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Abstract

~ We show that conformal mappings in R* can be characterized by a formal differen-
tiability condition. The notion of differentiability described in this paper generalizes the
classical concept of differentiability in the sense of putting the differential of a function
into relation with variable differential forms of first order. This approach provides fur-
ther an application of the use of those arbitrary orthonormal sets which are used in works
of V. Kravchenko, M. Shapiro and N. Vasilevski on quaternionic analysis. However, it
is crucial to consider variable orthonormal sets, so-called moving frames.

1 Introduction

In classical complex function theory the geometric property of preserving angles called con-
formality in the sense of Gauss is.closely linked with differentiability and analyticity. Every
conformal mapping in the sense of Gauss is either holomorphic or antiholomorphic.

Several approaches to generalize complex analyticity to hypercomplex analysis have been
made in the past, G. Scheffers [24] (1893), A. S. Melijhzon [20] (1948) and A.-Sudbery [26]
(1979) provided important contributions on the discussion about the possibility of extending
the concept of complex analyticity to- quaternions by the approach considering differential
quotients.

However, because of the non-commutativity of the quaternions, only the linear affine func-
tions turn out to be quaternionic differentiable or so-called M-differentiable by generalizing
differentiability in the strict sense of a differential quotient. Thus, M-differentiability which
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means a linear relation between the differential of the function and a fixed differential form of first
order is too restrictive to develop a powerful function theory in quaternions.

A different and actually more efficient approach to generalize complex analyticity to quaternionic and
Clifford analysis is the Cauchy-Riemann approach considering functions in the kernel of the general-
ized Cauchy-Riemann operator which are often called regular, monogenic or hypercomplex-analytic
functions. ' '

A. C. Dixon ([9]), R. Fueter ([10]), G. Moisil, N. Theodorescu ([211), V. Iftimie ([14]) and R. De-
langhe ({8]) are some of the most important creators of a function theory in quaternions and Clifford
algebras built on this approach. In particular, in the period of 1932 - 1950 R. Fueter and some of his
students managed to generalize many results of complex analysis to quaternionic analysis and also to
Clifford analysis. A summary of the research of R. Fueter et al. on hypercomplex function theory
can be found in {11] while a summary of the modern Clifford analysis endowed in particular with
functional analytic tools and applications is presented in [7].

A Sudbery showed in 1979 in [26] that quaternionic-analytic functions can also be endowed with a
modified notion of differentiability described by relations between differential forms of second and
third order. In 1999 K. Giirlebeck and H. Malonek extended A. Sudbery’s description to Clifford
analysis in their paper [12]

In contrast to the planar case, one observes that in IR™ with n > 3 the set of conformal mappings
which coincides with the set of Mobius transformations (cf. e.g. [18], [4], [6], [15]) is disjoint with
the set of hypercomplex-analytic functions

It is an essential observation that precisely those conformal mappings which are described by linear-
affine Mobius transformations are M-differentiable. However, Mobius transformations composed by
inversions are not M-differentiable. M-differentiability is actually a too restrictive notion to describe
the complete set of conformal mappings.

One of the main concerns of this work is to illuminate in which way one has to weaken the classical
condition of M-differentiability in order to describe precisely the whole set of Mobius transforma-
tions. This paper provides furthermore a correction and an extension of [3} as well as a complemen-
tary work to [26] and [12].

We observe that left M-differentiable functions are characterized by a system of differential equations

of the form

of _ of _
bor = pe k=123, (1)

The crucial idea to extend (1) in order to obtain the complete set of Mobius transformations as so-
lutions is to replace in (1) the set of the canonical imaginary units e, ez, e3 by a variable arbitrary
orthonormal frame. More precisely, a C* function defined in a domain © C H satisfying a%%(z) #0
for all z € Q is conformal in the sense of Gauss, if and only if there are three C%(Q) functions
Uy, Uy, T3 satisfying

<Ui(2),¥(2) >=0;5 (1<4,j<3) VzeQ
such that

oF _of _
Bop = B ) k=123 @

or in other words if and only if the limit

2184 2
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3
exists, where Azl¥! = Azp + 3 Az ¥;(z0) with Az = — a.
i=1

Relation (3) provides an analytic characterization of Mdbius transformations in terms of a formal con-
dition of differentiability putting the differential of a function in relation with a variable differential
form of first order.

One observes further that the use of arbitrary orthonormal frames, also called structural sets, which
have often been used in works of V. Kravchenko, M. Shapiro and N. Vasilevski (cf. e.g. [17] and
[25]) is really essential here. However, it is crucial to underscore that one obtains for every single
point a different structural set if and only if the conformal mapping is composed by inversions.

We further proceed to study the relation between the structural sets appearing in the system of differ-
ential equations (2) and its associated solution

Moreover, we observe thal the system (2) can be rewritten in the form of the following system of
non-linear partial ditferential equations

of 8f .1 8f 8f .1 _
3_1‘1(3_;3) ’5;7'— %) >—‘Sz7‘ (4)

It is remarkable from the point of view of the theory of partial differential equations that the general
solution of (4) can be represented according to Liouville’s theorem in the form

f(z) = (az + b)(cz + d) !

with the global paramieters a, b, ¢,d € H. The system (4) provides an example of a system of non-
linear differential equations which is completely characterized by a finite number of parameters.

2 Preliminaries

2.1 Basic notions
H denotes the Hamiltonian skew field. An arbitrary element 2 € H can be written in the form
z=1x0€p + T1€1 + Toe2 + $‘3e3,” &)
where eg := 1 and ey, e3, e3 are the canonical quaternionic units satisfying
€182 = €3, €2€3 = €, €3€; = €3

and

ef=ej=ed=-1, eje;=—eje; Vi, i,5€{1,2,3}
One can identify the quaternionic skew field with the vector space R* considering the canonical
vector space isomorphism © : R* — H defined by

7= (20,71, 20,23)7 — 2=xpep + T1€1 + Toes + T3€3. 6)

o is called the real part of 2 and is denoted by Re(z)

The complementary expression 1€, + Zoeg + z3e3 is called the pure quaternionic part of z and is
denoted by Pu(z) like in [26]. We further denote the set of quaternions satisfying Re(z) = 0 by
Pu(H).

To every z € H represented as in (5), the conjugated quaternion 7 is defined by:

Z = Tgep — T1€] — To€y — 56363.,
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A scalar product between two quaternions z and w = Yy + y1€1 -+ Y2€2 + yses can be introduced by

(2 + wz). e

DO}

< zZ,w.>i=

This scalar product coincides with the Euclidean scalar product in IR*, considefing the associated
vectors 5 = (zg,21,22,23)T and & = (yo, 91, y2,¥3)7. It further induces a norm on H which

coincides with the Euclidean norm in IR*:
2] = \/28 + 2% + 23 + z3.

2.2 Quaternionic differential forms

We proceed to introduce quaternionic differential forms. For a detailed description of the theory of
quaternionic differential forms and their properties we refer to [26], {19] and [12].
Let  C H be an open set and

3
FiQ=H f(2)=) efi(2)
=0

be a quaternion valued function, where f; denote its real-valued components. Furthermore, let f be
real differentiable in the usual sense. lts differential at the point z9 € € is then an R linear map
df (z9) : @ — H. If one identifies the tangential space in every zy € 2 with H itself, then one can
regard this differential as a quaternionic I-form:

3
i=3 L, ®

i=0 O

where the forms dz; are the canonical real 1-forms,

Conversely, in view of [26], one can consider every quaternion valued 1-form
3
w= Zaidx,- {0z € H)
i=0
as an R-linear map w : H — H being uniquely defined by:
3 3
w(z eix;) = E 4T
i=0 =0
In view of this definition, the differential of the identity function is
3
dz = Z eid:z:i” (9)
=0
This differential is said to be the canonical quaternionic 1-form.
For two arbitrary quaternionic 1-forms
3 3
w == Zaid:z:i and 8 := Zﬁidz‘i (a;, B; € H) -

i=0 =0
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the wedge product is defined by

3
wAf:= " oif;dz; Adz; (10)
1,j=0
which provides a quaternionic 2-form. This definition allows to introduce the quaternionic surface

3-form do:
3

3
LA A
do(z) =Y (-1)'eidz; with dop= [\ do;
i=0 F=0,i#g
which is the crucial ingredient in the description of quaternionic-analytic functions by differential
forms in [26] and [12]. We finally introduce the exterior derivative of a quaternionic differential form
w of arbitrary degree by
3
dw =) e;dw;, D
=0

where wy, wy, we and wz denote the real-valued components of w.

2.3 Quaternionic differentiability and analyticity
The hypercomplex differential form calculus provides several approaches to generalize differentiabil-

ity and complex-analyticity to hypercomplex analysis. In this paper we restrict ourselves to quater-

nionic analysis.
The most straightforward way to generalize complex differentiability to quaternions is to start from a
usual differential quotient. This approach was firstly discussed by G. Scheffers in 1893 (cf. [24]) and

later on by A.S. Melijhzon in 1948 (cf.-[20]).

Definition 1. Let Q@ C H be an open set, and letzo € H f:Q — H is called left M-differentiable
(left quaternionic differentiable) at %, if

Jim [f(2) = flzo)l(z = 20) ™" = Jim (Af)(Az)™!

exists.
A function f : Q@ — H is called right M-differentiable (right.quaternionic differentiable) at zp, if

. N=lrgfy oy -1 _ oy -1
Jim (z = 20) 7 [f(2) = f(20)] 7 = Jim (A2)7(Af)
exists.
[ is called left (right) M-differentiable in , if f is left (right) M-differentiable in every point z € ).
It is already due to G. Scheffers and A.S. Melijhzon that

Lemma 1. Let Q C H be a domain and f € CH($2). Then f is left-M-differentiable in Q if and only
if f(z) =az+b, witha,b € H.
f is right-M-differentiable in Q) if and only if f(2) = za + Bwitha,B € H

An elegémt proof of this statement has also been given in [26] by identifying H with €2,
We can express M- dlfferentlabxhty by a relauon between two quaternionic differential forms of first

order:
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Theorem 1. Suppose  C H is a domain and f € C*(§2). Then f is left M-differentiable if and only
if

_of
& = 5idz. (12)

Further, f is right M-differentiable if and only if

of
=dz—. 13
df =dz o 13)
Proof: By a straightforward calculation we verify that a function f(2) = az + b with a # 0 satisfies
(12) and that further every function g(z) = za + § with o # 0 satisfies (13).
Conversely we observe that for a C'1(2) function satisfying (12) we obtain
of

o _1 — Y X
(ANaa)T =5 Vzen (14)

lim
Az—=0
Thus, f is left M-differentiable  Analogously one verifies that a C'!-function satisfying (13) is right
M-differentiable. OJ
A more efficient approach to generalize complex analyticity to hypercomplex analysis is the Cauchy
Riemann approach considering C'*(£2) functions which are in the kernel of the generalized Cauchy-
Riemann operator in H given by

D = Z €; a—z (15)

Definition 2. (¢f [7], [11])
Let U C H be an open set and let f : U — H be a real differentiable function. Then f is called left

monogenic (right monogenic) in U, if Df = 0 (fD = 0).

A. Sudbery showed in 1979 (cf. [26]) that one can also describe this function class by a modified
notion of differentiability based on the consideration of relations of quaternionic differential forms of
second and third order. In [26] A. Sudbery introduces the following notion:

Definition 3. A function f : Q@ — H is left regular [right regular] at zy € Q, ifit is real-differentiable
at zp and if there exists an f](zo)[resp. f1(z0)] € H such that

d(dz A dz f) = do(2)f{(z0) [resp. d(f dz A dz) = f;(z0)do(2)]- (16)

1t can be shown (cf. [26]) that the set of left (right) regular functions coincides exactly with the set of

the left (right) monogenic functions and that the associated left (tight) derivative f{(z) (f(z)) equals
)

2 2L,

We observe that the concept of monogenicity is not compatible with the notion of M-differentiability,

since every non-constant linear affine function is not monogenic, but actually M-differentiable.

2.4 Mobius transformations

The function class of complex Mobius transformations plays a crucial role in geometric function
theory. It is well-known that every Mdbius transformation in the complex plane can be represented in

the form
az+b

cz+d

fle) = a,bc,d €C ad—bc#0.
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Mobius transformations in higher dimensions were firstly treated by K. Th. Vahlen in 1904 in [27].
M. L. Sarasin, a student of R. Fueter, analyzed in her PhD thesis [23] (1930) geometric mapping
questions of M&bius transformations in quaternions in a detailed way.

Further contributions on Mobius transformations in view of geometric questions have been presented
for example by L. Ahifors (cf. e.g. [1], [2]), by G. Z51l [28], by S. KrauBhar [16] and recently by R.
M. Porter [22] and by many other authors.

We recall (cf. [28]) that in the quaternionic skew field a Mobius transformation can be represented by

f(z) =(az +b){cz+d)!

where a, b, ¢,d are quaternions satisfying |b ~ ac™!d|lc| # 0 if ¢ % Qor ad| # 0ifc = 0 or
equivalently by

f2) = (27 + )" (za + ),
where o, 8,7, € H such that |8 — év~a|v| # 0if v # 0, or [d] # 0 if v = 0.

Already R Fueter discovered (cf e g. [11]) that Mobius transformations play a crucial role in quater-
nionic analysis since a monogenic function composed with a Mobius transformation gives up to a
conformal weight again a monogenic function

However, we observe that quaternionic Mobius transformations themselves are neither left nor right
monogenic. One further verifies directly that the non-constant left and right M-differentiable func-
tions are strictly included in the set of Mdbius transformations

3 Conformality in quaternions

Using quaternionic differential forms one can rewrite the classical definition of conformality in the
sense of Gauss in R? given e.g in [6] and [5] equivalently in terms of quaternions:

Definition 4. Let 2 C H be a domain. ,

A real differentiable function f : @ — H is called conformal in the sense of Gauss, if there exists a
positive real valued continuous function » : H - R>® 2 — A(z) such that

|df1? = A(z)|dz?, a1n

In the sequel we simply use the expression conformality for the notion conformality in the sense of
Gauss. ‘
We recall that in the complex case the class of the conformal mappings consists exactly of the holo-
morphic functions satisfying %f(z) # 0 and antiholomorphic functions satisfying %% # 0.

In spaces of dimension n > 3 the set of conformal mappings is restricted to the set of Mdbius trans-
formations as firstly shown by J. Liouville in 1850 for the three dimensional case. We state:

Theorem 2. (Liouville's theorem)

Let Q C H be a domain. A C! function f : Q — H is a conformal mapping if and only if f is a
Mobius transformation.

J. Liouville proved this theorem in 1850 (cf. [18]) under the condition of f being at least a C3 home-
omorphism. It turned out to be quite difficult to weaken this differentiability hypothesis. In 1958 P.
Hartman managed to prove this assertion in [13] for C! homeomorphisms. According to T. Iwaniec
and G Martin {15] one may also drop the condition of f being an homeomorphism. :
Since the set of conformal mappings coincides with the set of Mobius transformations, one has actu-
ally a closed description of them.

However, the question, if it is possible to characterize them by a certain kind of analytic concept, i.e
by a certain notion of differentiability treated by quaternions, remained open.
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4 An analytic characterization of conformal mappings

We proceed to weaken the notion of M-differentiability in such a way that precisely the complete set
of Mobius transformations and hence conformal mappings will be included.

To this end we deduce a characterization of conformal mappings by a system of quaternionic differ-
ential equations. We start with the following proposition:

Proposition 1. Ler @ C H be a domain. Then a C1(Q) function f is conformal in ) if and only if
forevery z € Q

82 _ \0fp _ 0f2 _ \0fp _

5l = gl = gl = gl = 2@ >0 a8)
of 6?_ _ , —

Re{_axi—awk} =0 i<k 4,k=0,1,2,3 (19)

Proof: According to the definition, f is conformal if there is a positive real- valued continuous func-
tion A : H — R> with

[df|2 A(Z)Zdzk , . (20)

We consider the expression:

3 37
Z axz i)(.z —B—‘d
Z[Z af?‘ Z]d + 22(2 aff afT d dm“

=0 r=0 j<i 1—0

|df >

It

and we observe that one can rewrite (20) in the following equivalent way:
d af, 8 3
S oL get + 22(2 o f' dzj dz; = Mz) 3 da. @
i=0 r=0 9%i j<i r—O k=0

By a comparison of coefficients, one can infer that f is conformal if and only if the following system
of differential equations is satisfied:

23:(%)2 = /\(Z) £=0,1,2,3 (22)

i azk

}‘gi’gi; =0, §<k=0,1,28 0O 23)
J

We can rewrite the system of differential equations (18) and (19) in the form of orthogonal relations
providing the following characterization:

Proposition 2. Let 2 C H be a domain. Then a real differentiable function f : Q — H is conformal
in Q if and only if for every z € Q2

af o
8:1{, o > = 6 M2), (24)

where 0; . denotes the Kronecker symbol. .
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Remarks and motivations: The non-constant left (right) M-differentiable functions form actually a
very special subset of conformal mappings which is characterized by the following system of differ-
ential equations

S—ZJ‘; = g&f; Ol 6—f = ek%fo respectively, where k£ =1,2,3 25)
following directly by (12) and (13). In order to extend the class of M-differentiable functions to
obtain all Mobius transformations we will replace the canonical units e, ez, e3 in the system (25)
by a general set of orthonormal pure quaternions [¥] = (U, ¥y, ¥3). These sets are often called
structural sets. They have been used for example by V. Kravchenko, M. Shapiro and N. Vasilevski
(cf e.g. [25], [17]). They represented quaternionic variables and operators including the Cauchy-
Riemann operator in a general basis [¥] in order to obtain a more general quaternionic function theory.
For what follows the use of general structural sets is crucial. But it turns out to be essential not to
consider only fixed structural sets. It is crucial to endow in general every single point with a different
structural set or in other words to consider moving frames. Substituting the canonical basis elements
in (25) by elements of an orthonormal pure quaternionic continuously moving frame leads to the
description of the complete set of Mobius transformations. The following theorem provides a more
precise formulation and moreover a correction to {3]:

Theorem 3. (Local characterization of quaternionic conformal mappings by a system of differential

equations).
Let Q C H be a domain. A continuously real differentiable function f : Q@ — H with Z;f— #£0Vz€Q
is conformal in Q@ C H if and only if there exist three C° functions Uy : 0 — H satisfying
Re{¥U;(z)} = 0i=1,2,3,V2€Q
<Ui(2),T(z) > = &; 4,5 €{1,2,3},V2€Q (26)

such that af of

= =y =, . 27

i ) @7

Proof: Let f be a conformal mapping in 2 satisfying 2%[5 #£0.
Then we define for every k = 1,2, 3 at each point z € 2

)( Lyt (28)

Tp(z) := (

3.’L‘k 310

The functions \Ilk(z) are well defined elements of C°(€2), since b‘L # 0. Now we show that the
system [¥(z)] := (¥1(2), T2(2), ¥3(2)) is an orthonormal system of pure quaternions at each point
of §2. We observe immediately that |y (2)] = 1 for all z € €, since f satisfies (18).
In order to show that the function ¥y, take only pure quaternionic values in £ we consider
of \ Of \-1

Re{(%)(%) }

1 of 8f | _
|3_L’2 {6xk axo}

Re{¥(2)}

i

which follows by (19), since f is conformal at every point of €2.
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In order to verify that the functions ¥ (z) form an orthogonal system at every single point z €  we
consider

2<W(2),95(2) > = ¥y(2)¥;(z) + ‘I’j(z)‘I"(z)
8:1:, 31‘0 6:60 3:1:,

of 8f .\, 8F \_, 8

+ 8:1: (8:1:0) (6:1;0) laxz

- aglinel Ty =0

since equation (19) is satisfied. Finally, by (28), the frame ¥y(z) satisfies the system (27).
Conversely, suppose that we can associate with each point of € an orthonormal system of pure quater-
nions [¥] = [¥(z)] such that for k = 1,2, 3 the system (27) is satisfied. In order to show that f is
conformal in §2, we verify that f satisfies in  the system of differential equations (18) and (19). Since
[¥r(z)| = 1ateach z € Q the property (18) follows directly. In order to show (19), we consider the
following two expressions involving (27): ‘

s 0 o _ 9f 9 . of of

Ozg’ Bz = Bz bzr | Oy Oz
- LA+ uwil X
= AL pRe(ma) =0,
since the functions ¥ () are pure quaternionic valued in Q. Further,
<G = Gkt * ey UFk WO
- 502 U5E + woll Lew

= 22 P <@ ne > =0,

since (¥;(z))i=1,2,3 is an orthonormal system at each single point z € ). Applying Proposition 1
leads to the assertion. (J

We observe that one can also characterize the set of quaternionic conformal mappings by a similar
system of differential eguatlons namely by writing the elements of the structural set on the right-hand

side of the expression 3—L Considering
of af
= =V k=123 29
2 — Bz k(2) 29

we can prove the same result by setting

10F o ke
Up(z) := (61'0) ap for‘evexy k=1,2,3. (€)]

Because of the non-commutativity with respect to multiplication in the quaternionic skew field the
previous statement is not evident,
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Since conformality in quaternions is characterized by the systems (27) and (29) we infer that the
function classes

¢ = {f: Q—>H|fecl(9), of ;eo,g—f_qz(z)af k=1,23}

3}‘ of _ of
Q- H y (1) —T(2),k =1,2,3},
Q- Hf 0@ 50 #0, 5o = 7 U(s) 3}
where ¥ :  — H are functions satisfying (26) of Theorem 3, are equivalent. We want to discuss
Theotem 3 in view of the planar case. Let D C € be a domain We observe that in the complex
case there are only two C%(D) functions ¥ satisfying Re(¥(z)) = 0 and |¥(2)| = 1 in D, namely
¥(z) = e and ¥(z) = —e;. Thus, a real differentiable complex valued function f(z¢ + e121)

satisfying 3%(% + e1z1) # 0 in a domain D is conformal there if and only if

c®

gjl() 1§f() or ;—i(z) —elgj (z) VzeD.

In the first case f is holomorphic in D and in the second case f is antiholomorphic there. Thus,
conformality in the planar case is characterized by the analytic concept of holomorphy or antiholo-
morphy, respectively

In the quaternionic case we have actually many more possibilities for the range of values of the func-
tions ¥, ¥y and Y3,

In order to characterize quaternionic conformal mappings by an analytic notion we reformulate The-
orem 3 in terms using variable quaternionic differential forms. In view of Theorem 3 we can say that
anon-constant C'* () function f is conformal at a point 29 € H if and only if there exists a structural
set [¥(20)] = (¥1(20), U2(20), ¥a(z0)) of pure quaternions such that

_9f . w g O
df = 6:c0dz or df =dz 2y’

with the variable quaternionic 1-form
d2% = dgg + U (29)dz1 + Yolz0)dz2 + ¥3(20)dzs.
This reformulation leads to the following definition:
Definition 5. (C-differentiability)
Let @ C H be an open set and let 2* € Q with 2* = z§ + E eix}. Then f is called left C-

differentiable at 2*, if and only if there exist three pure quatermons \Ill(z ), Uol2*), Us(z*) with the
property < U(z*), U;(2*) >= &;; such that

(¥]
1{15{1 (Af)(A¥)
exists, where AzlY - Axy + Z Az;¥i(z )‘wiiiz Agzy = i, — .

[ is called left C- dzﬁ”erentzable m Q, if fis left C- dzﬁ”erennable at every point z € .
f: Q — H is called right C-differentiable at z*, if and only if there exist three pure quaternions
Uy (2*), Ua(2*), U3(2*) with < ¥y(z*), ¥;(2*) >= d;; , such that

. ‘Il]
lim (a)(A)

exists
f is called right C-differentiable in Q) if f is right C-differentiable at every point z € .
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The limit
m (Af)(Az¥)1
Azl¥I0

can be considered as a linearization of the function f at the point zg with respect to [¥] and is equal
to the expression Z?z%* which may be regarded as the left C-derivative of f at the point zp. The
formal notion of C-differentiability provides a further justification to consider the expression 3% as
derivative of a quaternionic function

If we consider the special case W;(2) = e, then we obtain precisely the set of M-differentiable

functions.
Thus, C-differentiability is actually an extension of M-differentiability. The set of non-constant C-
differentiable functions coincides precisely with the set of Mdbius transformations.

5 C(lassification of the frames

Now we want to analyze the relation between the functions W in the differential equation (27) (or
resp. (29)) and its solution which must be a function of the type f(z) = (az +b){cz +d)~! according
to the version of Liouville’s theorem proved in [15].
The case f(z) = az + b or f(z) = za + (3 has already been discussed.
So we consider now Mobius transformations of the form f(z) = (az+b)d~! or f(z) = 6~ (za+B)
In this case we can easily prove using the definition of ¥y (2) in (28) (or in (30)) that the functions
U (z) are constant functions in §2, but U (z) # ek
If we consider Mobius transformations being also composed by inversions, then we will observe that
the functions ¥ (z) are not constant in £2.
We consider for example the standard inversion f(z) = 2! concentrating on the case where the
U (2) are written on the right-hand side of the expression 3%, then we get

3 3 3 3 :
Ui(2) =D 2% — 2zo(mo = Y esz)] " —e(3_ 2F) — 2zrlmo - Y eiwi)]. (3D
i=1

i=0 =0 =1

At every point of £ we obtain a different structural set which is illustrated in the following examples
At the point 2) = eg we get:

\1/1(21) = —€] \112(22) = €2 ‘113(2) = —€3,
but at the point zo := 1 4 e; + ex we obtain:
1 1 1
Ti(z) = gle1 + 2e2 — 2e5) Taz) = 5(2e1 + €2 + 2e35) Us(a) = 3(2e1 — 2e2 — es)-
The following theorem reveals a relationship between the functions ¥ (2) and the coefficients of the
Mobius transformation being solution of (29) in the most general case:

Theorem 4, Let Q C H be a domain and let f : 2 — H be a Mobius transformation written in the

form;
f(z) = (az + b)(cz +d)7 .

Then the associated functions Uy, : Q — Pu(IH) in the differential equation

af  of

Bz, Ozg

Ui (z)
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are represented by

Ui(z) = [2zoaC + bT+ ad — (az + b)(cz +d) ' Ag(2)] ™
[2z1a€ — bexT + aexd — (az + b)(cz + d) "1 Ag(2)] 32)

where P
Aj(z) = —{lez +d?} 7=0,1,2,3.
7T b

Proof: Compute the partial derivatives of f with respect to the four components. Using the definition
(30) of the ¥y, we arrive at the result. O
Remarks:

1. By (32) we infer that & = const if and only if ¢ = 0

2. We observe that the system (27) can be rewritten in the form of the following system of non-
linear partial differential equations
8f 8f .1 Of Of _
axi azo) 62] ( ) - 61,7 " (33)

It is remarkable that the general solution of (33) can be represented according to Liouville’s
theorem in the form f(2) = (az + b)(cz + d)~! where a,b,¢,d € H are global parameters.
The system (33) provides an example of a system of non-linear differential equations which is
uniquely characterized by a finite number of parameters.
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