A FRÉCHET SPACE OF CONTINUOUS FUNCTIONS WHICH IS A PREQUOJECTION

Angela Anna ALBANESE

Abstract. The purpose of this paper is to show that the prequojection constructed by Moscatelli in [5, § 2] is quite a concrete space, namely, it is the space $C_{\sigma,0}(K,\tau)$ of functions which are continuous and affine on a countable k-space (K,τ) and vanish at $0 \in K$.

Introduction. We recall that a prequojection is a Fréchet space F whose strong bidual F'' is a quojection and F is non-trivial if it is not itself a quojection. We also recall briefly the construction in [5]. Consider the duality $\langle c_0, l^1 \rangle$. For all $m \geq 0$ put $l_m^1 = l^1$ and then write l^1 as $\left(\bigoplus_m l_m^1\right)_1$. Let $(f_n^m)_{n\geq 0}$ be the standard basis of l_m^1 , let s be a mapping of the non-negative integers onto themselves such that $s^{-1}(j)$ is infinite for all j and let (ε_n) be a sequence of positive numbers such that $1 > \varepsilon \geq \varepsilon_n \longrightarrow 0$. Consider the subspace M of l^1 defined by

$$M = \left[f_n^0 + \varepsilon_{s(n)} f_{s(n)}^1 + \varepsilon_{s(n)} \varepsilon_{s^2(n)} f_{s^2(n)}^2 + \dots : n \ge 0 \right].$$

Put $M^0 = M$, let M^1 be the set of all limits of w^* -convergent and bounded nets in M^0 and, inductively, let $M^m = (M^{m-1})^1$ for m > 1. By Theorem 3 of [5] $M^m \neq l^1$

Présenté parJ. Schmets le 19 décembre 1991

^{*} This work is part of the author's graduate dissertation at the University of Lecce. Mathematics Subject Classification: Primary 46A06; Secondary 46E10. Key Words: prequojection, strongly non-norming, k-space, continuous affine functions.

for all m and hence M is strongly non-norming, i.e. no M^m is norming on l^1 . For each $m \geq 0$ the polar in c_0 of the unit ball of $\overline{M^m}$ generates a norm $|\cdot|_m$ on c_0 and we denote by F_m the completion of $(c_0, |\cdot|_m)$, so that $F'_m = M^{m+1}$. Since there are natural maps $i_m : F_{m+1} \longrightarrow F_m$, the projective limit of the sequence (F_m) is a Fréchet space F which is a non-trivial prequojection and F is countably normed in the representation (F_m, i_m) , i.e. the maps i_m are injective (cf. [2]).

It is our aim here to show that F is a classical space (indeed, a space of continuous functions) and this result is all the more remarkable in so far as F, like all prequojections, is known not to have the bounded approximation property (cf. [5]).

We wish to thank V. B. Moscatelli for suggesting the problem and for many helpful conversations on this matter.

1. F is the projective limit of spaces of continuous functions.

For all $m, j \ge 0$ put $g_j^m = f_j^{m+1} + \varepsilon_{s(j)} f_{s(j)}^{m+2} + \dots$ and

(1)
$$K_m = (f_n^0) \cup \ldots (f_n^{m-1}) \cup (f_n^m + \varepsilon_{s(n)} g_{s(n)}^m) \cup (\varepsilon_j g_j^m) \cup (0).$$

Then K_m is a countable w^* -compact subset of l^1 which will always be endowed with the induced w^* -topology. Denoting by $C_0(K_m)$ the Banach space of continuous functions on K_m vanishing at 0, we have

Theorem 1.1. $F_m \simeq C_0(K_m)$ for all $m \geq 0$.

Proof. It is shown in the proof of Theorem 3 of [5] that $\overline{M^1} = l_0^1 \oplus [g_j^0]$ and, in the same way, it is easy to see that, with $l_i^1 \equiv l^1$ for i = 1, ..., m,

(2)
$$\overline{M^{m+1}} = \left(\bigoplus_{i=0}^{m} l_i^1\right) \oplus \left[g_j^m\right] \qquad \text{for all } m.$$

For a fixed $m \ge 0$ put

$$\lambda_m(x) = \sup \{ |(x,h)| : h \in K_m \}, \qquad x \in F_m.$$

Let $x \in F_m$. If $x' \in F'_m = M^{m+1}$ with $||x'|| \le 1$, then there exists a sequence $(u_l) \subset M^m \subset \overline{M^m}$ such that $||u_l|| \le 1$ and $u_l \xrightarrow{w^*} x'$. By (2) we may write

$$u_{l} = \sum_{i=0}^{m-1} \sum_{n=0}^{k_{l}^{i}} a_{ln}^{i} f_{n}^{i} + \sum_{n=0}^{k_{l}^{m}} a_{ln}^{m} g_{n}^{m-1},$$

hence

$$\begin{aligned} |\langle x, u_{l} \rangle| &\leq \sum_{i=0}^{m-1} \sum_{n=0}^{k_{l}^{i}} |a_{ln}^{i}| \left| \langle x, f_{n}^{i} \rangle \right| + \sum_{n=0}^{k_{l}^{m}} |a_{ln}^{m}| \left| \langle x, f_{n}^{m} + \varepsilon_{\delta(n)} g_{s(n)}^{m} \rangle \right| \\ &\leq \lambda_{m}(x) \left(\sum_{i=0}^{m-1} \left\| \sum_{n=0}^{k_{l}^{i}} a_{ln}^{i} f_{n}^{i} \right\| + \left\| \sum_{n=0}^{k_{l}^{m}} a_{ln}^{m} \left(f_{n}^{m} + \varepsilon_{\delta(n)} g_{s(n)}^{m} \right) \right\| \right) \\ &\leq c_{m} \lambda_{m}(x) \end{aligned}$$

for a suitable constant c_m . Letting $l \longrightarrow \infty$ we obtain

$$|\langle x, x' \rangle| \le c_m \lambda_m(x),$$

from which it follows that

$$|x|_m \le c_m \lambda_m(x).$$

On the other hand,

$$|\langle x, f_n^i \rangle| \le |x|_m, \qquad \qquad i = 0, 1, \dots, m - 1,$$

and

$$\left|\left\langle x, f_n^m + \varepsilon_{s(n)} g_{s(n)}^m \right\rangle\right| \leq \frac{1}{1-\varepsilon} |x|_m,$$

showing that

$$\lambda_m(x) \leq \frac{1}{1-\varepsilon}|x|_m.$$

Combining (3) and (4) we see that the map $T_m: F_m \longrightarrow C_0(K_m)$ given by $T_m x = x_{|K_m|}$ is an isomorphism into. The proof will be complete if we show that $T_m(F_m)$ is dense in $C_0(K_m)$. To this end put

(5)
$$K^{m} = \left(f_{n}^{m} + \varepsilon_{s(n)}g_{s(n)}^{m}\right) \cup \left(\varepsilon_{j}g_{j}^{m}\right) \cup (0)$$

and observe that, by (1) and (5),

(6)
$$C_0(K_m) = \left(\bigoplus_{i=0}^{m-1} c_0^i\right) \oplus C_0(K^m),$$

where $c_0^i = c_0$.

Since F_m is the completion of $c_0 = \left(\bigoplus_{i=0}^{\infty} c_0^i\right)_{c_0}$ for the norm $|\cdot|_m$ and since l_i^1 is w^* -closed in l^1 for all $i \geq 0$, we see from (2) that we may write

(7)
$$F_m = \left(\bigoplus_{i=0}^{m-1} c_0^i\right) \oplus G_m,$$

where G_m is the completion of $\left(\bigoplus_{i=m}^{\infty} c_0^i\right)_{c_0}$ for the norm $[\cdot]_m$. Thus, by (6) and (7), it suffices to show that $T_m(G_m)$ is dense in $C_0(K^m)$. For a given $\varphi \in C_0(K^m)$ define the sequence $x = (x_{in})$ by

$$x_{mn} = \varphi\left(f_n^m + \varepsilon_{s(n)}g_{s(n)}^m\right) - \varphi\left(\varepsilon_{s(n)}g_{s(n)}^m\right)$$

and

$$x_{in} = 0$$
 for $i \neq m$.

Clearly $x \in c_0^m$ and $\left\langle x, f_n^m + \varepsilon_{s(n)} g_{s(n)}^m \right\rangle = \left\langle x, f_n^m \right\rangle = x_{mn}$ for all $n \geq 0$. Further, for each $k \geq 0$ let the sequence $y^k = \left(y_{ij}^k\right) \in c_0^{m+1}$ be given by

$$y_{ij}^k = 0 \ (i \neq m+1), \quad y_{m+1,j}^k = \frac{1}{\varepsilon_j} \varphi \left(\varepsilon_j g_j^m \right) \ (j \leq k), \quad y_{m+1,j}^k = 0 \ (j > k),$$

so that for s(n) = j

$$\left\langle y^k, f_n^m + \varepsilon_{s(n)} g_{s(n)}^m \right\rangle = \left\langle y^k, \varepsilon_j g_j^m \right\rangle = \varepsilon_j \left\langle y^k, f_j^{m+1} \right\rangle$$

$$= \varepsilon_j y_{m+1,j}^k = \begin{cases} \varphi(\varepsilon_j g_j^m) & j \leq k \\ 0 & j > k \end{cases} .$$

Then $x + y^k \in c_0^m \oplus c_0^{m+1} \subset G_m$ for all $k \ge 0$ and it is easy to check that

$$T_m\left(x+y^k\right)=\left(x+y^k\right)_{\left|K_m\right.}=\left(x+y^k\right)_{\left|K_m\right.}\longrightarrow \varphi$$

as $k \longrightarrow \infty$. We conclude that $T_m(G_m)$ is dense in $C_0(K^m)$, which completes the proof.

Remark 1.2. Recall the natural inclusions $i_m: F_{m+1} \longrightarrow F_m$; then $F = \operatorname{proj}_m(F_m, i_m)$ However, Theorem 1.1 does not say that F is the projective limit of the sequence $(C_0(K_m))$ with respect to inclusion maps, since there are not such maps between

the spaces $C_0(K_m)$. In order to obtain such a representation, we proceed as follows. Recalling (1), write K_{m+1} as

$$K_{m+1} = (f_n^0) \cup \dots (f_n^m) \cup (g_n^m) \cup (\varepsilon_j g_j^{m+1}) \cup (0)$$

and introduce the linearization maps $j_m: C_0(K_{m+1}) \longrightarrow C_0(K_m)$ defined as follows: if $\varphi \in C_0(K_{m+1})$ then, for all $n \geq 0$,

(8)
$$j_{m}\varphi\left(f_{n}^{i}\right) = \varphi\left(f_{n}^{i}\right) \quad \text{for } i = 0, 1, \dots, m-1,$$

$$j_{m}\varphi\left(f_{n}^{m} + \varepsilon_{s(n)}g_{s(n)}^{m}\right) = \varphi\left(f_{n}^{m}\right) + \varepsilon_{s(n)}\varphi\left(g_{s(n)}^{m}\right),$$

$$j_{m}\varphi\left(\varepsilon_{j}g_{j}^{m}\right) = \varepsilon_{j}\varphi\left(g_{j}^{m}\right).$$

Then we have

Proposition 1.3. $F = \operatorname{proj}_m (C_0(K_m), j_m)$.

Proof. Considering the diagram

$$\begin{array}{ccc} F_{m+1} & \xrightarrow{i_m} & F_m \\ T_{m+1} \downarrow & & \downarrow T_m \\ C_0(K_{m+1}) & \xrightarrow{j_m} & C_0(K_m) \end{array}$$

we have, for $x \in F_{m+1}$,

$$j_{m+1}T_{m+1}x = j_m\left(x_{|K_{m+1}}\right) = x_{|K_m} = T_m i_m x,$$

since x is linear on K_m . Therefore, the family (T_m) defines an isomorphism T of F onto $\operatorname{proj}_m(C_0(K_m), j_m)$.

Next we observe the following

Proposition 1.4. $C_0(K_m) \simeq c_0$ for all $m \geq 0$.

Proof. Recalling (6) we see that it suffices to show the isomorphism $C_0(K^m) \simeq c_0$. But K^m is homeomorphic to

$$K_0 = \left(f_n^0 + \varepsilon_{\delta(n)}g_{\delta(n)}^0\right) \cup \left(\varepsilon_j g_j^0\right) \cup (0)$$

and hence it is enough to prove that $C_0(K_0) \simeq c_0$. Define a map $S_0: C_0(K_0) \longrightarrow c_0 \oplus c_0$ as follows:

$$S_0\varphi=(x,y), \qquad \qquad \varphi\in C_0(K_0),$$

where

$$x = \left(\varphi\left(f_n^0 + \varepsilon_{s(n)}g_{s(n)}^0\right) - \varphi\left(\varepsilon_{s(n)}g_{s(n)}^0\right)\right), \qquad y = \left(\varphi\left(\varepsilon_ng_n^0\right)\right).$$

It is immediate to see that S_0 is a linear, continuous and one-to-one. Moreover, if $(x,y) \in c_0 \oplus c_0$ define φ on K_0 by

$$\varphi\left(f_n^0 + \varepsilon_{s(n)}g_{s(n)}^0\right) = x_n + y_{s(n)}, \quad \varphi\left(\varepsilon_j g_j^0\right) = y_j, \qquad \varphi\left(0\right) = 0.$$

Then clearly $\varphi \in C_0(K_0)$ and $S_0\varphi = (x, y)$, so that S_0 is also onto.

Remark 1.5. Another representation of $C_0(K_0)$ may be obtained as follows. For all $j \geq 0$ put $N_j = \{n \geq 0 : s(n) = j\}$ and let αN_j be the one-point compactification of N_j . Then it is immediate to check that $C_0(K_0) = \left(\bigoplus_j C(\alpha N_j)\right)_{c_0} \equiv \left(\bigoplus_j c\right)_{c_0}$.

We conclude this section with the following

Proposition 1.6. If X is an infinite-dimensional Banach subspace of F, then $X \supset c_0$. If X is complemented in F, then $X \simeq c_0$.

Proof. If X is Banach, then it is a subspace of some F_m and the first assertion follows from Theorem 1.1 and Proposition 1.4. For the second assertion, let $P: F \longrightarrow X$ be a continuous projection and let m be such that $||Px|| \le c|x|_m$ for all $x \in F$ ($||\cdot||$ is the norm of X). Then the latter inequality holds also for all $x \in F_m$ by continuity, so that X is complemented in F_m . Now it suffices to apply again Theorem 1.1 and Proposition 1.4.

2. F is a space of continuous functions.

Now we consider the compact sets K_m defined in (1) and we put $H_m = \bigcup_{i=0}^m K_i$, so that $K = \bigcup_m H_m = \bigcup_m K_m$. It is not difficult to see that K is compact for the w^* -topology induced by I^1 , which is not good for our purposes, of course. Therefore, we are going to put on K a stronger topology. Precisely, each set H_m is compact in the induced w^* -topology and we take on K the finest topology τ making each canonical inclusion $H_m \longrightarrow K$ continuous, i.e. the inductive topology with respect to the family $(H_m, H_m \longrightarrow K)$ (cf. [1]). It is known, but also not difficult to verify directly, that, for

a space (K, τ) which is the inductive limit of an increasing sequence (H_m) of compact subsets, we have:

- (i) each H_m is compact in (K, τ) and each compact subset of (K, τ) is contained in some H_m ;
- (ii) (K, τ) is normal, hence completely regular;
- (iii) (K, τ) is a k-space, i.e. a subset $A \subset K$ is open if and only if A intersects every compact subset of (K, τ) in a relatively open set;
- (iv) a function f on K is τ -continuous if and only if f is continuous on each compact subset of (K, τ) ;
 - (v) the space $C(K, \tau)$ is complete for the topology of compact convergence.

Remark 2.1. It is clear that, because of (i), it is enough to test (iii) \div (v) against all compact sets H_m . In particular, it follows that $C(K, \tau)$ is a quojection.

In our particular case, the space (K, τ) has, of course, properties (i) \div (v) above, but it is not locally compact, as it can be verified directly (the point 0 does not have a compact neighbourhood). However, we still have

Proposition 2.2. $C(K, \tau) \simeq (c_0)^N$.

Proof. $C(K,\tau)$ is the projective limit of the spaces $C(H_m)$ with respect to the restriction maps $R_m: C(H_{m+1}) \longrightarrow C(H_m)$.

We have $H_{m+1} \sim H_m = (f_n^m) \cup (g_n^m) \cup (\varepsilon_j g_j^m)$, hence, if we put $L_m = (H_{m+1} \sim H_m) \cup (0)$, then $\ker R_m$ can be identified with $C_0(L_m)$, i.e. the space of continuous functions on the compact set L_m vanishing at 0. Since L_m is homeomorphic to K_1 for all m, it follows from Proposition 1.4 that $\ker R_m \simeq c_0$, hence $\ker R_m$ is complemented in $C(K,\tau)$ for all m and the result follows.

We shall now define the subspace $C_{a,0}(K,\tau)$ of $C(K,\tau)$ of all affine functions vanishing at $0 \in K$. Precisely, $\varphi \in C_{a,0}(K,\tau)$ if and only if the following holds:

(9)
$$\varphi \in C(K,\tau) \qquad \text{and } \varphi(0) = 0,$$

$$\text{if } x, y, x + y \in K, \quad \text{then } \varphi(x + y) = \varphi(x) + \varphi(y),$$

$$\text{if } x \text{ and } \lambda x \in K \quad \text{for some scalar } \lambda, \text{ then } \varphi(\lambda x) = \lambda \varphi(x).$$

Then we are in the position to state and prove our main result.

Theorem 2.3. $F \simeq C_{a,0}(K, \tau)$.

Proof. By Proposition 1.3 we may identify F with a space of functions φ on K such that, if $\varphi_m = \varphi_{|K_m}$, then $j_m \varphi_{m+1} = \varphi_m$. Since each φ_m is continuous on K_m , $\varphi \in C(K,\tau)$ by (iv). Moreover, φ satisfies (9) by (8), hence $\varphi \in C_{a,0}(K,\tau)$. Conversely, if $\varphi \in C_{a,0}(K,\tau)$ then $\varphi_m = \varphi_{|K_m} \in C_0(K_m)$ and by (9) $j_m \varphi_{m+1} = \varphi_m$ for all $m \geq 0$. Thus $\varphi \in F$ by Proposition 1.3.

Corollary 2.4. The strong dual F' is complemented in $C(K, \tau)'$.

Proof. By Theorem 4 of [5] $F' \simeq \bigoplus_{n} l^{1}$. But F' is also a quotient of the strict (LB)-space $C(K, \tau)'$, hence F' is complemented in $C(K, \tau)'$ by [3, Corollary 3.4].

Remark 2.5. Put for all $m \ge 0$

$$J_m = j_{m|c_0^m \oplus C_0(K^{m+1})},$$

then by (8) we have

$$J_m(x+y) = P_m x + J_m(x+y)$$
 for $x \in \bigoplus_{i=0}^m c_{0,i}^i \ y \in C_0(K^{m+1})$,

where P_m is the canonical projection of $\bigoplus_{i=0}^m c_0^i$ onto $\bigoplus_{i=0}^{m-1} c_0^i$.

Now, defining the maps $S_m: C_0(K^m) \longrightarrow c_0^m$ as in Proposition 1.4 and considering the diagram

$$\bigoplus_{i=0}^{m+1} c_0^i \qquad \stackrel{P_{m}+\overline{S}_m}{\longrightarrow} \qquad \bigoplus_{i=0}^{m} c_0^i \\
\downarrow^{I_m+S_{m+1}^{-1}} \downarrow \qquad \qquad \downarrow^{I_{m-1}+S_m^{-1}} \\
\left(\bigoplus_{i=0}^{m} c_0^i\right) \oplus C_0(K^{m+1}) \qquad \xrightarrow{j_m} \qquad \left(\bigoplus_{i=0}^{m-1} c_0^i\right) \oplus C_0(K^m)$$

where I_m is the identity map of $\bigoplus_{i=0}^m c_0^i$ and \overline{S}_m is given by

$$\overline{S}_m(x+y) = S_m^{-1} J_m(x + S_{m+1}^{-1} y)$$
 for $x \in \bigoplus_{i=0}^m c_0^i, y \in c_0^{m+1}$,

we have for all $m \ge 0$

$$j_m (I_m + S_{m+1}^{-1}) = (I_{m-1} + S_m^{-1}) (P_m + \overline{S}_m).$$

Therefore, the family $(I_{m-1} + S_m^{-1})$ defines an isomorphism S of F onto $\operatorname{proj}_m(\prod_{i=1}^m c_0^i, P_m + \mathcal{F}_m)$. This shows that our prequojection F can be directly constructed by the method employed in [4, Theorem 1].

REFERENCES

- [1] Bourbaki N., Eléments de Mathématique. Livre III. Topologie générale, Hermann, Paris, (1958-1961).
- [2] Dierolf S. and V. B. Moscatelli, A note on quojections, Funct. Approx. Comment. Math., 17, 131-138, (1987).
- [3] Metafune G. and V. B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Math. Pura Appl. 153, 175-190, (1988).
- [4] Metasune G. and V. B. Moscatelli, Prequojections and their duals, Progress in Functional Analysis, (eds.: K. D. Bierstedt and J. Bonet), North-Holland Math. Stud., (1991).
- [5] Moscatelli V. B., Strongly non-norming subspaces and prequojections, Studia Math. 95, 249-254, (1990).

Angela Anna Albanese Via Terragno, 36 I-73016, San Cesario (LE), Italy