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A FRECHET SPACE OF CONTINUQUS FUNCTIONS
WHICH IS A PREQUOJECTION

Angela Anna ALBANESE

Abstract. The purpose of this paper is o show that the prequojection constructed
by Moscatelli in [5, § 2) is quite a concrete space, namely, it is the space Ca,o{K, 1) of
functions which are continuous and affine on a countable k—space (K, 7) and vanish at
0 € K.

Introduction. We tecall that a prequojection is a Fréchet space F' whose strong bidual
F" is a quojection and F is non-trivial if it is not itsell a quojection. We also recall
briefly the construction in {5]. Consider the duality {co,/'}. For ali m > 0 put =1

1
a mapping of the non-negative integers onto themselves such that s=1(j) is infinite

and then write /! as (@ 1#;) . Let {fi")y5o be the standard basis of 13, let 3 be

for all j and let (¢n) be a sequence of positive numbers such that 1 > € > en — 0.
Consider the subspace M of {* defined by

A‘.{ = [jg + Es(n}f}(n) + Eg(n)ssﬂ(n)f‘?‘z(n) +...:0 2 0] .

Put M® = M, let M! be the set of all limits of w*—convergent and bounded nets in
M? and, inductively, let M™ = (M’"“‘)l for m > 1. By Theorem 3 of 5} M™ # I

* This work is part of the author’s graduate dissert#tion at the University of Lecce.
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for all m and hence M is strongly non-norming, i.e. no M™ is norming on 1*. For
each m > 0 the polar in ¢o of the unit ball of ™ generates a norm ||, on ¢y and we
denote by £, the completion of {¢g,}-|,,), 0 that Ff, = M™*!. Since there are natural
maps im: Fppi — Fy, the projective limit of the sequence (£, ) is a Fréchet space F
which is a non-trivial prequojection and F is countably normed in the representation
(Fin,im}, 1.0, the maps in, are injective (cf. [2]).

It is our aim here to show that F is a classical space {indeed, a space of continuous func-
tions) and this result is all the more remarkable in so far as F', like all prequojections,

is known not to bave the bounded approximation property (cf. [5}).

We wish to thank V. B. Moscatelli for suggesting the problem and for many helpful
conversations on this matter.

1. F is the projective limit of spaces of continuous functions,

Forallm,j 2 0 put g = f"*' e ff4% +... and

1) K = (f2) U () O (I 4 a0ty ) U (597 U 0).

Then Ky, is a countable w* —compact subset of I! which will always be endowed with

the induced w* —topology. Denoting by Cy{K.,) the Banach space of continuous func-

tions on K, vanishing at 0, we have
Theorem 1.1, Fy ~ Cy(Ky) for all m > 0.

Proof. 1t is shown in the proof of Theorem 3 of (5] that MT = I} & g%} and, in the
same way, it is easy to see that, with ! =/t fori =1,...,m,

(2) ' MAFT = (EB I,l) @ g7 for all m.
1=0
For a fixed m > 0 put
Am(z) =sup{{(z,h}| : h € Kjn}, r € Ry,

Let z € Fin. If 2/ € Fj, = M™t? with ||2']] < 1, then there exisis a sequence
() € M™ C M7 such that [julf < 1 and w 25 2! By (2) we may write

n M
=SS s Y e,
1=0 n=0 n=0
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hence

m-1 kf

Nz, w)| < Zﬁ 2|a,n|j (z, [} |+Elﬂ¢n|
Zalnjn

(5

< emAm(2)

w fa +€s(nw”(n)>

km

z (f;!ln + €4(n) 9:7!1})

|

for a suitable constant ¢,,. Letting | — oo we obtain

I(mi :B')[ < Cm/\m(ﬁ},

from which it follows that

(3) |2l < emAm{2)-
On the other hand,

i(z;ﬂ;)lShlmy i=0,l,...,m--1,
and

(2. 2+ sy )] § T
showing that

1

(1) () < T2k

Combining (3) and {4) we see that the map Typ: Fry — Co(Km) given by Trpz = 7k
is an isomorphism into. The proof will be complete if we show that Tm{Fm) is dense
in Co(Kym). To this end put

) K™ = (7 + cumln) U (5197) U ©)
and observe that, by (1) and {5),
m—1 .
(6) Co(Km) = (@ cb) B Co{K™),
i=0

where ¢} = ¢.
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oo
Since F,, is the completion of ¢y = (@ c'o) for the rorm ||, and since {} is
]

=0

w*-~closed in {* for all { > 0, we see from (2} that we may write

(7) Fp= ("é c'o) ® G,

=0

o0
where Gy, is the completion of (@ c") for the norm [|,,. Thus, by (6) and (7),
i=m o

it suffices to show that 71, (Gya) is dense in Co(K™). For a given v € Co{K™) define
the sequence z = {zi) by

Imn =P (fr’;n + Es(n)g;?n)) - (Ea(n)g;?n))

and
2in =0 for { # m.

Clearly z € ¢ and (:c, fr+ €s(n)Fa(n) ) = {z, f*} = Zpp for all n > 0. Further, for
each k > 0 let the sequence y* = (y5;) € e be given by

=00 #mAD), thins=sp() (<K, vha=0U>H),
so that for s(n) = 5
= sa'yﬁaﬂ,}‘ = { g (€197)
Then z+ y* € (B @ ¢! C Gy for all k > 0 and it is easy to check that
To (2 +9%) = (244", = (B4 8 e 00
as k — 0o, We conclude that Ty, (G ) is dense in Co(K ™), which completes the proof.

Remark 1.2. Recall the natural inclusions ip,: Frnyy — Fin; then F = proj,, (Fin, fm)
However, Theorem 1.1 does not say that F is the projective limit of the sequence

{Co (Km)) with respect to inclusion maps, since there are not such maps between
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the spaces Cy (Km). In order to obtain such a representation, we proceed as follows.
Recalling {1), write Km4y as

Kmas = {(/2) U RO U (s597+) U )

and introduce the linearization maps jm: Co(Km+1) — Cy(K ) defined as follows: if
© € Co(Km1) then, for all n >0,

jmzp(f,',")=rp(f,';) fori=0,1,...,m-1,
(8) Jm®P (f.’{‘ + ss(n)g‘:’(n)) = p (i) + sty (91’(,1)) ,
jmp (£i67") = &5 (67 -
Then we have
Proposition 1.3, F = projy, {Co (Km) s Jm) -
Proof. Considering the diagram
Frag1 Ay Fn
To1 | } T
Co(Km+1) o Co(Km)

we have, for 2 € Fuy1,

Jme1Tme1Z = Im (IIK!’\-H) =Tl T Tinim?,
since z is linear on K. Therefore, the family (T} defines an isomorphism T of F
onto proj,, (Co (Km) , im) -
Next we observe the following
Proposition 1.4, Cp (Km) = co for all m 2 0.
Proof. Recalling (6) we see that it suffices to show the isomorphism Cy (K™) = co.
But K™ is homeomorphic to

K= (fﬁ +€s(n)93(n)) U (e565) U{0)

and hence it is enough to prove that Cy (Ko) = co. Define a map Sp: Co {Ko) — co®eo
as follows:
SO‘P = (I) y)l pe CO (KO) '
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where

z= (so (f3 + Es(n)gﬁ(n)) —p (Ea(n)gg(n))) - y=(p{ensh).

It is immediate to see that Sy is a linear, continuous and one—to—one. Moreover, if

(2,¥) € ¢o ® cq define p on Ky by

P (fg ‘1‘53{:1)92(::)) = Zn + Yu(n), ﬂo(s.?'g?) =¥ p(0) =0

Then clearly € Cy {Kp) and Sog = (z,y), so that Sy is also onto.

Remark 1.5. Another representation of C, (Ko) may be obtained as follows. For all

J20put N; = {n>0:3(n) =j} and let «N; be the one-point compactification of

N;. Then it is immediate to check that Cy (Ko) = (@,. O(aN,—}) = (@j c)
€0

€o '
We conclude this section with the following

Proposition 1.6, If X is an infinste-dimensional Banach subspace of F, then X D cp.
If X is complemented in F, then X = ¢.

Proof. If X is Banach, then it is a subspace of some F,, and the first assertion follows
from Theorem 1.1 and Proposition 1.4. For the second assertion, let P: #'—s X be a
continuous projection and let m be such that [|Pzf| < ¢z}, for all z € F (||| is the
vorm of X). Then the latter inequality holds also for all z € Fy, by contimnity, so that
X is complemented in Fr,. Now it suffices to apply again Theorem 1.1 and Proposition
1.4.

2. Fis a space of continuous functions.

. m
Now we consider the compact sets K, defined in (1} and we put Hy, = U K, so that
=0
K= U Hy, = U Ky 1 is not difficult to see that K is compact for the w* —topology
m m
induced by /*, which is not good for our purposes, of course. Therefore, we are going
to put on K a stronger topology. Precisely, each set H,, is compact in the induced
w*—lopology and we take on K the finest topology 7 making each canonical inclu-

sion Hy — K continuous, Le. the inductive topology with respect to the family
(Hm, Hp — K} (cf. [1]). It is known, but also not difficult to verify directly, that, for
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a space (K, 7) which is the inductive limit of an increasing sequence {Hm) of compact

subsets, we have:

(i} each Hm is compact in (K, 7) and each compact subset of (K,7) is contained in

some Hy,;
(i) (K,7) is normal, hence completely regular;

(iit) (K,7) is a k—space, i.e, a subset A C K is open if and only if A intersects every

compact subset of (K, 7) in a relatively open set;

_{iv) afunction f on K is 7—continuous if and only if [ is continuous on each compact
subset of (K, 7);

(v) the space C (K, r) is complete for the topology of compact convergence.

Remark 2.1. It is clear that, because of {i), it is enough to test {iii)+ (v) against all
compact sets Hy,. In particular, it follows that ¢ (K, 7) is a quojection.

In our particular case, the space (K, 7) has, of course, properties (i} + (v) above, but
it is not locally compact, as it can be verified directly (the point 0 does not have a

compact neighbourhood). However, we still have
Prof)osition 2.2. C(K,7) = (c)N.

Proof. C(K,7) is the projective limit of the spaces C{Hm) with respect to the
restriction maps Rm: C (Hms1) — C (Hm).

We have Hmt1 ~ Hm = (/™) U (") U (;47), hence, if we put L = (Hm1 ~ Hp)U
(0), then ker Ry, can be identified with Cy (L), .. the space of continuous functions
on the compact set Ly, vanishing at 0. Since Ly, is homeomorphic to X for all m,
it follows from Proposition 1.4 that ker R, = cg, hence ker R is complemented in
G (K, 7} for all m and the result follows.

We shall now define the subspace C, o (K, 7) of C (K, 7) of all affine functions vanishing
at 0 € K. Precisely, ¢ € Ca 0 (K,7) if and only if the following holds:
peC(K,1) and {0) =0,

) if z,y,2+y €K, then p(z+y) = p(z) +p(y),
tzand A\t € K for some scalar ), then p(Az) = dp(2).
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Then we are in the position to state and prove our main result.
Theorem 2.3, F =~ C, (K, 7).

Proof. By Proposition 1.3 we may identify ' with a space of functions ¢ on K
such that, if v, = ¢ Ko then jnms1 = ©m. Since each ¢, is continuous on
Km, p € G(K,1) by (iv). Moreover, p satisfies (9) by (8), hence p € Cap (K, 7).
Conversely, if ¢ € G 9 (K, 7) then o, = gol K. € Co{Km) a0d by (9) jm®ms1 = ©m
for all m > 0. Thus ¢ € F' by Proposition 1.3.

Corollary 2.4. The strong dual F' i3 complemented in C (K, 1)".
Proof. By Theorem 4 of [5] F ~ @1‘. But F’ is also a quotient of the strict {LB)-
i}

space C (K, 1), hence F' is complemented in C (K, 7)' by [3, Corollary 3.4).
Remark 2.5, Putforallm >0
Im = Jmjepoco(kmtr)s

then by (8) we have

Jn(z 4+ y) = Puz+ Jm(c+y) for z € @ilq ch, ¥ € Co(K™H1),
mo m—i
where Fry is the canonical projection of () ¢} onto @ ch.
=0 =0

Now, defining the maps Sp,: Co(K™) — ¢* as in Proposition 1.4 and considering the

diagram
gy Prt+¥ ™ i
é wtfn ca
@ @
1m+s,;}l_ll 11,.._:+s;:
m m—1 .
EB cp | ®C (K™Y} — @ cy | @ Co(K™)
=0 Im =0
where Iy, is the identity map of @, ¢} and T, is given by

Smlz +y) =Sy (2 + S5 ke0) for z € Pz, ch, y € Y,
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we have foralm >0
jm (Im + S;_l*_l) = (Im—! + S;l) (Pm +:gm) .

Therefore, the family (fm-1 + S;‘) defines an isomorphism S of ¥ onto
projyn {[17y ¢by P -+ Sm}. This shows that our prequojection F can be directly con-
structed by the method employed in {4, Theorem 1].
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