coefficients, charge of an ion, dipole moment of an AB molecule or
quadrupole moment of an AA molecule are fundamental characteristics. As regards
the coefficients of higher order, there is a general tendency in the literature to con-
sider, implicitely or explicitely, that they have no interest in themselves because
they are not invariant. In the present article, we develop an opposite point of view.
Our approach is based on the following remarks.

(2a) There are various levels in significance. The invariant coefficients have
an absolute significance at the level of facts. Coefficients of higher order are cer-
tainly at a lower level. However, if they can be adequately defined, they will have
some . interest for purposes of characterization, description, comparison, etec.

(2b) There are charge distributions which obviously possess a CRC. Consider
for instance a system composed of two equal charges. The centre of symetry is
the only remarkable point to choose as the CRC. With this reference centre, the
coefficients Ay, o vanish, which is necessary and remarkable. Similarly, if the two
charges have equal absolute values but opposite signs, the centre is necessarily
the CRC.

Consider a charge distribution such that, for a given reference centre
# 0 for n =3

A 2.5
"0 =0 for n > j (25)

Suppose m is small, say m == 2. If we choose another reference centre, all the coeffi-
cients Ay for n > j (with a few possible exceptions) are different from zero. Clearly,
(2.5) is a remarkable, unique characterization of the system and the corresponding
reference centre is the CRC.

Some simple means of defining a reference centre may be examined here.
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The centre of gravity of an axial charge distribution is given by~

Z 2 (2.6.a)
y = .
z q

1 <0;0>0 lart+g|<lal+|eel
2] = —38,; By = 8. (27)

consider a system defined by

Applying (2 6.a) we find
zzsL(ZLl_f_ﬁz_l; 2] > s (2.8)
g+ g2 ,

The centre of gravity is far from the charges. It cannot be taken as the CRC

To remove the difficulty, we modify the denominator in (2.6.a) by taking the
absolute values g;. Then, we must do the same in the numerator; otherwise, for
gr=—1,q =12 =—s, 29 =s, we would find z = 5. Thus, we arrive at

Daulal | (2 61)

PR S
Dl
consider the system
@1=—q; %2=49; 93
a=—sin=0a 29)
Keeping 3¢ = p constant, let § — 0. (2 10)
Applying (2.9); we find
z3lgs] gl

z = = . 2.11
TTal+ 161 2+5l4s) =1
According to (2.11), a system composed of an ideal dipole and a point charge would
have its CRC at the dipole whatever the position, sign and finite value at the charge.
This is unacceptable.
At this stage, it is appropriate to specify the properties to be expected for
the CRC and devise a definition accordingly. Unfortunately, our ideas are very

vague. Consider a system composed of two charges g4 and ¢p at A and B, respectively
(Fig. 1). Let 0 denote the origin, C the CRC; (—s), s, 0 and ¢ the coordinates.

0
}
0

o n 1T 0
N

A
-S
9

Fig. 1. — The two-charge system.
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The value of ¢/s is determined by the ratio of the charges, say

7= qalqs (212)
According to point (2b) above, we write
c=3s for ¢=0 (2.13.a)
c=10 for ¢g=+41 (2.13.b)
c=—s for ¢= 4 c0. (2.13.¢)

We may reasonably assume that ¢ varies monotonically with ¢ either positive or
negative. This leads to the following conclusions :
—s<cK s (2.14)
for each allowed value of ¢, there are (2.15)
two values of ¢ having opposite signs.

Parenthetically, consider the systems
S5 qa=q sgs=q;0c=0) -
Su; ga=—aq3¢8=q1;¢=0 ) ‘ (2.16)
and their sum | '
St + Si; ga =05 gg = 2q1; c = ¢ (2.17)
we find that the sum of two systems with the same CRC has a different CRC.

§ 3. — We try a variational approach. Consider a system such that the charge
density and exterior potential can be treated as vanishingly small outside a limited
region. The orientation of the reference axes and a preliminary reference centre
O(xo, yo, z0) are chosen. The charge density and the EPC’s are known.

Let C(cg, ¢y, ¢;) be a reference centre. We introduce a sphere of centre C and
radius R The radius is such that in the space outside the sphere, the potential
may be treated as the exterior potential This space is called the « associated exterior
space » (AES). The sphere is the « excluded space ». The « smallest excluded sphere »,
(SES), is the excluded sphere with the smallest possible radius

From cg, ¢y, ¢;, R and the coefficients Az, we can calculate the electrostatic
energy stored in the AES :

1
= — 2 ‘].
Qe 8 L lgrad V |2 dv 3.1)

This is a quadratic expression of the form

Q(ca 0ys 2) = § Z Z Wom [Ann(Cas Cys Cz)]ZR“:n[A;m(Cx: Cys C2) 2 (3.2)

n=t m=0
with
_n+1 1 (n4m!
n 4+ 12 ey (n—m)!

i=0; f=1/4R

Wam (3.3)

as shown in Appendix C.
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Similarly, the integral
Qv = f Vedo (3.4)
" v
is given by (3.2) with
1 _1 (n + m)!
n2 —1/4 gy (n — m)!

i=1; f==R.

anm - (35)

In this case, we omit the term in ¢ = 0 which is infinite but independent of C and
disappears when we go to (3.6).

Consider a quadratic expression Q. Imagine that C is displaced infinitesimally
in an arbritary direction, keeping' R constant. In general Q varies..Suppose now
that there exists a position of C such that Q is stationary.

The conditions of stationarity

<«

— » an + aA;tm _ aA;m _ R .
Z; Z Rzn—l[ <acu >R+Anm <”5a:>R =0;u =247 (3.6)

n=t m=0

allow ¢, ¢y, ¢; to be determined from the coefficients A%, given for a more or less
arbitrary reference centre. The necessary transformation relations of these coeffi-
cients and of their derivatives are given in Appendices A and B. At this stage, the
weights Wy, and the radius R are unknown. Our main problem will be to determine
them. Point C thus defined may be called the «reference centre corresponding
to Q» (RCQ)

Many questions arise here. With a view to finding answers as Well as testing
the approach, we begin a detailed study of the two-charge system.

§ 4. — Consider again the two-charge system represented in Fig. 1. The ratio
of the charges, ¢, is defined by (2.12). According to (2.4)
Ano(e) = (— 1)*(s 4~ c)"q, + (s —)qy (4.1)
Applying (3.6) we get
2§ o (=D + o)ng, + (s—o)mgpl?)
= 3 > Wao s =0 (42)
n=1
which can be written
(s + ¢)S449% + 2684p9aq8 — (5 — ¢)Sprek = 0 (43)
with
d s - ¢ \272 i §2 — 2\ n-1
Sas = Z 7Wao < ) ) ; SaB = Z (— D InWapo <—“R2—> ;
n=1 n=1
pod s—¢ 2n—-2
Spp = Z 7Wno < R ) (4.4)
poys



For ¢ = 0, (4.8) reduces to
G- R

Thus, condition (2.13.b) is satisfied independently of the values of R and Wyo.

In view of the symmetry of (4.3), the discussion will be limited to ¢ = 0 in
the rest of the article. We take ¢ as a parameter and ¢ as the unknown. It is con-
venient to set ¢gg = 1. Then ¢ = ¢a. The solutions ¢+(c) and g-(c) are given by

() = :(isfjgxp (4.6)
where
D = ¢®8fp + (s2 — ¢®)S4aSBs (4.7)
For ¢ = s, condition (2.13 a) must be satisfied. Therefore
gt(s) =0 (4 8.a)
7(s) =0 (4.8.0)

Introducing (4.8.b) into (4.6) shows that Sps must diverge for ¢ = s.
Since Sa4 increases with ¢, we get

Saa diverges for ¢ > s (4.9.a)

Accordingly, for ¢ > s, D < 0; the solutions are not real. Sy, must not diverge
for ¢ < s because one would have ¢gT(c) = 0 which means that adding a charge of
value zero would displace the CRC from s to ¢ < s

Therefore

; Saa converges for ¢ < s (4.9.b)

Accordingly, for ¢ < s, D > 0; there are two real solutions of opposite signs :
gt(c) > 0 and ¢~(c) < 0. : (4.10)

According to (4.4) and (4.9), Saa is a series of the form

«©

San = Z e (4.11 a)
D

with a limit of convergence z, given by
{ 25\2
== 411.b
2y \R) ( )

We observe here that for
R =2s (4.12)

and ¢ = - s, one of the charges is on the surface of the excluded sphere. For R > 2s,
the charges are in the excluded sphere. For R < 2s, one of the charges is in the
AES which is forbidden. Therefore, (4.12) defines a critical value of R. Here we
assume that the critical value corresponds to the limit of convergence. Introducing
(4.12) into (4.11.b), we find that xy, = 1, a plausible and pleasing conclusion.
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We now examine the situation for |¢| < s The smallest sphere of centre C
such that there is no charge outside has a radius Ry(c) given by

Rule) = s + | ¢| | (4.13)

(4.12) is a particular case of (4.13). This suggests that the general expression of R
might be

R=s+4|c| (4.14)

Introducing (4.14) into Sa4 given by (4.4) and taking (4.9.a) into account, we find
that Saa diverges for all values of ¢. This is not acceptable. We therefore reject
(4.14) as a possible alternative to (4.12).

Some remarks are appropriate here. The data consist of a constant length, 2s,
and a variable ratio, g, of the charges. It is normal for R to be determined by the
length independently of ¢ and therefore of ¢. A condition at one appropriate point
is sufficient for finding R. It is clear that a limit of convergence is an essential pro-
perty which must lead to an important conclusion or assumption helping to formu-
late the problem. Although the above considerations do mnot bring the proof of
(4.12), they bring a fairly suggestive basis. On the other hand, this relation appears
to be necessary and satisfactory for the development of a treatment. For these
reasons and because no objection will arise later, we adopt (4.12). As a corollary
of (4.12), the weights must be such as to have no influence on the limit of con-
vergence.

In conclusion, the variational approach satisfies conditions (2.13), (2.14), (2.15)
and determines R

§ 5. — We examine the form of D. Let

P = (s2 — ¢?)Ssa8m3 6.1)
@="1 E ¢ (5.2)

For ¢ — s, P contains a factor tending towards 0 and another one towards infinity.
We derive an alternative expression free from this drawback.

2= S0 (22 (s + o] = ) (1 _R x2> (53)

3s + ¢ 3s +¢ 452
452(s -+ ¢)
— ) 4
3s 10 SSes (5.4)
where
/ R2
S = Kl“zx_szﬁ) Saa (5.5)
Using (4.4) we get
n=1
with
R2
opo =N+ )W, 10— i nW o (6.7)



When the weights Wy are given, (5.7) enables us to determine whether P
converges or not.

For \/ D in (4.9), we may use a two-term approximation if one of the two
quantities involved is much smaller than the other one. This gives rise to two ap-
proximations for ¢%(c).

If P < 2824 (58)
+ ~ __ CSAB (S -—_ C)SBB
=) = —(1F 1) 5+ Saa ER (5.9)
If ‘ P> 283, (5.10)
) (s — C)SBBjI %o ¢Sam CZSA%‘B
+(0) — n 5.11
g0 = + {(s T o)San (5 F ©)San = 2(s & 0)SaaP% (5.11)

The terms in (5.9) and (5.11) are ordered by decreasing magnitude. The important
point. here is that | ¢t(c) | and | g~(¢)| are nearly equal in approximation (5.11),
while they are very different in approximation (5.9). Thus if the weights are such
that P diverges for ¢ = s, | g*(c) | and | ¢~(c) | are nearly equal for ¢ not too different
from s.

Suppose that we take R slightly too large which means that the associated
exterior ‘space used is somewhat too small. What is the error? The question can
be answered for ¢ = s, since we know R by (4.12)

Set
R=2s(1+¢), 0<e<l (5.12)
The solutions ¢=(c) are defined up to
s+¢
r = m = 1 (5.13)

For ¢ = s, x < 1, Sga converges, P = 0 and therefore

San

7)) =0; ¢l5) = —g— (5.14)
AA
Set C = ——q‘(s) P — :V‘jg (5”15)
e ESAA

where Sa4 is taken for x = 1/(1 + ¢)
{ defines the sensitivity of ¢=(s) towards a slight increase in R by a factor (1 + ¢).

§ 6. — The system composed of two charges g4 and ¢g, which may be denoted
by AR and AP respectively, is the first of a family of systems defined by one
coefficient at A, AEA), and one of same species, AE(®), at B. We propose here to
generalize the results obtained above for the two-charge system.

From the two chosen coefficients, using (A 21), we find the coefficients of the
system corresponding to reference centre C

(j —m)! - i -
ABO) = ey L D/ o P RABY) + (s — P RAE®] (61)
where Ajffe) =0 for j < k,m > k. (6.2)
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The condition of stationarity is

94 S { (j—m)! TP [=VkstopFAGD) + (s—cfFAEP)P
d im | = =
4 (j—k) 1 (k—m)! | R
(6.3)
Using the summation index n = j — k and the effective weight system
[(n -+ k—m)!7]2
(k) — -
an - Wn+k,m [ n!(lc _ m)! (6”4)
(6.3) becomes
§ g o [ 126 + omAED + (s — o AEPR) ©5)
nm Rzn

Clearly, (6.5) has the same form as (4.4) The primitive treatment is dlrectly
applicable if we replace Wpo by W&, ga by AEW, g by AL The problem is
solved. We observe here that systems with dlfferent values of Ic ‘and different weight
sets have identical graphs ¢(q) if their effective weight sets are equal. This particular
form of equivalence has interesting consequences concerning the problem of selecting
appropriate weight sets. Applying (6.4) to Qr and Qv, we get

2+ 2%+2 (n4k+ml(n+ k—m)! 1
k) _—
For Qe Wim = g0 ok +1° (nl)? entti—myp ©9
s (kgfm? (re—lm)p—lm)! ]
J) —
For Qv, - Win = (o i (n1)? enl—me 07

The last factors in (6.6) and (6.7) are independent of ». They may be omitted.
The first factors are close to 1 for n great. The second factors are identical if

j=Fk+ 1 (6.8)

Thus, to each system with indices k& and m treated by Qm, we can associate a
system with indices j = &k + 1 and m treated by Qv. The effective weight systems
are practically equal. Therefore, if we neglect minor differences, the two systems
have the same solution, the ratios ¢ being defined by

AEWR JAE®, - for system (k 4 1, m) treated with Qv

q= (6.9)
AFWIAED for system (k, m) treated with Qg

The second factor in (6.6) may be written
(nt+k+m) ... (D (mtb—m) ... (n+1)=n2E4 (B4 k+mPn2h-14 .. (610)
Accordingly
WE, = n2k 4+ (k2 + k -+ m? + 1/2)n2k-1 4 . (6.11)

Therefore the influence of m is of secondary importance. A similar observation is
made with (6.7).

The correspondence relations will find application in § 7 when we try to use
the shapes of the curves c(g) for rejecting inappropriate weight sets. Consider the
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interesting correlations between Qg and Qyv, assuming that the shape of the common
solutions is acceptable or not for both weight sets. Taking (6.8) into account, we
arrive at the following conclusions. (a) All the solutions obtained with Qg are also
obtained with Qv. If the latter quadratic expression is adequate, so is Q. (b) There
is one solution, for § = 0, obtained with Qv and not with Qg. If this solution alone
has an unacceptable shape, Qv is ruled out while Qg is acceptable.

§ 7. — The problem, now, is the choice of the appropriate quadratic function.
The algebraic treatment has not been fruitful in this respect. So, before going
further, it is desirable clearly to formulate the objective. We are looking for the
definition of a characteristic, unique reference centre. The corresponding Q ought
to be a significant expression, such as Qg or Qv. Conditions (2.13), (2.14) and (2.15)
being satisfied independéntly of Q, we really have no information which would
enable us to prove that the right Q is either Qg, Qv or some other Q. However, in
a sufficiently broad and detailed treatment, we could perhaps find selective objections.

Numerical solutions have been obtained for the three systems (A% + AYD)
with & =0, 1, 2 using four weight systems and seven relations R(c).

Beside ‘those relative to Qg and Qy, the following weight sets

2 (n-+4m)!

Wom = 5 1 (0 —m)] (7.1
and

Wom = (1 + 1)%{—% (72)
have been used for comparison. The four weight sets are such that

Wum — n? for n-— 0 (73)
with values of p = — 2, — 1, 0, 1. According to § 6, the effective weight sets have
the asymptotic expressions.

WE, — n?+2k for n — 0. (7.4)

For the purpose of testing the conclusion of § 4 and obtaining a better under-
standing of the R problem, the solutions ¢g%(c) have been calculated for seven linear
combinations of (4.12) and (4.16).

R=0a@2s)+1—a)s+]c|)=2s+(a—1)s—]c]|) (7.5)
with
111
O(Zé, 1, —Q‘, 1, 2,4,8‘ (76)
The value
s = 0.5 (7.7)

has been chosen.

The calculations can be carried out easily. The sums Saa, Sap and Sgp have
been obtained algebraically as well as numerically. The results may be condensed
in 12 diagrams each containing 7 curves corresponding to the several values of .
As anticipated the diagrams corresponding to equal values of (p -+ 2k) are very
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similar. For the present analysis, it will suffice to consider the case of the two-
charge system treated with the four weight sets (Fig. 2 to 5). Asregards the diagrams
with (p + 2k) > 1, we simply note that the trends observed in Fig. 3 to 5 continue
to amplify as (p -+ 2k) increases. In the presentation of the results, we return to ¢
as the independent variable. A curve ¢(g) is thus composed of two branches cor-
responding to ¢—(c) and g+(c). In the figures below, there are seven curves for R
given by (7.5) and (7.6). The curves are in the order of the values of «, the curve

1
for o = g being closest to the ¢ axis. Expressions of the sensitivity defined by (5.15)

are given in the captions.

We first examine the case of (qa + gp) treated with Qv (Fig. 2). The seven
curves exhibit a horizontal part from ¢ = 0 to ¢ & — 0.15. Such an insensitivity
of ¢ cannot be accepted for the solution of our problem. Therefore we reject Qv as
inappropriate. The origin of the situation encountered here is very simple. With
p = —2, the weight set is at the limit permitting divergence of Spa for ¢ =s
As a result, P tends towards zero. Approximation (5.9) is valid, with its inherent
dissymmetry between ¢+ and ¢—. A very small decrease in ¢, near ¢ = s, is sufficient
for causing an important variation in Sps and consequently in ¢~ Another con-
sequence is the very great value of the sensitivity {. The curves relative to system
(gs + gB) treated with Qg are given in Fig. 4. We first examine the curve for R
given by (4.12), ie. for o = 1. The question is : can we find an objection to the
shape of the curve ? When we discussed simple means of defining the CRC, we were
ready to accept (2.6.b) as a satisfactory relation for the two-charge system. The
corresponding curve is represented as a dotted line in Fig. 4. The two curves are
fairly similar. They are even close to each other for ¢ < 0. This observation is
gratifying.

Next we compare the two branches The absolute values of the slopes lead to
the following inequalities

Iic_| - de
ldg|qg=—0 " |dg|g=+0 (7.8)
de S de
dglg=—1" |dgi¢=1 (7.9)

These account for the observed greater curvature of the positive branch. It is to
be noted that (7.8) and (7.9) are not independent because the two branches have
the same mean slope in absolute value, i.e.s, and approximately the same shape.
What is the origin of (7.8)% Consider a system (ga = v, gp = 1); v very small,
positive or negative. The boundary of the AES is close to A. We add a very small
charge, 3¢, at A, of the same sign as y. The electric field increases near A in the
AES. The increase is smaller if 3¢ is negative because of some mutual cancellation
with the fields due to charge 1 at B. The increase in energy is smaller. The displace-
ment of the sphere is smaller, We thus arrive at (7.8). It is to be pointed out that
(7 8) is a property of the approach developped here since it is verified for all values
of o« and for the other two weight sets (p = — 1 and + 1). Can we find an objection
to (7.8) % No. (7.8) is quite plausible and there appears to be no basis for comparison

Fig. 4 allows us to analyse the effect of a variation of R with |¢| Starting
with very small values of «; we-note that the slopes are very small at ¢ ~ 4+ 1 and,
by compensation, very great in absolute values for ¢ ~ 0. This is normal. Consider,
for instance, the situation at ¢ ~ 4+ 1, R ~ s. The boundary of the AES is very
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close to both charges. A very small displacement of the AES suffices to balance
a small variation in ¢. The sign of ¢ is of secondary importance. With increasing
values of «, the curves change gradually. For great values of « and therefore of R,
the two branches have quite different shapes. Noteworthy is the steep slope at
g ~ — 1. The explanation is simple. The system is equivalent to the sum of a non-
ideal dipole (¢, — ¢) at 0 and a charge (1 — ¢) at B. Now, the field of a dipole de-
creases much more rapidly with increasing distance than does the field of a charge.
Therefore, Qg is very sensitive towards the net charge (1 — ¢) situated at B. There
is no such effect for ¢ ~ 1.

From a careful numerical study, it is seen that the left branch has an inflection
point for « > 1.4758. This can hardly be considered as a mormal property. No
lower bound has been found. Clearly, large variations in R are excluded and small
variations cause only meaningless effects.

There remains to examine Fig. 3 and 5 in order to complete the picture as
regards ‘the influence of the exponent p.

Consider particularly the curves for « = 1. The curve in Fig. 3 has an inflection
point. The curve in Fig. 5 is similar to the curve in Fig. 4 except that the curvatures
of the branches are greater. In this respect, it may be mentioned that the curvatures
go on increasing with p. It would thus seem that p = 0 is the best value as regards
the shape of the curve
. The curve for « =1 and Q = Qg (Fig. 4) is now used with (4.1) to obtain
the corresponding EPC’s. The relevant curves are given in Fig. 6. The system com-
posed of two dipoles parallel to the z axis can be treated similarly. The corresponding
characteristic curves are given in Fig. 7. There is no apparent objection to the
curves ‘in either figure.

The results of the above numerical study may be summed up as follows

(i) Qv has been eliminated.

(i) No objection has appeared against the use of either Qg or (412). On the con-
trary, there is some positive evidence.

(iii) Frequently in the above discussion, we could do no more than conclude : no
objection. This is normal. The definition leads to results going beyond ouxr
expectation.

At this stage, we may consider that the variational method based on Qg and
(4.12) satisfies the general conditions of suitability, consistency, uniqueness and
significance. We therefore adopt it for the simple systems studied so far. We thus
consider that Fig. 6 and 7 give the characteristic reference centre and exterior poten-
tial coefficients.

§ 8. — We propose here to extend the method to the case of fairly general
systems. Prerequisite is the knowledge of the general transformation relations of
the AZ, and of their derivatives. The appropriate relations are established in Appen-
dices A and B.

The main problem is the determination of R from the data. As an interesting
example, consider a family of systems composed of two charges g4 and ¢p distributed
spherically around points A and B with densities

~eX’X
px = gx — ) X =AB 8 1)
4n f pxlrg)e X Xrkdry
0
where pa(7a) and pg(rs) are two polynomials.

201



(@Yo = b fow] peyop (B)o 6 G = wu a0 (B)*ty sixe
oy 09 ferreaed sojodip oM J0J SOAINO ONMSLIOJORIBYY ~— ‘L ‘LT

“€p/Vh = b tour pepop (b2 g ‘1 = u 1oy (b)*%y
wogsAs 03Ieyo OoM] O} JIOJ SeAINO OSLISOBILY) — 9 ‘T

€

T2°v

o

No.r

202



The set of constants Ay is the same for all these systems for all reference
centres whereas the extent of the charged space varies considerably. With small
values of ws and wp, the charge outside a sphere of radius R = 2s may still be
considerable.

In this complicated situation, there seems to be no satisfactory way out unless
we assign the following property to the CRC.

(1) All systems with the same set of constants Az, have the same CRC. In other
words, the CRC is a property of the Aj, set, the other characteristios of the
charge distribution having no effect.

This leads us to giving up the classical exterior space — which may be called the
exterior charge space — based on the vanishing of the charge density and adopting
the following basic specification.

(2) The exterior space relevant to the problem under consideration is the exterior
potential space defined as the space outside a sphere of centre 0 and radius Ry,
such that the series (1.3) expressing the exterior potential, converges. 0 is the
reference centre. Rg is the distance between 0 and the farthest point for which
the series diverges. This space is defined completely by the set of potential
coefficients Az, corresponding to centre 0.

The value of Ry depends upon the position of the centre. We assume here that
Ry has a smallest value, Rg, for the centre at point 0g. The sphere of centre Og
and radius Rg is the smallest excluded sphere (SES). Rg is a characteristic length
of the system ~

Examining our results on simple axial systems from the present point of view,
we note that the two exterior spaces coincide. Thus (4.12) may be written

R = 2Rs. (8.2)

The question arises : may (8.2) be general? From the axial systems studied, we
can generate fairly general axial or non-axial systems by adding charges anywhere
in the SES (including the surface). The additional off-axis points change nothing
as regards Rg and R; (8.2) still holds. In view of the great number and variety of
the new systems, the validity of (8.2) cannot be limited to particular Az, sets.

(3) Accordingly, (8.2) may be taken as general.

The problem, now, is to find Rs. If the set of coefficients A, corresponds to a
finite number of coefficients relative to a finite number of points, we simply detexr-
mine the smallest sphere such that none of these points is outside. In the general
case, the resolution may be more laborious. Various methods may be devised. For
instance, we may use the limit of convergence of Qg at decreasing radius R, and
proceed by iteration. We start cycle ¢ with a new reference centre 0©. We calculate
the new coefficients A, From these we compute Qg for successively smaller values
of Ry. We thus determine the smallest value R{ for which Qg converges. Normally,
R > Rg because 0P does not coincide with the centre Og of the SES. We therefore
choose another reference centre 0+1 either according to a systematic exploration
program or by application of a procedure leading to a better reference centre. For
instance we may determine 04D by the condition of minimum of Qg using 0¥
and R{; the calculation, using (3.6), is formally identical with the determination
of the ORC. We proceed to cycle (¢ -~ 1) which gives R, and so on. The smallest
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R{¥ is the best approximation to Rs. From the definition (5.15) of the sensitivity £
and its value (16¢/3), it seems that Rg need not be determined with a very great
aceuracy.

It is possible that, for Rg, we find a vanishingly small value. Then the reference
centre is the CRC. This case is met when the coefficients AZ, vanish for n greater
than a certain integer j. This has been discussed above. Thus we realize the im-
portance of using the complete Ajr set. If we truncate the set, Qg necessarily
converges everywhere, except at the reference centre chosen. Some judgement must
therefore be exercised.

§ 9. — Consider a double system composed of a constant part consisting in
a small number of coefficients A3, located at B and a variable part located at A.
For the latter, we simply take a charge ¢. Fig. 1 is used again as regards A, 0, C, B
and their coordinates.

Initially, ¢ = 0. Part B is alone; Rg = 0; ¢ = s. We then vary ¢ continuously,
R varies discontinuously : Rg = s for ¢ # 0. The question arises : is the resulting
variation in.c¢ continuous or discontinuous? Part A in itself is unable to produce a
discontinuity in ¢. Therefore the question is : does the CRC of part B alone vary
when Rg varies from 0 to s? To clarify the question consider a system defined by

Ago and Ajp at B, nothing at A. (9.1)

The problem is to find ¢ as a function of R. It is solved easily using the method
of §4 adapted to a monocentric system. Now, point B is taken as the origin. ¢ is
the coordinate of the CRC defined from the new origin. The appropriate variables
are (¢/R) and (RAgg/A1p) == go1, playing the role of the former variables ¢ and ¢
The result is given in Fig. 8, curve 01. We observe that (¢/R) reaches notable values
for go1 ~ 2. The explanation is simple. The exterior potential is made up of a con-
tribution from Ajg having the same sign over the whole of the exterior space, and
a contribution from Agg which changes signs with z. The field is dissymmetric with
respect to B. Therefore the CRC is not at B. It is displaced towards the region of
greatest absolute values of the potential. For go; = 0 and oo, the system reduces
to one component, (¢/R) = 0. The extremum is accounted for directly.

e
o £
;

e
o0

12
0a1l i

0

q. 1.0 2.0 3.0 2.0 5.0 q

Fig. 8. — Curve 01 : (¢/R) vs. ¢py = RAg/Aq,
curve 12 : (¢/R) vs. q15 = RA;/A,,.
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Curve 12 obtained for the system
Ajp and Agp at B, nothing at A (92)

is similar to curve 01. The observations and explanations are confirmed.

We may generalize our conclusions as follows. The CRC of a system may be
stable or unstable with respect to a sudden change in the radius R caused by the
addition of a potential coefficient at a point outside the excluded sphere. For a
system with R = 0, instability occurs if the exterior potential is dissymmetric; the
jump in ¢ may be notable

§ 10. — The evidence collected in the above exploration clearly shows that
there is a remarkable possibility of defining the CRC. Accordingly, the following
definition of the characteristic reference centre (CRC) is proposed. Consider a system
for which we know the exterior potential coefficients Ayy and By, denoted here
by A, Assume that the Az, set allows to define a smallest excluded sphere (SES),
of centre Og and radius Rg, such that the exterior potential converges everywhere
outside the sphere. Consider now the space outside a sphere of variable centre C
and radius R = 2Rg, called the associated exterior space (AES). Let Qg be the
expression corresponding to the electrostatic energy stored in the AES of centre C.
The CRC is the centre for which Qg is stationary. The characteristic exterior poten-
tial coefficients (CEPC) are the coefficients A%, corresponding to the CRC. From
these, the characteristic multipole moments are obtained by known relations [11,[4].

R may be obtained as explained at the end of § 8. Qg is defined by (3.1) which
leads to (3.2) and (3.3). The stationarity conditions are given by (3.6) using the
transformation relations obtained in Appendices A and B for the coefficients Az,
and their derivatives.

With some simple systems, the condition of stationarity leads to a second
degree equation. We took advantage as much as possible of this circumstance which
enabled us to have a direct view into the problem. In practical applications, the
data are the potential coefficients A%, , the unknowns are the coordinates ¢z, ¢y, ce.
These have to be determined as the zeros of a system of three simultaneous equa-
tions (3.6). Symmetry may require the CRC to be on a known plane or axis. This
reduces the number of unknowns to two or one. No comment is necessary here,
except perbaps that iteration using the Newton approximation is possible since we
can easily find the second order derivatives of the A, as pointed out in Appendix B.

APPENDIX A

TRANSFORMATION OF THE SURFACE HARMONICS AND CORRESPONDING INTEGRALS

Consider two cartesian coordinate systems such that an arbitrary point P has
coordinates z1, ¥1, 21 in the first system and
Tp=T1—Cq Y2=Y1—0C ZL=A—C (AL)

in the second system. The corresponding spherical coordinates are 75, 9, @5, j = 1,2.
For convenience, we introduce the following symbols, for j = 1,2 :

S+Er;b)n = 7‘7”an7¢(9?" <P7‘)§ S;n(rjz) = 7?Y9nn(87'> CPi) (A2)
AL = A A9 — B (a3
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By definition
Soi = A" = 0; SED = AL — 0 for m > n (A.4)
and their derivatives with respect to ¢, ¢y and ¢, are also equal to zero.
t+(mu) = cos(mu); ¢~(mu) = sin(mu) (A.5)

The integral representations given by Morse and Feshbach [2] are, in the present
notations

. 1 (m+m)! (%
el ) B S I ngt
SH = P 7 . X+ (mu)du (A.6)
where Xj =4+ @t + @), j=1,2 (A7)

Firstly, we propose to find the relations between the SE® and SE®, using
integral representations as clearly explained by Morse and Feshbach. These authors [3]
establish the relations for ¢, # 0, ¢, = ¢, = 0, viz

n

(n + m) _
QE(2) — n-l, N 1 T en=IQE) A

in our notations.

We apply the same method in the case ¢; # 0, ¢y = ¢, =0

Xo = Xy — eatt(u) (A.9)
1 ! 2m )
SE® = G - (n_—; 'm ) J:) [X1 — degtt(u)]%+ (mu)du
(n + m) . LA
2mm I — g1 ) {0 X471 [+ () (). (A108)

Now, using Slmpson s formulae, we easily find by recurrence

1
1
ut — [ = = —
[+ () 4 (o) = 21};]6'0_70)! tE[(m - T — 2l (A.11.3)
Introducing (A.11.a) into (A.10.a) we get
n i
SE(@) — S (n + m)! l lfzn n—lpd ___
=2 IZO mm_ =TT —pi %), XTI = 2Rl du
(A12)
We write
FEl(m L — 2] = s, oy £F(|m 4+ L — 2k | W) (A13)
with 1 for m +1—2k > 0
Sinsiok = (A.14)
+1 form-1—2k <0

We introduce (A.13) into (A.11.a) and eliminate the integrals by (A.6).
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We get

k3

S = Z ) szzc Ftn - S|m+l—2k| 7t (A.15a)
= Ic
(n + m)!
= Al6
G;rifzk = (— 1)%.4 [m+T—2k|—(m+1—2k) 87%+l‘-—-2k (A.17)
or (— 1) for m +1—2k > 0
Oy = (A 18)

-+ (— L)tHm+k for m +1—2k < 0

The case of ¢, # 0, ¢z = ¢; = 0 is treated similarly with appropriate modifi-
cations

1 < (n + m)! ‘ 2 ] o
S? = i l!(n 7 (— @Cy)lL X7 b= (w) 4+ (mu)du (A.10.b)

[t~ () )+ (mu) = ZZ T lik) 3t <z;> tE[(m + 1 — 2k)u)
1 @) {F[(m + 1 —2kp] ( (A11D)
S0 § S 1t B () e 380
= =
Lo <£2t> 6T - ST, ot % (A.15.b)

In conclusion, the transformation relations between SE(® and S are given by
(A.8) and (A.15).

We propose now to find the relations between A and AED With the pre-
sent notations, (1.4) may be written

. h
fsg}:ﬁ(ﬂ odv = ( + g)' Ai(a)‘ (A.19)
ey (h—yg)!
Now, consider each relation (A.8) and (A.15), multiply by the space charge
density at point P, integrate over the whole space and eliminate the integrals by
(A 19). The relations obtained result directly from the substitution

1 (h -+ g) )
:i:(7) CAED A2
i “h—g)t M (4.20)
for all relevant values in the prnm‘mve relations. There remains to multiply each

equation by gn(n — m)l/(n - m)! and we get

%
- (n —m)! —
AP = z(—l)n ! T — T L AED (A.21)

I=m
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n I
2 ] N .
AQE = Z Z Goomit - O+ Ot AP im + 128 (A22.2)
=0 k=

(=1

n
- I
AFR — Z (— DE. G- C_f/g tt (@) Gigge - AE D12

=0 £=0
(I oz AF® A22)
5 Ot A3 jm+ 128 (A.22.b)
where
— )
Gy, = ——2 (v —m)! (A.23)

Cmeroy K I— B (n—I— | m +1—2k )12

Six? and AL® corresponding to a displacement cg, ¢y, ¢; can be obtained in three
successive steps, using the above relations in any order,

APPENDIX B.

0 0
THE DERIVATIVES — (S£®), — (A£®), ®rC...
¢y dcy

The definitions, methods and notations are those of Appendix A. We wish to
find the derivatives as functions of the quantities relative to the same cartesian
system.

1) X2 = Xl — Cz. (Bl)
According to (A.6)
0 1 I (2
% SED = — G %&—i—?))' . X2+ (mu)du. (B.2)
Thence
T SHD) = — 0+ ) SER, (B3)
2
2) Xz == X1 —_— th“f(u) (B 4‘,3;)
0 1 ! [
o ) = — gy [ X (B8
—n!J,
For m =0
0 qi@ Lo . 9 g
T (Sgh?) = 8 Lu—15 8cx (Son?) = 0. (B.6.a)

For m > 0, using (A.11.a)

d 1 (n+ m)' 1 [‘2" _
o (SE@)Y e = Xzl
Cz (S52:) 2rim—1 (p — 1)1 " 2 2

tE[(m - 1)u] + tF[(m — Lyu] sdu
(B.7.a)
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We eliminate the integrals using (A.6). We get
0 1

5 (S3D) = S [SFH s — (0 + m)(n +m — 1SER,, ) (B.8.a)
T
3) Xz = Xl -_— icyt“(u) (B4b)
d 1 (n+m)t (% .
(S — 7n—1p— + D,
5, (S Sl (n—T)1 J, XE Y- (u)t+(mu)du. (B.5.k)
For m = 0
0 (SE®) = 872 9 (Sg2) = 0. (B.6.b)
acy 4] 1,n—1 > 60;, on

For m > 0, using (A.11.b)

2 1 (ntm! 1 =

= () = —

_ n—1 F rr -
ey 2mim=1" (n — 1)1 "2 JO XNt [(m + Lyu] F £7[(m 1)u]$du
(B.7.b)
5% (SiEP) = + % [Sh$Z 1 + (v + m)(n + m — DSFH ] (B.8.b)

Relations (B.6) and (B.7) can be condensed into the following relations

2 sy = EEdm gim e m—1SE, ] (Boa)

0cy 2
L) = £ TE (550 Lm0 m—) SR, ] (BOD)
(4

valid for m = 0,1, 2, ...
We get the relations between the A’s as explained in Appendix A :

]
3, Bin) = — (0 —m)AER,, (B.10)
0 14-5 £ >
o (AE®) = (__22@ L 7-1:1“ (n—m)(n—-m—l)A;Eﬁ%),mH—g ml A;Lt_(%))m_.l} (B.11.a)
m e
0 ) 148 g £
o (4 = & O [ AT, AT,
Y Em+1 Em—1

(B.11.b)

Derivatives of higher order can be obtained easily from (B.3) and (B.9), (B.10)
and (B.11) without recourse to the integral representations.

APPENDIX C.

THE EXPRESSION OF Qg

Applying Green’s theorem, (3.1) becomes

87Qp = f V(VV.dS) — f VV2Vd. (C1)
S

v
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The last term vanishes owing to- Laplace’s equation. In the remaining integral,
the contribution from the surface at infinity vanishes. Therefore

+1 2r T oV
8nQr = ( f [V <—> } Reddo (C2)
Jr=—1 Jo=0 or Tpdr=R

The derivative is obtained directly from (1.3). Taking into account the ortho-
gonality of the harmonic polynomials and the values of the normalizing integrals,
we obtain (3.2) with (3.3).
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