Bulletin de la Société Royale des Sciences de Liège, Vol. 69, 1, 2000, pp. 49-53

ON SEPARATELY CONTINUOUS MAPPINGS

DINAMÉRICO P. POMBO JR.

Instituto de Matemática Universidade Federal Fluminense Rua Mário Santos Braga, s/nº 24020-140 Niterói, RJ Brasil

Abstract A criterion for the equicontinuity of certain separately equicontinuous sets of mappings is obtained, and a few consequences of it are presented

In this note we use a Baire category argument to prove that certain separately equicontinuous sets of mappings are equicontinuous. As a consequence, we deduce the equicontinuity of certain sets of bilinear mappings and we show that Banach's closed graph theorem for group homomorphisms remains valid for Z-bilinear mappings.

Let X, Y and Z be three topological spaces. Let us remember that: (a) a set \mathfrak{X} of mappings from $X \times Y$ into Z is *separately equicontinuous* if, for each $x \in X$ and for each $y \in Y$, the sets

 $\{u \in Y \mapsto f(x, u) \in Z; f \in \mathfrak{X}\}$ and $\{v \in X \mapsto f(v, y) \in Z; f \in \mathfrak{X}\}$

are equicontinuous; (b) X is first countable [4] if each point of X has a countable fundamental system of neighborhoods.

¹⁹⁹¹ Mathematics Subject Classification 54E52, 54H11

Key words and phrases. Separately equicontinuous sets, equicontinuous sets, bilinear mappings, closed graph theorem.

Let us also remember that a topological group is an *SIN-group* [6] if its identity element has a fundamental system of neighborhoods consisting of conjugation-invariant sets.

Theorem 1 Let X be a first countable topological space, and let F and G be two topological groups such that F is a Baire space and G is an SIN-group. If \mathfrak{X} is a separately equicontinuous set of mappings from $X \times F$ into G such that the mapping $y \in F \mapsto f(x, y) \in G$ is a group homomorphism for each $x \in X$ and for each $f \in \mathfrak{X}$, then \mathfrak{X} is equicontinuous.

Proof. Let e_F (resp. e_G) be the identity element of F (resp. G), and let $(x_0, y_0) \in X \times F$ be arbitrary. Let $(U_n)_{n \in \mathbb{N}}$ be a countable fundamental system of neighborhoods of x_0 in X and let W be an arbitrary neighborhood of e_G in G. Take a conjugation-invariant, symmetric and closed neighborhood W_1 of e_G in G such that $(W_1)^4 \subset W$. We have

$$f(x, yy_0) (f(x_0, y_0))^{-1} = f(x, y) (f(x_0, y))^{-1} f(x_0, y) f(x, y_0) (f(x_0, y_0))^{-1}$$

for all $(x, y) \in X \times F$ and for all $f \in \mathfrak{X}$.

For each $n \in \mathbb{N}$, put

$$F_n = \{y \in F; f(x,y)(f(x_0,y))^{-1} \in W_1 \text{ for all } x \in U_n \text{ and for all } f \in \mathfrak{X}\}$$
$$= \bigcap_{(x,f)\in U_n\times\mathfrak{X}} \{y \in F; f(x,y)(f(x_0,y))^{-1} \in W_1\}.$$

 F_n is symmetric because W_1 is conjugation-invariant and symmetric. Moreover, F_n is closed. In fact, for each $x \in X$ and for each $f \in \mathfrak{X}$, the mapping $g_{x,f}: y \in F \mapsto f(x,y)(f(x_0,y))^{-1} \in G$ is continuous. Since

$$F_n = \bigcap_{(x,f)\in U_n\times\mathfrak{X}} g_{x,f}^{-1}(W_1)$$

and since W_1 is closed in G, then F_n is closed in F.

We claim that $F = \bigcup_{n \in \mathbb{N}} F_n$. Indeed, let $y \in F$ be given. By the equicontinuity

of the set

$$\{x \in X \mapsto f(x, y) \in G; f \in \mathfrak{X}\}$$

at x_0 , there exists a neighborhood U of x_0 in X such that the relations $x \in U$, $f \in \mathfrak{X}$ imply $f(x,y)(f(x_0,y))^{-1} \in W_1$. If m is chosen in such a way that $U_m \subset U$ we conclude that $y \in F_m$, proving our claim. Since F is a Baire space, there exists an integer ℓ such that $\operatorname{int}(F_\ell) \neq \phi$, which implies that $V = F_\ell F_\ell$ is a neighborhood of e_F in F. If $x \in U_\ell$, $y = y_1 y_2 \in V$ $(y_1, y_2 \in F_\ell)$ and $f \in \mathfrak{X}$, then

$$f(x,y)(f(x_0,y))^{-1} = f(x,y_1)f(x,y_2)(f(x_0,y_2))^{-1}(f(x_0,y_1))^{-1} \in W_1W_1$$

because W_1 is conjugation-invariant. Finally, by the equicontinuity of the set

$$\{x \in X \mapsto f(x, y_0) \in G; f \in \mathfrak{X}\}$$

at x_0 and the equicontinuity of the set of group homomorphisms

$$\{y\in F\mapsto f(x_0,y)\in G;\,f\in\mathfrak{X}\}$$

at e_F , there exist a neighborhood U^* of x_0 in X and a neighborhood V^* of e_F in F such that $U^* \subset U_\ell$ and $V^* \subset V$, and such that $f(x, y_0)(f(x_0, y_0))^{-1} \in W_1$ and $f(x_0, y) \in W_1$ for all $x \in U^*$, $y \in V^*$ and $f \in \mathfrak{X}$. Consequently,

$$f(x, yy_0)(f(x_0, y_0))^{-1} \in (W_1)^4 \subset W_1$$

for all $x \in U^*$, $y \in V^*$ and $f \in \mathfrak{X}$. This proves that \mathfrak{X} is equicontinuous at (x_0, y_0) , thereby concluding the proof of the theorem.

Remark 2. Theorem 1 is already known in the particular case where X is metrizable,

F and G are topological vector spaces and F is a Baire space; see Exercise 11, TVS III 42 of [3].

We have the following important consequence of Theorem 1, which extends Theorem 11.15 of [9] (and hence its consequences mentioned on p.487 of [9]), as well as Corollary 4, p.47 of [1].

Corollary 3. Let E, F and G be three commutative topological groups such that E is semimetrizable and F is a Baire space. Then every separately equicontinuous set of \mathbb{Z} -bilinear mappings from $E \times F$ into G is equicontinuous.

In [8] we have investigated equicontinuity and sequential equicontinuity for sets of separately continuous bilinear mappings between topological modules. A result in this direction, which also follows from Proposition 2.4 and Corollary 3.3 of [7], reads as follows:

Corollary 4. Let A be a commutative topological ring with a non-zero identity element such that there exists a countable subset C of the multiplicative group of all invertible elements of A such that $0 \in \overline{C}$. Let E, F and G be unitary topological A-modules such that E and F are complete and metrizable. If \mathfrak{X} is a set of separately continuous A-bilinear mappings from $E \times F$ into G such that $\mathfrak{X}(x,y) = \{f(x,y); f \in \mathfrak{X}\}$ is bounded in G for each $(x,y) \in E \times F$, then \mathfrak{X} is equicontinuous.

Proof. By Proposition 2.4 and Theorem 3.1 of [7], \mathfrak{X} is separately equicontinuous. Therefore \mathfrak{X} is equicontinuous by Corollary 3.

We close our note with a closed graph theorem for Z-bilinear mappings.

Corollary 5. Let E, F and G be three commutative topological groups which are complete, metrizable and separable. If f is a \mathbb{Z} -bilinear mapping from $E \times F$ into G

whose graph is closed, then f is continuous.

Proof. Let $x \in E$. Arguing as in the proof of the theorem proved in [5], we conclude that the graph of the group homomorphism $u \in F \mapsto f(x, u) \in G$ is closed. By Theorem 10 of [2], this mapping is continuous. Similarly, the group homomorphism $v \in E \mapsto f(v, y) \in G$ is continuous for each $y \in F$. Therefore f is separately continuous. By Corollary 3, f is continuous, as was to be shown.

Acknowledgement. The author is grateful to the referee for his valuable report.

References

- P. Antosic and C. Swartz, Matrix Methods in Analysis, Lecture Notes in Mathematics 1113, Springer-Verlag (1985).
- [2] S. Banach, Uber metrischen Gruppen, Studia Math. 3 (1931), 101–113.
- [3] N. Bourbaki, Topological Vector Spaces, Springer-Verlag (1987).
- [4] J. Dugundji, Topology, Allyn and Bacon (1966).
- [5] C.S. Fernandez, The closed graph theorem for multilinear mappings, Internat. J. Math. & Math. Sci. 19 (1996), 407-408.
- [6] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. reine angew. Math. 246 (1971), 1–40.
- [7] D.P. Pombo Jr., On barrelled topological modules, Internat. J. Math. & Math. Sci. 19 (1996), 45-52.
- [8] D.P. Pombo Jr., Bilinear mappings on topological modules, Bull. Belgian Math. Soc. 6 (1999), 99-109.
- [9] S. Warner, Topological Fields, Notas de Matemática 126, North-Holland (1989).