WAVELETS IN SOBOLEV SPACES
Boigelot Christine

Abstact. In the first part, we present two constructions of biorthogonal bases
of wavelets in Sobolev spaces H™{R) of integer order. On one hand, we give a
Sobolev version of the L? biorthogonal wavelets bases construction of A. Cohen, L
Daubechies, J.C. Feauveau ([15]), and on the other hand, a Sobolev version of the L?
classical construction of C.K. Chui and J.Z. Wang ([13]).

In the second part, we show how hierarchical periodic spline spaces can be used to
approximate solutions for a large class of pseudodifferential equations on boundaries
of smooth open subsets of R?>. We give a simple proof of the characterization of
the coercivity condition, which leads to relations on the meshes and order of the
sphnes easy to handle. Then we endow the periodic Sobolev space Hj_,,(R) with a
norm equivalent to the natural one which makes the Galerkin system of Céa lemma
equivalent to a collocation system for high resolution levels. Test and trial spline bases
are explicitly given. We investigate the asymptotic stability of such systems and we
present some numerical experiments.
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Introduction

As a general introduction to wavelets, let us quote I. Daubechies ([24]): “There
are several reasons for their success. On one hand, the concept of wavelets can be
viewed as a synthesis of ideas which originated during the last twenty or thirty
years in engineering (subband coding), physics (coherent states, remormalization
group), and pure mathematics (study of Calderén-Zygmund operators) [...] On the
other hand, wavelets are a fairly simple mathematical tool with a great variety of
possible applications (signal analysis, numerical analysis, ... )”. Wavelets represent
an alternative to Fourier analysis; their typical property of localization and their
hierarchical construction are the main reasons why they constitute a new way and
tool to look at many problems.

Typically, an orthonormal basis of wavelets is an orthonormal basis of L2?(R)
generated by shifts and dilates of a single function, i.e.

V() =2P9(Dz—k), jkel

In some applications, orthogonality can be felt as a too rigid requirement. Indeed,
under a signal analysis point of view, orthogonality means that the signal has to be
analyzed and reconstructed with the same filter. Moreover, exact reconstruction and
symmetry are incompatible. In order to get more flexibility on the filters, orthonormal
bases can be relaxed and replaced by Riesz bases and dual Riesz bases. Symmetry
is then possible. Another important utility of Riesz bages is that they characterize
many functional spaces by means of wavelets coefficients (see [24], [36]).

It is now clearly established that Sobolev spaces are the natural framework in
which partial differential equations are well posed.. This is why we are interested in
this work to investigate bases of wavelets in those functional spaces.

Now let us introduce more specifically the contents of our work.

In her paper [23], I. Daubechies constructs orthogonal bases of wavelets in L2(R)
with compact support and arbitrary high regularity. In [9], [10], F. Bastin and P.
Laubin generalize these results to Sobolev spaces. They give a general procedure to
construct orthogonal wavelets in these spaces and show how it is possible to obtain
orthogonal compactly supported wavelets of arbitrary high regularity in Sobolev
spaces of integer order H™(R). In their construction, the scaling function and the
wavelets depend on the level j. The paper [37] of C. Micchelli contains general results
on filters with applications to orthogonal wavelets in Sobolev spaces too.
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Based on the papers [9] and [10], the first chapter of this work presents two
constructions of biorthogonal bases of wavelets in H™(R) (m € N).

On one hand, we give a Sobolev version of the L? biorthogonal wavelets
bases construction of A. Cohen, I Daubechies, J.C. Feauveau (5)). In
[15], the authors construct wavelets ¥,¢ with compact support, arbitrary
high regularity and symmetry axis; in their construction, the families
{Wix(z) = 2/20(Pz —k): jkeZ} and {u(x) = 2/°6(2z —k): j k EL} are
frames. They give a necessary and sufficient condition to obtain dual Riesz
bases. Under fairly general conditions on filters, we construct here frames
{y(2) = 2200 (Vg — k) : J,k € LY, {Bya(z) = 210Dz —k): k€ T} |
H™R). We show how it is possible to choose the filters to obtain regular
real biorthogonal wavelets ¥, %) with compact support independent of j and
symmetry axis, These results are here carried out using procedures and filters of
the papers [9] and [10] In our construction, the functions v\)(z/2) are exponential

splines. . ;
On the other hand, we give a Sobolev version of the L? classical
construction of CK. Chui and JZ Wang (see [13]).  Remind that

in [13], the functions .¢(z/2), J(x/2) are - both spline functions, but only
one of them has a compact support. The families {¥;x: j,k€Z} and
{zﬁ,k J,k € Z} are Riesz bases of L?*R) fulfilling the biorthogonality condition
(Wik s 1/1,: w) = O kfé,, Moreover,- in - this case, the functions ;; and ¥
(resp. ¥;x and 1/1,/7,6:) corresponding to different lévels j and j' are orthogonal.
In H™(R), we give filters that generate families of biorthogonal wavelets
{Wsx(z) = V129D (g~ k) : j, k€ Z}, {Qulz) = 20/%1)(272 — k) : 5,k € Z} such
that ) (z/2), $(7)(x/2) are exponenmal splines, ¢ has a compact support_
independent of j and (zﬁ,k, Yy ) = (zﬁ,,k, w,/ w) = 0if 7 # 5

Notice that both of our constructlons presented in this first chapter can be
1nterp1eted as a procedure of exact reconstruction of signal. The differences come
from nature and orthogonahty of the constructed functions.

In order to apply these ideas to the resolution of partial differential equations
and in particular to solve boundary value problems, the second chapter is devoted to
the construction of wavelet Riesz bases in the Sobolev space Hj . (R) of 1-periodic
distributions, for every real number s.

For any strictly positive integer m and any ¢ € {1,...,m}, we focus on the
functions \Ilif;)] given by the 1-periodization process apply to the £-th antiderivative
W0 of the classical Chui-Wang wavelet 1,, which has the same support. The stability
of Chui-Wang wavelets in Sobolev spaces has been studied in [36] and [18].
use these results to give here a simple proof of the following stability result: if
3+{—m < s < m-+{—1%, the functions 1 and 2/¢~ s)\If(e .jENke{0, .,27-1}
foxm a Riesz basis of Hj_,,(R). For £ = m, the techmque used in the proof had to be
modified since the functions w(m) have no more vanishing moments. Some advantages
of this construction are that the basis functions are spline functions, they have a short
support and are quickly stabilized in the periodization process if £ is large; moreover,

160



for £ = m, we prove that those basis functions all vanish at the origin.

The second chapter ends with a study of the dual bases of the Riesz bases we have
constructed. We show that for convenient scalar product and order of Sobolev spaces,
the dual Riesz basis has also a multiscale frame. We give it explicitly.

Collocation methods using splines are a natural and widely used technique
for solving strongly elliptic pseudodifferential equations on closed curves (see [4],
[16], [46]). Spline functions are quite natural since they are easy to handle in
implementation. Collocation methods are preferred to the Galerkin ones because
evaluations at a finite number of points are usually less time consuming than
evaluations of scalar products. However, stability, asymptotic convergence, good
condition numbers and efficient compression are not so easy to obtain. For smooth
boundaries, the convergence of these methods has been proved by D.N. Arnold, J.
Saranen and W.L. Wendland ([3}, [4], [42]). Several recent papers use these methods
in a more general setting (see for example [25], {32], [34]). Numerical investigations
show that the numerical computations involved in the resolution of these collocation
equations can be ill-conditioned (see for example [30]). The multiscale and wavelets
techniques have naturally been applied to these questions since they provide good
Riesz bases, allow progressive computations and give good compression schemes (see
for example the papers [22], [18]).

In the third chapter, we show how hierarchical periodic spline spaces can be used to
approximate solutions for a large class of pseudodifferential equations on boundaries
of smooth open subsets of R%. This large class includes for example equations related
to the single and the double layer potential for solving the Dirichlet problem for the
Laplace operator. The main point is to check the coercivity condition of Céa lemma.
We give a simple proof of the characterization of this coercivity condition, which leads
to relations on the meshes and order of the splines easy to handle.

Then we endow the periodic Sobolev space Hj .. (R) with a norm equivalent
to the natural one which makes the Galerkin system of Céa lemma equivalent to a
collocation system for high resolution levels. A first example for the test or the tiial
bases is to choose one of the Riesz bases constructed in the second chapter. We
investigate the asymptotic stability of such systems. An analysis of the proofs of
the convergence theorems shows that the condition number of the stiffness matrices is
essentially determined by the Riesz bounds of the test and trial bases in some periodic
Sobolev spaces.

Finally in the fourth chapter we give some numerical computations of the condition
number and of the error. These examples are concerned with the simple and double
layer potentials for the Dirichlet problem for the Laplace operator. The first one
involves Sobolev spaces of half integer orders and the second one Sobolev space of
integer orders. The test and trial bases are chosen among the Riesz bases constructed
in the second chapter. We give in this last chapter some useful tools needed to perform
the numerical computations.
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Chapter 1

Construction of biorthogonal
wavelets bases in H™(R)

This first chapter is devoted to the construction of biorthogonal wavelets bases in
the Sobolev spaces H™(R) (m € Ny). Two constructions are presented. The first
one is a Sobolev version of the construction of Cohen, Daubechies and Feauveau (see
[15]). The second one generalizes the results of Chui and Wang (see [13]). Both of
these constructions are carried out using the tricks and techniques of the papers [9]
and [10] of F. Bastin and P. Laubin. Remind that in [9] and [10], the authors build
orthonormal wavelets in Sobolev spaces of integer order H™(R), that are compactly
supported and have a arbitrary high regularity. Their work is a Sobolev version of the
well known paper [23] of I. Daubechies. It consists in [9] and [10] of a more general
construction where the scaling function depends on the level j. Those wavelets can be
constructed by a multiresolution frame but, to obtain compactly supported wavelets,
it is more convenient to use a filter construction. To this end, F. Bastin and P. Laubin
choose a family of filters which are trigonometric polynomials (to obtain compactly
supported wavelets) constructed in such a way that they lead to the cancellation of
the singularities due to the Sobolev weight.

Before presenting our two constructions, let us remind some definitions and. basic
properties about Sobolev spaces.

1.1 Sobolev spaces

Definition 1.1 For every s € R, we define the Sobolev space of order s as follows
HR)={ue SR): (1+] P)iue *R)}

Endowed with the norm

sy = \/ 3 [+ ermond,

the space H*(R) is a Hilbert space. For s = m € N, we have the following description
H™R) = {f € L*(R) : D*f € L*(R), Vk € {0,...,m}}
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and the expression

£ llm = 4 ZIID’“fIILz(m

Proposition 1.2 If s € |0, +oo[, then ‘
HWR=%f€L%R%(1+LPﬁf6L%RH
and H™*(R) is the dual space of H*(R), i
H®) = {u € D' )30>03twwl<ﬂMMW»V¢eD®H

is an equivalent norm.

Let us also introduce the local Sobolev spaces.
Deﬁmtlon 1.3 For s'€R, we define the local Sobolev space Hf (R) by
Hloc ={ue D'(R): pue HR), V¢ € D(R)}.
Proposition 1 4 Ifse ]O +00[, then
oo(R) = {f € LL(R): pf € H'(R), Vo € DR)}.

The following pfoposition will be useful in the next chapter. It can be diréc,tly
obtained from Lemma 1.6. This last one is proved in [29].

Proposition 1.5 Let s be in |0, +oo[\Ng. If s =m+0c with m € N and ¢ €0, 1],
then a function f belongs.to H*(R) if and only if it belongs to H™(R) and is such

that the function )
ID’"f(x) D™ f(y)[?

‘x__y!1+2a

belongs to L*(R?). The norm

' |
y 0 Dmf(z) - D"f ()
|MW®=JZNWN%mf/M/d[fuymwwl

is then equivalent to || - ||g=ry on H*(R). »

Lemma 1.6 If s € 0, 1{, then for every f € H*(R), we have

—/Wﬂmwaq/m/d )~ f

1 Iezzf_ 1’2
Z“mw/lwm o Vecke

with
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1.2 Construction of biorthogonal wavelets bases
in H™(R) of Cohen, Daubechies and Feauveau

type

Let m be a strictly positive integer.

1.2.1 Riesz basis and Riesz conditions

Let (H,{-, -}) be a Hilbert space and || - || the corresponding norm.

Definition 1.7 A sequence of functions (fe)een, Is called a Riesz basis of H if the
following two conditions are satisflied

o H=)fy:£eNo(;
e there are constants A, B satisfying 0 < A < B < 400 such that

o i< [l [

for every sequence (¢g)zen -

The second condition above is called the Riesz condition and the constants A, B the
Riesz bounds.

Proposition 1.8 If (fs)en, Is a Riesz basis of H, the linear map

T:H—H f=(f, ffe

£eNg

is an isomorphism, the sequence (T~ f;)en, is a Riesz basis for H and it satisfies

(T e, fo) =bey F=D A, T o= D {f, )T e

£eNg £eNg
Moreover, if a sequence (g¢)een, Of elements of H is such that (fi, gi) = ¢x, then
ge=T™1f, for every £ € No. &

Definition 1.9 If (fi)en, is a Riesz basis of H, the sequence (T fo)wen, is called
the dual of the basis f; (£ € Ny) (see [12]).

In what follows, we deal with sequences satisfying weaker conditions. This is the
reason why we introduce the following definition.

Definition 1.10 The sequence (fe)een, satisfies the pre-Riesz condition if there is

B > 0 such that
NZCU?“S B [ ef?
(@ ]

for every sequence (cg)een,. We say that B is a bound for the family f, (£ € Ny).
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In this case, for every f € H, the series Y ey, [(f, fo)|? converges and

STUFL 2 < BIfIL
£eNg
Indeed, we have
SIFL 5 =45 YU A < U ISS fatd < BISL SIS Ao
() 0 @ T

Moreover, if (ge)ecn, is another sequence satisfying the pre-Riesz condition with bound
B’, the operator

P:H-H fe > (f. o

£eNg

is well defined, linear, continuous and satisfies

1Pl = sup (Pf,g)l= sup |> (fe,9g)f, o0l
ol dFll<1 L IAIST e
< If s ge)l (g, fo)l?
lohidist g\;o eeZNo
< BB.

If in addition the families f, (¢ € Np) and ge ~(£ € Ny) satisfy the Riesz condition,

they are Riesz bases for V = )f, : £ € No(™, V = )gp : £ & Ng{(" respectively; and
if {fe, gr) = Ogi for every £,k € Ny, the map P is a projection onto V'; the maps P
and I — P are in fact the projections associated to the direct sum H =V & Vi In
particular, if go € V for every £, then it is the dual of the family f, (¢ € NO) and P
is the orthogonal projection onto V.

1.2.2 Multiresolution analysis point of view in Sobolev spaces

Following ([12]), we give the definition below.

Definition 1.11 We call biorthogonal wavelets in H ™(R) two families of functions
Yik (J,k € Z) and ;i (j, k € Z) such that

o 1 i(x) = 2/%p)(27x — k) (j, k € Z) is a Riesz basis of H™(R);
o 9 p(x) := 2/2)(20g — k) (j, k € Z) is a Riesz basis of H™(R);
o (Yik, Yiw)rm@) = 050 V5,7 kK € Z

We say that the functions ), z/jv(f) are dual to each other. We recall that the index
7 means that we work with one mother wavelet for each scale; this comes from the
form of the norm of the Sobolev space To simplify the notations, we will write 1/1(7)

(resp. d) )mstead of 1/)(7) (resp. ¢(7 ).
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To obtain such bases, we want to adapt the construction coming from the general
theory of wavelets. We first give the following result. It is a consequence of the
pre-Riesz (resp. Riesz) condition; it is the generalization of what happens in the
orthonormal case (see [35],[9]).

Proposition 1.12 Let v € H™(R) and j € Z. The following conditions are
equivalent

1. The family ¢;i(z) = 2//%p(2/z — k) (k € Z) satisfies the pre-Riesz condition
with bound B; (resp. the Riesz condition with bounds A;, B;).

2. We have

(resp. A7 < ) (1+2%(¢ + 2km)2)™B(¢ + 2km)* < B
kEZ

PRrROOF. See [6] n

- In case we have a good behavior for the different scales, i.e. good behavior in
terms of j, we get the following results.

Proposition 1.13 Forevery j € Z, let ") and 3) be elements of H™(R). Assume
that the family p;x(z) = 22 (D2 — k) (k € Z) (resp. Fjp(x) = 212502z — k)

(k € Z)) satisfy the pre-Riesz condition with bound B (resp. B) mdependent of j.
We denote by P; the map

Py H™R) - H™R) f — Y (f, Zx)an@meic
keZ

a) If
lim F029 5727 = (1+€)™ ae

then, for every f,g € H™(R),

jl{floo(Py‘ﬁ 9 amm) = {f, 9 am®):-
b) If there are A,a > 0 such that

/R 1+1en*3” P de < A vi<o,

then, for every f € H™(R),

i 155 flam@my = 0.

PROOF. See [6]. 1
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Corollary 1.14 Under the hypothesis of the previous proposition, we have

f=> (Pu1—P)(f) weakly

jE€L

PrOOF. It suffices to write Py = 3.7-2,_ (Pjs1 — P;) + P_y for all J €N,
and to apply the previous result. a

For every j € Z, we define V; (resp. ‘77) as the closed linear hull of the sequence
ik (k € Z) (xesp. @i (k € Z)). In the context of wavelets, we will have V; C Vj.,
and ‘7, - ‘77‘+1 for every j € Z. In the best situation, for every j € Z, the families
vijx (k € Z) and @i (k € Z) are Riesz bases for V; and V; respectively and are
such that (@;x, $jx) = Osw. Hence the maps Py, — F; are projections onto
W; =V N 177% and we get good candidates for biorthogonal wavelets constructing
Riesz bases for W; (j € Z).

In the general situation, it may happen that the family ¢, (k € Z) or @, (k € Z)
is not a Riesz basis. We have weaker assumptions on them, coming from information
on filters. This was already the case in [15]; here we present a generalization of these
results : we work in Sobolev spaces and have in mind to use the filters introduced in

[9] to get compact support.

1.2.3 General result
Here follows a Sobolev version of Theorem 3.8 of ([15]). For every j € Z, let m(()j )(5)

and 7" (€) be trigonometric polynomials such that
mg) ()6 () +mg (€ + )i (€ +7) =1 (L1)
Assume also that there is C > 0 such that

supsup [m§(€)] < €, supsup [ (€)] < C (1.2)
JELZ (€R JEZ E€R

Let also ), 31 be elements of H™(R) such that
- the following scaling relations hold for every j :

=(5) ~(i+1)

D 26) = myT(E)FIV(E), & (26) = TP (€

- the Fourier transforms satisfy

G R L
37 [ = T+ 2k (14 i

for some £, A > 0;
) —=(j e~ ) ;
limyyeo 30 (2763 (277€) = (1 +€2)™™
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. =(7)
We define ¥) and ¢  as follows

P0(2%) = —emU (e +mPU(E) = mI T ©ORI(E)

3700 = —eEmi e+ mFT ) = O3 )
and )

i) =259 (2z — k), diile) = 92z~ k), jkeZ

Remark 1.15 For a fixed index j and in case we deal with trigonometric
polynomials, the condition of exact reconstruction

{%‘“(g) m@ (&) + () mP(g) =1
o (€) m§) (& + 1) + P (€) mP (€ + )

I
=

is equivalent to

mP (€ ?(€) +md (¢ + )i (€ +7) = 1 -
3c € C\{0}, k € 2Z + 1 : m{(€) = T 1eimig (€ + ), i (€) = ce™ém) (¢ + 7).

See for example [15].

First, we check that the hypothesis of Proposition 1.13 are satisfied. The additional
ones in a) and b) are clearly satisfied in view of the assumptions, as well as the uniform
boundedness of the Riesz bounds as it is shown below.

Proposition 1.16 For every j € Z, the four families {p;r : k € Z}, {g;x : k € Z},
{ix: ke Z}, {1/1], k € Z} satisfy the pre-Riesz condition. Moreover, the bounds
are independent of j.

PROOF. See [6]. 1

For every j € Z, we define then the linear and continuous operators

P;: HM(R) - H™(R) f+ kz;f, Bik) e @) ik

P;: H™(R) —» H™(R) f+ g;f, O3 1 R B
and

Q;: H"R)—» H™(R) [~ ;U, bk @)k

Qi : Hm(R) e Hm(R) f i Z(fﬂ ¢11k>H'"<R),(‘Z7'»k”

keZ
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Corollary 1.17 For every j € Z, we have
Piu—P=Q; e Pui-PF=0Q;
Proor. First of all, let us introduce some useful notations. For every integer j,

G) () ‘ ) ) i )
we denote by %7—]2— (resp. %7]5—) the coefficients of the trigonometric polynomial mgj)

(resp. ot ), i.e.

m{ (¢ Z BDe=mE, () = % 3 R@emint.

(nGZ) (neZ)
The coefficients g(7) and gm j,m € Z, are defined by
a9 = (-1 h0 . G = (-1 A,
So, let j € Z and f; € H™(R). One has merely to prove that we have

ST B @ (ks Fodamm + I (Fr Bikd @y (Bin s fo)amew)

kez kez
= {f1) Biar)um@) (Pitrh > fo)rmem)
kez

for any fo € H™(R) Let fo € H™(R). We get

Z((fi s Bik)rm @y (Pik s Fodrmmy + (F1s Bie) mm @y Wik fz)Hm’(R))

keZ

- Z Z Z (h(]ﬂ) h(7+1) + §(Y+1) (7+1))<f1, Pi+1, 2k+n>H'"(R)<<P7+1 2+ > f2) Hm(R)

kEZ (n€Z) (¢€Z)

1 1 1 +1
= Z Z fus Gisin)am@ (Pitre, fo)umm Z(hg-——;k) hg]-;k) 553313 957 2k))
neZ LeZ keZ

=> (i, @H.n)nm(m)(@iﬂ,n» f2) am(w)-
nez

'
Proposition 1.18 For every f,g € H™(R), we have
Jm (Bif s ghumwy = {f, Qamwyy Lim | P-; ()l ) = 03
Jim (Bif . glumey = {f 9ammy, Hm IIP—f(f)HHm(R) =0.
ProOF. It is a consequence of Propositions 1.13 and 1.16. 8

Corollary 1.19 For every f € H™(R), we have, in the weak sense,

J J

f=lm D 1/)y,k)Hm(R)1/17k = lim 3OS i Pk

j=—J k€Z ]——J keZ
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Proor. This is obtained from Pj+1 — Pj = Qj and f = ZjGZ(Pj+1 - P])(f)
weakly (and from the similar formulae with the “~” marks).

Proposition 1.22 states that under an assumption on the filters, the families
{$jx : J.k € Z} and {thj : Jj,k € Z} are frames for H™(R). It uses some
techniques of the first part of Lemma 3.4, p.501, of [15] in the context of Sobolev
spaces.

Let us first recall the definition of a frame of a Hilbert space (H, | - ||) as well as
the relationship between a frame and a Riesz basis. For more information, we refer
to [12].

Definition 1.20 A sequence of functions (fe)een, of H is called a frame of (H,||.|})
if there are A, B > 0 (these numbers are called frame bounds) such that

A|fIP <YK fOP < BASIP

£=1

forevery f € H.

A Riesz basis is always a frame, with the same bounds. The converse holds in case
the f,, £ € Ny, are £2-linearly independent; more precisely. we have the following
proposition.

Proposition 1.21 T.fa.e.
a) The sequence (fo)sen, is a Riesz basis for (H, ||.||).

b) The sequence (fi)een, is & frame for (H,|.{|) and satisfies the following property
+00
((CZ)IZGNO € ¢* and Z cfe=0in H) = (Cg =0, Ve No) .
=1

Proposition 1.22 Assume there is E > 0 such that
sup [ (€ + )| < Elé], sup|e® (€ +m)| < ElEl
j€EZ JEZ

Then there are ci,co > 0 such that

iz Lopez U s Vi) amm|?
2 - < j€ € rJ
etllfllimm) < { > ez 2okez S Yk Em @) |

for every f € H™(R).

PROOF. See [6]. 1

< Cz”f”%zm(m)

Corollary 1.23 In Corollary 1.19, the convergence holds in H™(R). 1
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1.2.4 Construction of particular filters

Our aim is to construct real biorthogonal wavelets in the Sobolev space H™(R) with
compact support, regularity and symmetry axis. A natural way to get them (see [15],
[9], [10], [11] and the previous general result) is to get spec1a1 families of filters which

are taken to be 2w —periodic trigonometric polynomials my 9) g ® (j € Z) with real
coefficients such that

mP(©) M (E) + mPE+m T (E+m) =1, VEER VieZ  (13)

These functions are called filters. The scaling functions ¢ and 3) are then defined
from the filters as follows

+0o0
g = M—Z;jgyn'nméﬁp)(z—pf)

=) —~ -
¢ = ——-—(wamﬂ o (27¢)

and the wavelets are defined by

~(j+1

€

To obtain compact support and regularity for the functions v, %), as well as a
symmetry axis, we use filters containing “good” factors (see (23], [9], [10], [11]). Here
we will present some convenient filters. To introduce them in an easy way, we will
first of all present some definitions and notations.

Let N and N be two natural numbers different from 0 such that theu sum N+ N
is an even number. Then, we define u by

_J 1 if Nisodd
H _{ 0 if Niseven

B0(2g) = —e ST+ mPHIE), D (26) = e mF € + )3

For every j € N, the function M is defined as follows
o4 cos(g—w-——)
cosh(2-7~ n

It will be used to cancel the s1ngu1a11ty 1nt10duced by the Sobolev norm. For every
j € Z, we also define the polynomial Ry 7 . by

m
) o z; ) 2.6
RN,ﬁ,m(g) = (22:7 - 1) Pﬁzﬂ,m (sm (2))

where (see [10]) ij})m(y) are the polynomials with real coefficients of degree at most
m+ M — 1 defined as the solution Q(’ ) =(y) of lowest degree of the equations

(2 =)™ = MR (@) + (2 = 1+ 9)™MQY (1~ y) = (2, - )™ (1)

MO(g) = e
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where z; := cosh?(27771).
Then, for m fixed in Ny, the chosen filters are the following

m () = (MO(E))™ cos™ (§)e4?

ﬁ’lgj),(N,I.V) € = (M(j) Hm cosﬁ(g)e_mg/z)Rj\i)ﬁ,m(g)

Now, let us recall some properties of the polynomials Pj(\}?m (j € Z, M €N,
m e No)

Proposition 1.24 For any j € Z, M € N, m € Ny, we have

" oM+m=1_ for 4 € [0,4]
1..0< Plf}?m(y) < { Q2AM+m=1) for %_%,ii

m

2 PI(V},)m(O) = (217__1> ;

zj
3. PPi(v) = 205" Chrancrt® + (20 — 1) T vF 27! Ty Ol ®l-
Proor.
1. We have (see [9], [10])
| PY,.(y) < 2" Puly) < 2
for y €[0, 3], and
PQ,(4) < Parym(y) < 2204+m=D
for y € [%, 1]. For N € Ny, we have denoted by Py the Daubechies polynomial

of order N, ie.
N-1

Pn(y) = Czlfl+k—1yk'
k=0

2. This is direct from (1.4).
3. See [9].
The proposition is proved. u

Using these properties and techniques of ([9]), we check that these filters and the
corresponding scaling functions satisfy the properties introduced in subsection 1.2.3
under some hypothesis on N and N.

For m fixed in Ny, we consider the functions @), PO (NN
PO defined from the filters m{™ and mP ™M by infinite product as in
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the beginning of this section. We obtain

' s om [ E+i277 . N
T (#47) (sing
14 2%¢2 sinh™(2-7-1) £

R i in™ ( §+i277 ~
$(7)’(N’N) €)= (——-_Z27+1 )mei(m—u)i s ( 2 ) sin(3) H pli+e) (Sm2(2—p—1€))
1+ 2%5¢2 cosh™(2-i-1) g e LE 97
and ‘
{p\(i),(N-ﬁ)(zs)

_ (=D)F*14#e ( (cosh(273%) — cos(€)) cosh(277) )’"sin”*ﬁ(%) PYD (et S)
B (1+227‘+2§2)m< 2 cosh(27-1) sinh(2-7~2) Gy T MEm 513

20),(.F)

¥ (%) _ ,

- (=1)NH1e2U+me—i foosh(2-71) — cos(€) \"sin (%) ﬁoP(7+1+p) (Sin2(2‘p‘1§))
(14 2%+2¢2)m cosh?(2-1-2) (5)¥ pop SEm ”

Theorem 1.25 a) For these filters, we have

cos’($) < MO < 1= MO(0), VEER, Vjez
hence
mP M) <1, | ®D @), < NHRHIM-2 e cR Vi Z
and there is E > 0 such that

{ supjez [m§ ™ (¢ + )|

SUPjez Sl Elg|.

b) For the corresponding scaling functions, there is ¢ > 0 such that

c

G < , VEeR,VieZ
ROl < TrEerargy RV
and, for every € > 0, there is ¢, > 0 such that
AN s ' " '
‘fa'(” “Mel < c , VEeR,VieZ

(L 227€2) (14 [g) T~ (T+NHom2sEg
¢) If the condition

n(s) 1

—(N+N+2m 0
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is satisfied, then the functions y™MN) (j € Z) and $™N (5 € Z) are real
biorthogonal regular wavelets with compact support independent of § and symmetry
axis. More precisely, they satisfy

GO g %) = (—1) TN (g 4 _;_)
GO (g y %) = (=1)NgDPR) (5 4 _;_)
PrROOF. a) We have

cosh?(2771) —sin®(¢/2) _ cosh(277) + cos(§)

(D e}2 = =
MO cosh?(2-7-1) cosh(27) + 1

hence
cos’(3) < IMOEF < 1

The conclusion follows then directly, recalling also the uniform estimation on the

polynomials Pé,i& m
2

b) In what concerns the first estimation, we have for j > 0

N\ m . N
IgM () < G (€ +27%)% sin(3)
T (142%™ sinh™ (27771 | &
< G
T2 (14 DY
and, for 7 <0,
. 2 e |V
[FD M) < 1 cosh(277) + 1) ? |sin(5)
= (1 +2%€2)m \ 2sinh*(2-771) £

< Cy
T O(L+29)T(1+ N

Let us consider now the second estimation. Let ¢ > 0. Similarly to ([10]), there is
¢ > 0 such that

H P(H‘P) (Sln 2 p—lé-))< ¢ 2—m1nf{0,7}(1 + |§l)€+(N+N+2m 2)—%&—
peNo
So, for 7 > 0, we have
(NN / 2\ (2 +27H)5 —Ntet(N+N-+2m—2) 28
BP0 < o (Timm) s+l 5
A
(1 +227§2)%(1 + Ig|)ﬁ—~(1§’+N+2m—2)%—€

<
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and, for § <0,

(7). (N,N)
B g )

; 2+ \™ [ cosh(277) — cos(€)\ 7 [sin(§) N N o) ln3
< c/2—m7 ( ) ( S ) 9 (1+ |£D€+(N+N+2m 2)2%(2%
= 14 22%ig2 2 cosh?(2-7-1) £
< ¢

T+ 221£2)% (1 + |§|)1‘7-(1\7+N+2m—2)?1;§z3.225_€ :

c) As in ([10]), the infinite product
H Pm)m (sin2(2""‘1§))
£,

PENp
defines an entire function with exponential growth independent of j. It follows then
from their definitions and from the Paley-Wiener theorem that ') and $9 have

¢ompact support independent of 5.
The symmetry axis comes from the fact that

PDWNI gy = (~1)FeifinmE) (¢)
2(),(N.N) ~(7)< )

(=8 = (-1"

From proposition 1.22, we already know that the families zb(N ) (j,k € Z) and

z[z% ) (j;k € Z) are frames for. H™(R). To get that they are Riesz bases, it suffices

then to prove that (w(N ) ; (f\;fv)) = 8;,7#0k. This last property is clearly satisfied.

Indeed, fix j € Z and for every J € Ny, define the function Fy) as follows

J

() 1= Xirm(277) [ mf ™ (272) e 09N (272¢)
p=1
Using (1.3), we get
/ e FP(€)de = 2mbro - (18)
S
As in ([9]), we can take the limit inside the integral because of the special choice of the

filters; hence we get (wgl,f) , <p7 © ) Hm(®) = O The result on orthogonahty between

the wavelets in obtained as in [15] (Lemma 3.7 on page 507). &

In HY(R), the figure “Fig 1” gives some pictures of (=11 and $H-DL1)

Remark 1.26 Let us consider the previous ¢) without the assumption on N,N.
Using Fatou’s theorem in (1.5), we obtain that the product

, ) ~(),(N;,N
(1 + 227“2)7"'(2(7)’(1\’) 6(7) ( )
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belongs to L*(R). Hence, taking the limit inside the integral, we get also
orthogonality; but of course it makes sense only if one considers the product of the
two functions (it is not necessarily the scalar product of two elements belonging to
H™(R)). Hence we still obtain

NN
(1/1(NN) Yji fo Namm) = 0, 7'5k K-

Fig 1

1.2.5 Discussion on the filters

The aim is to use the multiresolution analysis point of view and the infinite product
construction to obtain compactly supported regular biorthogonal wavelets. We are
then led (see [15],9],[11]) to take polynomial filters containing the “good” factors

Lieo £ cos(SHZ ’). If we decide to take the first filter m$ M) (€), we look for a

second one Mg g ) (€) containing also the “good” factors and another factor so
that (1.3) is satisfied. Our particular choice for symmetry comes from the discussion
in ([15]) and from the results of ([9]). Other filters could be found; but we don’t have
general results on them to achieve the construction of biorthogonal wavelets.

1.3 Construction of biorthogonal bases of wavelets
in H™(R) with orthogonality between levels

We want to show that starting from the same scaling functions ¢, it is possible
to comstruct biorthogonal wavelets ¢;x(z) = 2/29W)(27z — k) (j,k € Z) and
i = 212D (295 — k) (j,k € Z) in H™(R) such that %" (z/2) is an exponential
spline (i.e. a regular function on R which, on an interval of type [k, k + 1, k€ Z,
is equal to a function of type e“’”P(a:) P polynomlal a € R) with compact support
satisfying (¥jx, Yyx) = 0 if j # ', and w“) an exponential spline satisfying the
same condition. This is a Sobolev version of the construction of Chui and Wang in

([13]).

- We recall that take the filters

m00() = (MO(E)™ cos™ (e
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will yield the fathers

FHM(E) = g 2rg) =

(—i)meitm-me/2 sin™(£:27) (sin(§)
(1 +2%€%)™ sinh™(2-7-1) "

mﬂm

We define the function w{™™) as follows

W () =3 (1+ 27 (€ + 2km)*Y PP (€ + 2km) .
keZ

Proposition 1.27 For every j € Z, the function w®N) js a 2m-periodic
trigonometric polynomial; its degree is independent of j. Moreover, there are
constants A, B > 0 such that

A<wDM(Ey< B, YEER,VjELZ

PROOF. See [6]. &

Corollary 1.28 For every integer j, the functions go M) (keZ) sat;1sfy the Riesz
condition in H™(R). «

We denote by V( ) the closed linear hull of the functions <p7 k , (k € Z). We have
V(N) - V,&_Nl) for every j € Z.

Proposition 1.29 Let § € Z. In Hm(R), the dual basis of the Riesz basis
{Lp(N) k € Z} is given by {“{N) = 25FUNM(27 .. k) k € Z} C V(N) where
the functmn PN js defined by

() @(j),(N)
]

T Wy
Taking all j, those functions <p(7 k), jE Z satisfy the scaling relations

~(7) (V) (26) = ~(7+1) (N)(ﬁ) ~(7+1) (N)(ﬁ)

with

0 ¢ WD) () m§ N (¢)
(€ ) oG-, (26)

For j € Z, we define W](N) as the orthogonal complement in H™(R) of Vi(N) in

V7(+1) We seek for a basis of W( ) of type z/z(N)(x) = 22NN (ix — k), k € Z,
where ) has a compact support; independent of j. We are then led to the
following results. '
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Proposition 1.30 (Description of Wj(N)) a) We have
WY = {f € H™(R): I\ € LL(R), 7-per. :
F@1e) = ea(€) w4 1)y mFFH M (g 4 1)) ae ).
b) If
EDM () i= 3 (14 29 (€ + 2km))" [P € + 26em) P

keZ

where
J(ii(zv)(%j = i€ W(é +7) WU (g L) GUFDN(¢)
then we have |
ED:W)(2¢) = 0+ DN (£) U+ DM (¢ 4 1) DN (2¢).
PROOF. See [6]. 1
Proposition 1.31 a) For every j € Z, the functions 7/’;,11:) = 20/2pN)(27 . — k),

k € Z, form a Riesz basis for ,Wj(N) =v¥n V}N )+ and thé bounds are independent

=Vin
of the level j.
b) For every j, the function y\)W)(z) is an exponential spline with compact

support.

PROOF. See [6]. 1

From this result we obtain directly the following one.
Theorem 1.32 The functions w;lz) (4, k € Z) are a Riesz basis for H™(R).

PROOF. See [6]. 1

Moreover, the Riesz basis wj(.f,\:) (j, k € Z) and its dual basis have an interpretation
in terms of signal analysis, as it is already the case for the previous construction.

Proposition 1.33 The dual basis is J;IZ)(:c) = /2N (25 — k) (5, k € Z), where

2()(N) zZ(i),(N) (€)
= m

We also have

2(5):(N)

14 (2¢) UM ) @(741),(1\7)(6)
PDM(2E) = my TN (£) G+DW (¢
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with

STV
i€ mg) ( )(5 + )

S WM gy me __\&+T)
e = WG-DN(2€)
mi DM (g) = —e % m& M (e + 1) WD (g 4 7).

The flters m(()j)’(N), 'r?tf)(‘j)’(N), mgi)y(N), ;ﬁ'l(j),(N) satisfy

{ Fig ™M (£) mP M (¢) + 7, N () mga'),(m({)
fﬁa(]),(N)(g) m(()])’(N)(f +7) + 7’5*1(7)»({\/)(5) my):(N)(g +m) = 0.

PROOF. See [6]. &

In H'(R), the figure “Fig 2” gives some pictures of ¢(~:(® and WCION

10
/2(\ ]{\
o Fa
-1 =y 5/ 0}s 1 1.5 2 STz N 1 2 5 4
ot -
.2 .

Fig. 2
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Chapter 2

Construction of wavelets bases in
Hi_er(R)

The aim of the second chapter is to present some constructions of wavelets Riesz bases
in the 1-periodic Sobolev spaces Hj_ . (R) (s € R). We start by an introduction

to these spaces. A relation between periodic Sobolev spaces and local Sobolev spaces
2

generalizing what happens in L{_,, (]R) is there given.
2.1 Periodic Sobolev spaces
Definition 2.1 Let s € R. We define the Sobolev space Hj_, (R) as the linear
space of all 1-periodic distributions v on R such that
3 1k fusf? < +oo
k€Zo

where w, (k € Z) is the k-th Fourier coefficient of w. Remind that if u is a 1-
periodic distribution, then the sequence {uy)rez of its Fourier coefficients is defined
as the unique sequence of C such that

u(p) = Zukﬁw(x)e‘%’””dx, V¢ € D(R).

keZ

Endowed with the natural scalar product

(W, V) a0 = %0T0 + (4, 0)5g_, @ = %0 + Y [k[*uTr,
k€Zo

H}_,o(R) is a Hilbert space. We denote by || - || Hy_,..(R) the corresponding norm

Il = luol® + lulfy__ @ = ol + PN L
k€Zo
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Remark 2.2 The norm || - | (resp. || - |¥)) given by

I =[S+ K2)ofue?
kezZ

(resp. [rull® =, [>(1 -+ 1kl2)uel? )

keZ

is equivalent to || - |lm;__ ®) on Hi ,o(R) for s € R (resp. s € ]0,+00[) and, if

s €)%, +o00[, we can also mention
2 H

lulls = \/su 2+ 3 [l

keZo
which is related to the scalar product

(u, v)s = w(0) 000 + 3 KT

keZo

It is also well known (see [39]) that for every s > 0 such that s ¢ 1 +N, this norm
Il lle;_ .. is equivalent to the norm || - |lu;__ my defined by

1-per

m. 2
quﬂﬁff_pe,(m) = ”u“Lz @ T f dy fo d %ﬂl if s=m+o,

meN,o€l0,1].

In what concerns the duality between Hj .. (R) and Hi%o(R), we have the
following result.

Proposition 2.3 Let s, € R. The functional
e (U, Vg )

is bounded on Hi’3. (R) if and only if v € Hy_5, (R).

The next proposition gives a characterization of the spaces Hj_,o(R).
Proposition 2.4 For every real number s, we have

Hi pa(R) ={u€ H (R): uis 1—per.}.
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PROOF OF PROPOSITION 2.4 FOR s> 0
The result is clear for s=m €N

Let us consider the case s €]0,1[.
a) Let u be a 1-periodic function of Hf (R). We have to prove that u belongs to
H} ,(R). Let K be the compact interval [—2,2] of R and ¢ a function of D(R)
which is equal to 1 on K. Using ¢ in Proposition 1.5, one gets

=20 ¢ 1 x 1)

From Fubini theorem, we can deduce that for almost every z € [—1, 1], the function

lu(z +y) — u(y)®
]$|1+2s

belongs to L*(]0, 1]) and that

Mulz +y) = u@)? 2 2imkz 2
F(z) = [z]i+2s dy y= lx|1+2s Zlukl - “l
kezZ

belongs to L*(]—1,1[). Because of integrability far from 0, we finally get that the
function F belongs to L*(R). So, the function u belongs to H}_,e(R) since we have

/ F(o)dz =83 ful / sin (171'2’2'””) =3 ke

kEZ k€Zo

b) Let u € Hj_,,(R) and ¢ € D(R). We have to prove that the function

(o) (@) = (up)@)?

F(.’L', 3/) = : ’III _ y|1+28/

belongs to L'(R?). Let N € N, such that supp(¢) C [-N,N] and
I:=[-N—1,N+1}]. On one hand, the function F belongs to L*(R x (R \ I))
because if x € supp(y) and y € R\ I, then we can write

Fla < LG

On the other hand, let us prove that the function F also belongs to L*(R x I). On

R x I, we can write
F(z,y) < 2F(2,y) + 2F(2,y)

with

Fi(z,y) = &) I; ﬁ(zl)lliif(x)lz’ Fyz,y) = IU(y)l;If(y?m:p(y)l"
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The function F; belongs to L*(R x I) since the function

[u(z +3) —uy)l®
|z|T+2s

belongs to. L}(R x I). Indeed, for z fixed in R, we have

/Iu z+y)—u(y)|*dy = 2(N+1) / Ju( 2:+y)——u( Wedy = 2( N+1)Z|uk|2|1 —glimkz (2
keZ
and now the function ;
2
T | Ju(e ) — u(w)Pdy

belongs to L(R) since, Vk € Zy, we have

1~ 2“"“‘]2 9 sin’(mz)
/ |z]i*+2 = 8lk| s/ T+ dz

In what concerns the function F3, we have

lo(@) @ _ [ s i le—yl21
|z —ylt+2e — C L if jz—y|<1

lz—yj2e=1

so we get

/ (@) — @) <c
R

|z — yP+es
and we conclude since u € L% (R).
The case s € ]0,+00[ can be easily deduced from the case s € ]0,1[. Indeed, if
s €10, +0o[ \ Ny, we can write s =m + o with m € N, ¢ € |0, 1] and we have
{ve Hi (R): uis1—per}
= {u¢€ HZ(R): uis 1—per and D™u € HY (R)}
= {ve H  oi(R) : D™u € HY ,(R)}
= His—per(R)‘

Before presenting the case s < 0, let us present a norm equivalence between the
Sobolev spaces on R and the periodic ones.

Proposition 2.5 Let s € [0, 400 and F be a positive function of D(R). There is a
constant C > 0 such that

IFulle < Cllullag_p 0, Vo € Hi_pu(R).

and, if s € ]0,1] and if F equals 1 in a neighborhood of [0, 1}, then there is also a
constant ¢ > 0 such that

cllullag_po® < Fullmm, Yu€ Hy pu(R).

—per
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PROOF. Let s € [0,+o0] and F be a positive function of D(R).
On one hand, we get, Yu € H7_ pex( ),

C Yo ID*(Fu)|22g) Hs=meN

, . m (o 2
1PullZegy < C(EZLO ID(Fu)l2a gy + Jy de fo dy 2 (Fu)]:(::)le (Fu)(y)l )

ifs=m+o, (meN,oe]0,1]).

For every a € {0,...,m}, we can write
ID(Fu) ey < DL / D)y + PP
j=0 (¢eZ)
< ZCgCa—i ID7ul|Z2g01p < c ”U”%r;_pe,(lk)

J=0
and, using the same estimations as in the point b) of the proof of Proposition 2.4, we
get also

ID"' (Fu)( Dm(Fu)( )[

On the other hand we suppose that s € ]0,1[ and that F equals 1in a
neighborhood of [0,1]. We get

§—per(R)”

||U”§If_pe,(nz) = |uol*+ Z |&] % |us |
k€Zo
_ IUI2+CZ s1n(lczlcl 2
- 0 pl+2s Uk
k€Zo
+oo
= Juol* + Z,/ 1+2s|uk ('("-*-95)‘)1c|2
keZo

_ R C +ood 1 2
= lwl*+ 7 = flu = (- + 2)llZ2g01p

P+ 5 [ do iz [ anlPue) - (Fu)e + )P

IA

C [t 1 1 2 2
+5 A de —— e dyIF(:c+y)—1l [u(z +y)|*.

Therefore we obtain the inequality because we have
9 +o<> 1 9
o+ S [ o [ dnlEuw) - P+
<l + 5 [ de i [ dyiFu) - o+ o

< el
< ”FU”Lz(R)'*‘z /Rdz/lkdy Iz_y|1+2s

< C'l|Fullfsm)
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and

“+00 1 1
| e mmm [ @0 - 1P e+

. +00 1 1 ) 2
= [ oz [ dnlFe ) - 1Ptz o)
< C'lluflago,p < C'llFulliam,

foran e > 0. &

PRrROOF OF PROPOSITION 2.4 FOR s < 0

Let u € H_,,(R), ¢ € D(R) and F be a positive function of D(R) equals to 1
in a neighborhood of [0,1]. Using Proposition 2.5 and the map S defined on D(R)

by
St w(+90),
we get “
@) = |3 u(S(ee)x
< uﬁlzzf_pe,m IS6) s
< Cliullly_,.c (IS8l + ID™(S(ed)lik . x)
< C/”U“%I;_W(R) (ll‘ﬂ“%zak) “‘15“%2(11&) + [[FD™ (S(¢)) H?{,(R)),

V¢ € D(R), if m € N and o € ]0, 1[ are such that —s = m + 0. Then we can easily
obtain that there is a constant C; such that

[(eu)(8)] < Ciligllz-+@), Vo € D(R).

Indeed, we have

1F() Y- S CiD™ (- + ODIg(- + O)|momy

(L€Z) 7=0

m
> D ChCnaiIDG( + Doy
(¢ez) j=0 )
Cllgllz-sm)s V¢ € D(R).

Now, in order to obtain the second part of the proof, let u be a l-periodic
distribution of Hy (R). Let also G be a positive function of D(R) satisfying
> ez G(-+4€) =1 and Fy € D(R) such that Fy = 1 in a neighborhood of supp(G).
To prove that u € H}_,. (R), one has merely to prove that

|3 wn| < (3 b huel?)
k€Zo

k€Zo

IFD™ (S(0é)) o

AN

IA
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for every v € H 1-per(R). Since Fou € H°(R) and using again Proposition 2.5, we get

|Z ukvk_‘ = |u<x) (G(z) > e”"kzvk)'

k€Zo k€Zo
— ’(F()U)(z) (G(:E) Z é2iwkka>. .
k€Zo
2z7rk:
< dog ol
< 21,7rk ,Ukl ’
por Hiper(R)

C 3T K2 lu2, Vo € it (R).
k€Zo

The proposition is proved. a

2.2 Spline spaces

Let [a,b] be a compact interval of R, N € Ny, and
A= a=z9<z;<...<zNy=b

a mesh on the interval [a, b]. ‘

Notation 2.6 Let € Ny. We denote by S7([a,b], A) the set of smoothest splines
of degree r on [a,b], with respect to the mesh A. Remind that for r = 0, it
represents the set of functions defined in [a,b] which are constant on [z;,T;.1[, for
every § € {0,...,N —1}. For'r € Ny, it represents the set of functions of C,_1([a, ])
which are polynomials of degree at most v on [z;, &;41], for every j € {0,. ., N—1}.

We take analogous notations in the periodic setting. Let N € Ny and o € R. We
consider the mesh

A= a=x<n<...<zy=a+l

of the compact interval [o, o +1].

Notation 2.7 Let o € R. We denote by S>* o (R, Ag) the set of all 1-periodic
functions defined on R which are such that theu restrictions to [a, o + 1] belong to
S, + 1), A,). For r € Ny, we denote by S7° (R, A,) the set of all 1-periodic
functions of C,_1(R) which are such that their restrictions to [a, o + 1] belong to
S ([a,a+ 1], Ap).

In the particular case of an uniform mesh with N mesh points in [a, @ + 1], we

define 6 := aN and

é é
Ay = —]\7=$0<$1<“‘,‘,<$N=—]\7+1,

with xk—-—;—, ke{O }
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Notation 2.8 For any r €N, any § € R and any N € No \ {1}, we let S;%0 (R)
be the space Sl_per(R, Af).

Let us introduce now some particular hierarchical spline spaces that will be useful
as approximation spaces in the following.
Notation 2.9 For any m € Ny and j € N, we denote by V(m) the set of functions
of L*(R) which are smoothest splines of degree m — 1 with zespect to the intervals
[277k,277(k+1)[, k € Z. If § € [0, 1], we denote by V](m the same set of splines but
with respect to the intervals [277(k +6),277(k+ & + 1), k¥ € Z. The corresponding

sets of I-periodic splines are respectively denoted by V(m) V(m) In others words, we

let V(m) be the space ST--0%(R) and V be the space S"ipi,‘s 2 (R).

—per

Proposition 2.10 Let se R, me Ny, j €Ny and § €[0,1]. We havre‘
1
s<m—z o VP C Hy o (R).

PROOF. First of all, it is clear that V{5’ € Hj_,(R) if and only if V{™ € H§_,(R).
Suppose that the condition s < m — 3 is satisfied. As it is proved in [5], the

functions
o (l‘) = 15

‘ ¢ ™ gim(e+k27) i1 i-1 '
(@) = Z(usz) Pmerke  _gicl ¢ g < 911, fe 7,

form a basis of V( ) We conclude by using the fact that for every £ € N such that
-9l <y <2 1] the function g, belongs to Hf_,..(R) since

) €| 2m .

0+ k2 23(—' 4 -

%' + k2 ]Z+k27|) < too
Now let us assume that V(m) C H1 —per(R). Then we have s < m — ; since
otherwise we would have V(m) C Hi", —por (R) This would lead to an absurdity since

the series 1

141+ k2%t
Z( + |1+ k27)) TSI

keZ
does not converge. §

From [5], we have the following result.
Proposition 2.11 Let m € No, j € N and f a 1-periodic function of L} (R). The
function f belongs to V{™ if and only if
K™ fr = (k4 27)" frsos
for all k € Z where, as usual, Yk € Z, the coefficient f; denotes the k-th Fourier
coefficient of f. &
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We recall now two important approximation properties (see [39]). We need before
to precise some notations and to give a definition.

Notation 2.12 For N € Ny and
A= O=gg<m<...<zy=1

a mesh on the compact interval [0, 1}, we define the real numbers hy and ha by

ha = sup (o — Zp-1),
oL ke{l, N}

hy = inf (2 — Tx-1)
ke{l, N}

Definition 2.13 Let v > 1. Such a mesh A is said to be vy-quasiuniform if the
condition
ha

_— <
Ay =)

holds. »
Proposition 2.14 (Inverse property for periodic splines) Let » € N. For any
numbers t, s and 7y satisfying t < s < r+% and v > 1, there exists a constant C > 0
such that

el @ < CRXCllolia:_ . @

for all p € S7° “per(R, A) with A a y-quasiuniform mesh.

Proposition 2.15 (Approximation property for periodic splines) Let r € N.
If the real numbers t,s aresuch that t <s<r+1landt<7+ %, then there exists
- a constant C independent of A such that

v = Poaulleg_ @ < ChT ullmg . m), Yu € Hi po(R),

where P, a is the orthogonal projection onto S’_peI (R,A) in H o (R). 1

The next proposition will be useful many times in the following. The first part
is simply the approximation property for splines applied to umfoxm dyadlc meshes
The second part is established in [5].

Propos1tlon 2.16 Let r € N and t,s be real numbers such that 0 <t <s<r+1
and t < r+ l“ There is a constant C > 0 such that for every f € Hj_,,, (R) and

every j € N, there exists a spline function S € V(TH) which satisfies

If = Slag_,.m S C27C| £]|n

1-per

Moreover, if s <t + 1, then for every f € Hj_,.(R), we have

inf |If —S|as pa® — 0
Sev("“)

—per

if j = +00. 1

Corollary 2.17 For every 5 E [0,1], every r € Ny and every real number s such
that s < r, the union U,eNV is dense in H_ .., (R). s
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2.3 Chui-Wang wavelets 9,
Let m be fixed in Np.

2.3.1 Construction of the Chui-Wang wavelets
Let a '
Nip i= Xpoa] * - * X[o,1]
Neascumieraern, s
© m factors

be the cardinal spline function. The classical Chul ‘Wang spline wavelet z/)m € V(m)
is defined by - '

~ ~ ) in(&
Pm(28) = pm(§) Nm(§) = pm(g)e_lmg (‘S_Z(—gl)

2

with o m
(€)= et (122) e
and - '
Z | N (€ 2k7r)| > e Ny (m + k).
k==00 k=—m+1

Let Wk i= 221/),”(27 ——k) 1f 5LkeZ.

Notation 2.18 For every integer j, we denote by W(m) the orthogonal complement
in L2(R) of V™ in V7). | o

The following results can be found in [13].
Propesition 2.19:-The following properties hold

1. the functions Ymox, k € Z, form a Riesz basis of Wém) ; hence, Vj € Z, the
functions Yk, k € Z, form a Riesz basis of W(m) with bounds independent
of 7; C

2 the functzon Uy IS compactly supported in [0, 2m — 1] and has a symmetry (or
antisymmetry) axis

Ym(2m —1—z) = (-1)™¢Yn(z), Yz €eR,;
3. we have orthogonality between levels
(Vi » Ui ) r2@y =0 i § # 5
1

Corollary 2.20 The functions ¥m;x(z), j,k € Z, form a Riesz basis of L*(R). 1
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2.3.2 - Periodization

Let
R 2 :
Upnyj 1= 2% Z Um(27(-—k)), JEN
k=—o0
-and

Ui = U (- —k277), jEN, 0<k<2.

Notation 2.21 For every integer j, we denote by W](m) the orthogonal cdmplement
in L2(10,1]) of V™ in vm “

Prop051t10n 2.22 We have the following properties

1. for every j € N, the functions ¥,,+,0 < k < 27, form a Riesz basis of W(m)
with bounds independent of j; :

2. we have orthogonality between the levels
(Yo, Ymigrrdzzqoap =0 i 5 # 55

3. the spline functions 1 and Wk, 7 €N, k € {0,...,27 — 1}, form a Riesz basis

of L2_ —per (R); moreover, after normalization of the constant function 1, the Riesz

bounds in L1 —per (R) are the same as the ones obtained for the functions ¥, ik
(5,k € Z) in L*(R) (see Proposition 2.19).

2.3.3 Stability

The stability of Chui-Wang wavelets in Sobolev spaces has been studied in [36]
and [18]. We give in [8] a simple proof in the periodic setting with the optimal
indexes

Proposition 2.23 If the real number s satisfies |s| < m—3 then there are constants
¢,C > 0 such that

+o0 29 -1 +00 271 +00 271
ed D el SND0ST iu2 Umldy e ®) S Y el
j=0 k=0 7=0 k=0 j=0 k=0

for every sequence (c;)jen, kefo, ., 21} Satisfying Z+_°8 223 1]cj,;c| < +00.

PROOF. See [8]. 8

Corollary 2.24 If the 1eal number s is such that |s| < m — 1, then the functions 1
and 279V, (j €N; k€ {0,...,2" —1}) form a Riesz basis of Hj_,o,(R).
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PROOF. The Riesz condition is clearly given by Proposition 2.23 since wé have

+00 271 +00 29 -1
lleo + Zo kX; Cj,k2“7S‘I’m;i,kl|§{;_per(m) = |cof® + | Z Z Ci,kz_jswmai,k”?{l’_per(lk)
7=0 k= - §=0 k=0

21
for every co and every sequence (¢jk)jen, kefo,. ,2/—1} Such that 3.y D74 lejul? <

+00.

For every j € N, the functions Wz (k € {0,...,27 — 1}) are 1-periodic spline
functions of degree m — 1 with respect to the mesh A¥ with N = 2/+! mesh points
The space V;Tl) of these spline functions has the dimension 2/*! and we have exactly
1+1+42+...+27 = 27! elements of this space among the Riesz family. So we can

conclude since the union of these spaces is dense in Hj_, (R) (see Corollary 2:17). 1

Remark 2.25 The condition on the real nﬁmber s given in Pz'opoéjtion 2.23 is
optimal since {Wpn;; : j € N} C Hi_,(R) if and only if s <m — 3.

2.3.4 Some pictures

On [0,1]:

\III‘;O :

0.3 °.¢ 5.6 °% T

Fig 3

Uy5(2) = 280 10(272) X0 2-7)(2), Vi =1
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Uyii(2) = 27" Won (2 22)xp0 -5+ (2), V5 23

Va0, U3, Uz, Uas:

0.4 0.4

. 0.2 2.2 /\
5 0.2 X 9.8 6.8 1 0.3] 0.4 vo.l \\
w02 . -0.2

-0 4 0.4

1
0.6 .
0.4 0.5

Wl ol
T~ 0.3 0. .8 1 =702l 4 0.6 0.8 1

-0 2]
0.4 : 0.5
-0 .

=1

Fig. 5

3(z) = 21;_3‘1’3;3(27_3$)X[0,2-1+3](z)a Vi >4

2.4 The functions 6,

2.4.1 Counstruction of the functions w,(f)

Let m be a strictly positive integer and £ € {1,...,m}.

Definition 2.26 We define the function zby(;? by

4O (z) = (7_1—1), i ;u )T (1) dt

Proposition 2.27 The function 1/11(,? is the unique function of Vl(m“) such that its
£-th derivative is the Chui-Wang wavelet 1,, and which has the same support

DY = ¢, supp(¥P) = [0,2m — 1].

From the analogous properties on the Chui-Wang wavelet v, , the function w,(f;) has
a symmetry (or antisymmetry) axis

Gam —1-z) = (-1)"*p¥(z), VzeR,

and has got m — { vanishing moments. 1

As for the Chui-Wang wavelets, let 1/),(,f?j,k = 2‘21111,(,‘;) (2. —k) if j, ke Z.
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2.4.2 Functions 6,
Definition 2.28 For every m € Ny, we denote by 6,, the function z/;,(;” ).
Proposition 2.29 For every m € Ny, the function 6,, vanishes at every integer
On(p) =0, VpeZ. ‘
PROOF. See [8]. 1

From the next proposition (see [24]), we deduce that since, Ym € Ny, the function
0m belongs to the class Cypm_o(R), is compactly supported, and has no vanishing
moment, the function 6, is not an orthogonal mother wavelet in L?(R). Let us first
of all remind the definition of the O-regularity.

Definition 2.30 A function f of L*(R) is said to be O-regular if for any N € N,
there exists a constant C such that ,
A+ RIS G ae

Proposition 2.31 If ¢ is an orthonormal mother wavelet of L*(R) which belongs to
the class Crp(R) and is O-regular, then the function v has m+1 vanishing moments.

2.4.3 Some pictures of the functions 6,

01, 02, 05 :
o9 T o
0 006
0.4 0.0
3 3| 2 03 0 004
o2 0 03, 0 002
0.0 ) 0
; AVARvea
3 .S \\—/5;r":
' CIERNE W S X S T ! =/ -0 002
Fig 6

04,05 :

0.0006
0 o004 9 00005

© 0008
0 0001
0 6002

B e VA VAR m v v

Fig 7
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2.4.4 Periodization, functions: \Il,(f;)]

Let m € Ng and £ € {1,...,m} We define the functions \Ilﬁi)] and \I'g;),k by

keZ

and _ .
¥ =00 —k27), jeN ke{o, .., 2 -1}
We Il}ave chosen the factor 2% in our periodization process in order to have
DUY) =¥, Vi EN,
We get
supp(\IISﬁ);j) - U[k, k+277(2m - 1)].
kez

In [0, 1], this set is reduced to an interval with length 277(2m — 1) if j is larger than

Jo = BI%TT;Q For j > Jp,, we have-on [0,1]

U (z) = 279+ g D(2).
It follows that, Vj > J,,, Vp € N, we have

—¢4+ 1
q’ﬁﬁz,j-(-p(z) =2 e+2)p\1’£2j(2pm)XUkez[k»k+2"’] (CL‘), vz eR .

For any 7 > Jp,, the function \I/ﬁi);jl[(),ll reduced to its support is symmetric. Indeed,
we have, Vz € [0,277(2m ~ 1)],

00 (277 (2m — 1) — z) = 279 g0 (2m — 1 — Vo) = 279+ Ey0 (2z) = ) ().

2.4.5 Functions ©O,;

Definition 2.32 Let m € Ny. Forevery j € N and any k € {0,...,2/ — 1}, we
denote respectively by ©p; and Om ;i the functions \1’5,’:‘]) and ‘I’,(:;k .

Using Proposition 2.29, we directly obtain the next result.

Proposition 2.33 For éve.rjy m € Ny, every j € N and every k € {0,...,27 — 1},
the function ©p,;, vanishes at 0. 1 ,

Proposition 2.34 Let m € Ny. The functions ©n_;x also satisfy the orthogonality
between the levels j for the scalar product (-, -)m, i€
(Omijk's Omijrae)m =0

for any j,j € N such that j # §' and any k € {0,...,2 _ 1}, ¥ e{0,...,27" =1} a
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Proposition 2.35 For every m € Ny, there is a constant C’l(m) such-that

sup  sup  sup 2D [Omyula)| < O
j€N kef0,..,20 -1} z€R

ProoF. For j > J,, we have

sup 2(m_%)‘7’@m;j(x)| = Ssup 2(m_%)‘j,@m;‘7’(z)l
R 2€[0,1]

ze

= sup |0 (2'z)| < sup |6 (y)| < +oo.
z€[0,1] . . yER

2.4.6 Stability

Proposition 2.36 For any m € Ny, any £ € {1,...,m — 1} and any real number
s such that $ + £ —m < s < £+ m — %, the functions 1 and 27‘(2‘—5)\1,%);7,,]0, Jj €N,
k€ {0,. .,27 —1}, form a Riesz basis of Hj_..(R)

Proor. By construction, we have (\Ilﬁf;);j,k)p = (2imp) " (Ymyk)p, VJ € N,
k €{0,...27 — 1}, p € Zy (here the index p means that we take the p-th Fourier
coefficient). Since £ € {1,...,m — 1}, the function zby(f;) has at least one vanishing
moment; hence we have a

/\I/(é)]k(x) dr=0, VjeN Vke{o, ,2-1}

and we get
+o00 27~-1 @ 9
oot 2o Esuz ],
7=0 k=0 HY—per (R)
+00 27 -1 9
= oo+ (m) > 3 PP 33 s ()
PEZo j=0 k=0 )
400 27-1
= Jeof? + (27T)_2e”220 (210 )¢m7k1 »
=0 k=0 HiZpnl®)

We conclude using on one hand Proposition 2. 23 and on the other hand a density
argument since, for every j € N, the functions \Il mk (K €{0,. ,27 —1}) belong to

(m+8) -
il

We get the same property for £ = m but the proof is technically different because
the function 6, has no more vanishing moment. To get the Riesz condition, we use
in this case and for s > % the scalar product (-, -)s defined in the beginning of this
chapter.
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Proposition 2.37 Forany m € Ny and any real number s such that § < s < 2m—3,
the functions 1 and 2/™=90,,,4, €N, k€ {0,...,2/ — 1}, form a Riesz basis of

His—»pex‘ (R) "

PROOF. See [8]. 8

In the proof of Proposition 2.37, we got also the following multiscale resuit.

Proposition 2.38 For any m € Ny, any s € R such that % <8< 2m-— % and any
j € Ny, the functions 1 and 24m=90,4,, £ € {0,...,5 — 1}, k € {0,...,2¢ - 1},
form a Riesz basis of V;zm). Moreover, the Riesz bounds are independent of j. &

2.4.7 ©,,; pictures
On [0,1):

m=1

©10=6, B
01,(z) = 27 ©10(Pz)xpp2-7) (), Vi1

o0 04 © 006
0-015, o oos}

o cos|

0.2 0.2 0.6 0.8 1 N 0. \yf 0.8 1
0,003

Fig 8

0,3(2)=27F 2 0g0(222)x(02-4+2)(7), Vi =3

m=3

©3,0, ©3;1, O3y, O33:
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0.001]
0.00075]
5 0005
0.00026;

03 0.4 \ 0.6 4.8
-0.00025|

0.0002f

0 60003}
0 00015

0 00002}
0 6003}

© 00005| o oo00x

CE BN lCN ] 3 1 \7 V LR T
-0 00005} -0 00001}

Fig. 9

@37(]3) = 2 @33(27 -3 ) 02——;‘+3}($), V] > 4.

2.5 Dual Riesz basis

2.5.1 Problem

Let m € No, £€ {0,...,m} and s € Rsuch that } +{—-m <s<{l+m—3} We
have proved (see Corollary 2.24 and Propositions 2.36, 2.37) that the family

{up: pEN} = {(1}U9TY, - jeN ke {0, ..,2 —1})

is a Riesz basis of the Hilbert space Hj . (R) (here \II(O)] e = ¥nir). So, we know
that there exists a unique Riesz-basis {v, : ¢ € N} of Hj__.,(R) (resp. HT . (R))
such that (u,, v)m;_ @) = &pq (1esp. (Up, Vg)m = ,,,q), Vp,g € N. We call it the
dual Riesz basis of the Riesz basis {u, : p € N} for the scalar product (-, -yu;__®)
(resp. for the scalar product (-, :),,). This is the unique family {v, : ¢ € N} of
functions of Hf o (R) (resp. H%,.(R)) such that (up, vg)m;  m) = Opq (resp
(Up , Vg)m = py), VD, €N.

It would be interesting to know if these dual Riesz bases of the Riesz basis
up : p € N} have also a multiscale frame, i.e. if we have -
14

{vg: e N} = {1} U{; ¥ . jeN ke {0, ,2-1}}

with
Uy = 2 Y JO@(-k), VieN,
k€Z
T = B (-k27), VieN Vke{o, . ,2 -1}
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for a function %% of Vl(mH) and some constants ¢; which can depend on m and s.

For £ = m, the dual Riesz basis for the scalar product (-, -)ys (=) can not be

written as above. Indeed, we have _
Omies Va0 = (Omijlo#0, VieN, Vke {0,...,27 - 1}.

For £ € {0,...,m — 1}, the multiscale form is obtained for this scalar product and
s = £. We present this construction below.

3
1~per

—per

For { = m, the scalar product {-,-), seems better convenient to give such a
multiscale result. We obtain good results for s = m. This construction is also
presented below

Both of our constructions are carried out using: primitives of the classical dual
Chui-Wang wavelets. Let us remind the basic properties of these dual Chui-Wang
wavelets.

2.5.2 Dual Chui-Wang Riesz basis in L%(R)

Let m € Np.

Proposition 2.39 If ¢, is the Chui-Wang wavelet, the function 1‘/;,,1 defined by

5o Azﬁm
T ez [m(- + 2k

satisfy the following properties
e the family {’lZm( —k): k€ Z} is a Riesz basis of Wém) (see Notation 2.18);

the family {Jm;j,k = Z%Jm(% -—k): j k € Z} is a Riesz basis of L*(R);
(¥m » Pm(- = &) 12®) = Ok, Vk € Z;
(e » O ) 12®) = O, V5, j', k, k' € Z such that j # ';

° 'zZm is exponentially fast decaying, i.e. there exist constants f>0and F>0
such that |[¢m(z)] < Fe=Pl vz € R.

Corollary 2.40 We have 5
Ym =D cxtm( — k)
keZ
with

27T eikf
VkeZ

o 1
= Wy Ul = Rhiw = o | e
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and this sequence (ci)rez is exponentially fast decaying, i.e. there exist constants
o >0 and C > 0 such that

ol < CeM, Yk e Z.

PRrOOF. The behavior of the sequence (ci)rez can be obtained from the last item of
Proposition 2.39. Indeed, with the notations of this item, we have )

|G Bl = k) ey < F2e~9H (E + ]kl), VkeZ

2.5.3 Functlons w(e)
Let m € Ng and £.€ {1,...,m}.

Definition 2.41 The function 1;,(,{) is defined from the dual Chui—Wang wavelet Jm
by

@) = gy [ =0 a0, 2 e Ry

We denote by 6., the function b
Proposition 2.42 The function Jﬁﬁ) belongs to Cpi.e-2(R) and satisfies D%(e)._ dzm
onR.»
Proposition 2.43 The function {bv,(f;) is exponentially fast decaying, ie. there are
constants 3 > 0 and F' > 0 such that

[P (z)| < Fle™dl, vz eR
ProOF. We have
1 — gmi€)2m

(€)= 2—m€—i(m—1)€( O Wi (€ +7)

and

S Gn26 +2kmP = (5077 (S) (€ + 1) + 005 () m(€) Jrm(E) om(€ + 1)

kez

= Wn(28) wm (&) wm(§ + 7).
Therefore we obtain
() Jm(zg)
U, (26) = =
( ) (2215)2 ZkeZ [Ym (26 + 2km)|?

(1 — e %)2m 1
(@)™ wm(28) wm(§)

92— (é+m) ——41.(m-—1)§(1 —¢€ z£)2m . 1
(Zg)e+m P(e-—2i€) P(e—’tf)

— 2—(£+m)e——i(m-—1)€
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where we have defined the polynomial P by

m—1
P(z):= Y 2" Ny (m+k).

k=—m+1

Since ' ‘
P(e™®) = e~im-Yey, (a), Va €R,

this polynomial P has no zero of modulus 1 and we can define ao as the zero of
P which has the largest modulus strictly smaller than 1. It is clear that ap = ;11-
where a; is the zero of P which has the smallest modulus strictly larger than 1. Let
80 := —In(Jao|) and 7, € R such that 0 < r; < s5. We get constants CV) and C®

such that
c if Inl <%, 1< s

=(0) . )
I¢m(2<€+w>>IS{ T i Il <, Jel 2 s

Ta- oo

Let 2 > 0. Integxatmg the functxon

F(z) = ey (22) € O(E +in: E € R, ne] 230

on the complex rectangular boundary defined by the vertices (R, 0), (R.%), (R, %),

(—R,0), we get

[ 58 ate + el P
R

Now, if z <0, we integrate this function f on the rectangular boundary with
vertices (R,0), (R,~%), (—R,~%), (~R,0) and we get

2iz§2(£) _n (2) o ~r1lal
e, (2(6 — 1 3 )dE|< F@le .
R ,

~ 1 )
Fpaf L

™

o] e

This proves the proposition. a

Proposition 2.44 The function Jﬁﬁ) satisfies
P =" P - k).

kez
This implies %% € V™.

PrROOF. We just have to remark that the functions ¥ and > ke Ckwr(_rl;)(' —k) have
the same regularity, the same £-th derivative and the same behavior in +oo. 8

Corollary 2.45 The function 6, vanishes at every integer

Im(p) =0, VpeZ

201



Now we can a ply the periodization process to these - functions z/)(l)

(¢ € {0,...,m}, 90 = 4,,). We define, for every j € N, the functions \Il
and O, ; by
\AIilﬁﬁ);]. = 274+% Zzy)’%)@j(” —p)) = ch‘llffgj(“ — k277); ém;j = \AI;?(::?)
peEZ keZ
and, for every j € N, k € {0,...,2/ — 1}, the functions \I' mag,x @0d O mik DY

T O o &
Vi = ‘I’gn)n‘("_kz ) O = Ul

For every j € N, the factor 27 in the expression of iflm;j is chosen again in such a
way that U, m;j is the £-th derivative of \II(Z) ‘

With these functions Ui = T, we get
<\Ilm;j,k:a @m;j’,k’>L2(]0,1[) = 57,7’5k,k’a V]) j/ € N! k S {0, vy 27_1}) kl € {01 by 27,_1})

and

<‘\I~;m;j,k y \AI;m;j’,k’>L2‘(]0,l{) = 07 V],]/ €N st .7 7~é~jI7 ke {Oa EEE) 2j - 1}7
Kefo,. . 2 -1} :

Using Corollary 245, we obtain the following result.

Proposition 2.46- For every j € Nandevery k € {0,....,2/ —1}, the function ém;‘,‘,k
vanishes at 0. 8

2.5.4 Dual basis for the scalar product (-, -) H o (R)

Proposition 2.47 Let £ € {0,...,m — 1}. The dual Riesz basis of the basis
{pu{el)  cjeNke{0, .2 -1}

for the scalar product (-, -) HE_(R) 1S the basis

{(yu{em*T® . :jeN ke{0,...,2 —1}}.

m;f,k
PROOF. Since (\Ilin)7 Jo=0,VieN, Vke {0,. .,27 — 1}, we get

W O idme oy = (2m)7% 858w, |
Vj,i' €N, ke{0,. ,2 -1}, kK €{0,...,2" —1};
1) e = 0, VieN ke{0,.  ,2"—-1};

@3]
<\II —-per
, VieN ke{o,.. .27 -1}

m;j,k

o

]
<\Pm sd,k 0 >Hf_pe,(]R) =
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2.5.5 Dual basis for the scalar product (-, ‘),
Proposition 2.48 The dual Riesz basis of the basis

{1}U{Bn;x: €N ke{0,...,27 - 1}}
for the scalar product (-, -),, is the basis
{1} U{@n) ™ px: jEN, ke {0.. ., 27 —1}}.

Proor. This is clear because, using Propositions 2.33 and 2.46, we get

(Omijk s Omigr ity = (20) 278,16 w0,
V5,7 €N ke{0,...,2 -1}, ¥ € {0,...,2" —1};
(Omijps Vm = 0, VieN ke{0,. . ,2 -1}
(Bmijks Vm = 0, VieN ke{0,. ,2—1}

Remark 2.49 Of course, we also have

Omijk s Omyra)m =0, Vj, i €Nst j#7, ke{0, L2-1), K efo,...,2"-1}.
37 37

2.5.6 é—m;]‘ pictures
On [0,1]:
m=1

Oro= ©10=06,
m =2

@2;0, @2;1, @2;2, @2;31
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Chapter 3

Collocation with spline wavelets

Let © be a smooth bounded and connected open subset of R? whose boundary I' = o0
is a connected C Jordan curve. By “smooth”, we mean that for every zo € T, there
exist an open neighborhood V;, of zp, an open neighborhood Uy, of 0 in R? and
u(z) a Co change of coordinates between Vi, et U, such that

o u(zg) =0;
o u(VzoNQ) ={u€ Uy : us >0}
o u(Vy, NT) = {u € Uyo : u2 =0}
We also assume that the boundary T’ admits a Jordan parametrization of class Coo
z=n(t), tel0l] |

with Dyy(t) #0, Vt € [0,1].
We define the operator K, acting on functions on I' by
| K,: v v(y(- mod (1))).
In a natural way, we will often identify a function f defined on I' with the function
F:=K,f

With the parametrization v, we can define Sobolev spaces on the boundary I' (see
(38))-
Definition 3.1 For every s € R, we define H*(T') as the space of all distributions u
on T such that Kyu € Hi_,..(R) endowed with the norm
el = 1Kela e
From Definition 3.1, K., is an isometric isomorphism from H*(I) onto Hi_,.(R), for
every s € R. ’

Remark 3.2 As it is proved in [28], the previous definition does not depend on the
choice of a parametrization of the boundary as described above.

We start this third chapter by a presentation of the classical theory of
pseudodifferential operators on I
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3.1 Pseudodifferential operators on the boundary
of a smooth open set of R?

Let n € Np. To introduce pseudodifferential operators on R™ or on an open subset of
R", we follow the definitions of [2] ; P ‘

3.1.1 Pseudodlﬂ'erentlal operators on R"

Definition 3.3 Let ‘m € R.  We denote by Sm(R™ x ‘R™) the set’ of functions
a € Cow(R™ x R™) such that, Vo, 8 € N*, there is a constant C,, 3 such that

IDZD{a(z, )| < Cop(l+ €)™ 8 vz,6 e R*
~Such a functmn a'is called a symbol of order m.
Notatlon 3.4 We take the following notations
STP(R" x R") 1= Nyper S™(R™ x R"), S®(R™ x R™) := Uper S™(R™ x R")

Definition 3.5 Let a € S™(R” x R”). We define the pseudodifferential Qpezatoz‘ of
symbol a and order m as follows ' '

Op(a) = afe D) S(RY) = S s (2r)™ [ e=tala )ale)d

From [2], we have the following propositions.

Proposition 3.6 If a € S™(R" x R"), then the operator Op(a) can be extended to
an operator from S'(R™) to S'(R"). a o , . BT

Proposition 3.7 If a € S™(R" x R") with m < —n, then Op(a) admits the kernel
K(z,y) = (2n) ™" F,,_,a(z,£)

and K € Coo({(z,y) € R* x R" T#y}). n

3.1.2 Pseudodifferential operators on an open subset of R"

Definition 3.8 Let m € R and Q be an open subset of R*. We denote by
Toc(§2 X R™) the set of all functions a of Co(S x R™) such that pa € S™(R™ x R?)
for every ¢ € D(Q).

Notation 3.9 We take the notations

o (@ X R™) = NpeaSTL(QA X RY),  S3(Q X R?) i= Uner Sjge (2 x R™).
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We can find the following useful results in [2] and [5].

Proposition 3.10 If a € SJ%(Q x R"), then the operator Op(a) = a(z,D) defined
again by
Op(au=(2n)™ [ e=fala, (e

R

is defined from S'(R") to D'(Q). »

_Proposition 3.11 Let A : D(Q) — Cx{f2) a continuous linear operator such that
pAY € Op(S™(R"™ x R™)), Veyp,v € D(Q).

Then there exists @’ € S™(Q x R") such that A = Op(d’) + R, where R is an

loc ”
operator which has a kernel in Coo(2 X Q). The symbol o’ is here defined modulo

So(2xRY). 0

Definition 3.12 In the situation of Proposition 3.11, we say that A is a
pseudodifferential operator of order m on Q, and the class of SJ2. (2 x R")/S.2°(§2 x
R™) is called the symbol of A.

Proposition 3.13 Let Q,U be open subsets of R® and P be a pseudodifferential
operator of order m on U. If x: Q — U is a Cy change of coordinates, then the
operator P(-ox™1) o x is a pseudodifferential operator of order m on Q. u

3.1.3 Pseudodifferential operators on a manifold

Definition 3.14 Let m € R and V be a C, manifold. A pseudodifferential operator
of order m on V is a linear and continuous map P : D(V) — C(V) such that for
every chart (U, ) of V', the operator

Py : D(@(U)) = Coo(p(U)) g Plgop)op™

is a pseudodifferential operator of order m on ¢(U)

3.1.4 An application: pseudodifferential operators on I

By the following remark, we can restrict ourselves to the circle S.
Remark 3.15 Let me R. An opezator
P Cpo(l) — Co(D)

is a pseudodifferential operator of order m on I if K,PK*' is a pseudodifferential
operator of order m on S.
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Notation 3.16 For every real numbers o, 3 such that 0 < 8 — a < 1, we define the

open subset Uy s by .
' ' Ui ={e%": 0 €la, B[}

and the map wqp by

o Ung— [0,1] = €™ > 6 mod (1).

Using Definitions 3.14 and 3.12, a pseudodifferential operator of order m on § is a
linear and continuous map P : Coo(S) — Coo(S) such that for every chart (Us g, Pu,s)
of S, the operator . :

 Pag: D(a,BD) = CollasB) 9 P(90 Pas) 093
is a pseudodifferential operator of order m on Ja, 8, ie.

Py € Op(S™(R x R)), Vi, v € D(lex, B])-

Definition 3 17 and ‘the main of the following results follow [1] and [6].

Definition 3.17 Let ¢ € ]0,1[. We say that a function a(z,§) which is 1-periodic
on its first argument and belongs to S™(R x R) is a e-symbol of a pseudodifferential
operator P of ordel mon S if Yu € Cui- pe,(]R) fo.r which there exists ‘a; ﬁ eR
such that

supp(u) C Uz o+ ¢, 8+ E[

with f —a =1~ 2, we have, VL. € Z,

B+¢

(Pu)(z) = (2m) /R d€ e"%a(z, ) / dye™ufy), Vr&la+lB+1

)
Proposition 3.18 A pseudodifferential opezatorr P on S is of order m if and only
if, for all s € R, there is Cg > 0 such that

| Pul| gyo-m m < Cs ”u“H

1—per’ - - per

®, Yu€ Hf—per(‘R)'

3.1.4.1 About the kernel

Proposition 3.19 If P is a pseudodifferential operator of order m < —1 on S, then
P is an integral operator with a continuous and 1-periodic kernel. To be more precise,

we have
5+1

(P’LL)(%) = s K(xvy)u(y)d% Yu € Coo‘l—per(‘R)

with § chosen arbitrary in R, K given by

2i — 27N
K(z,y) = E esmpP* E Gpn€ v,

PEZL neZ
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and where the coefficients a,, are the Fourier coefficients of P(e%m™)

1
Up = / v(y)e *™dy, Vv e L*(0,1]), Vn € Z;
0
Apn = (P(€2i7m”))p , VYn,pé€ Z.
PROOF. a) We start with the proof of the continuity of K. Let M := —m = |m| > 1.
1) For every n € Z, the disttibution 37, ., d.x€*™ belongs to H M (R). It
follows that we have

S+ E Y lapal? < €2y do(1+0?)7H 1= 0O

nez pEZ neZ
and there is a constant C® such that
Y lapal <C®, VpeZ
n€Z
For every p € Z, we define the function h, by hy(y) == 3,z Gpae ™. Those
functions are clearly continuous on R. o "
2) For every y € R, the distribution Y., €#™(~¥) belongs to H; 2.(R). It
follows that we have
S+ @) <Py Y (1+F)T
pEZ * kez :
where the constant C® does not depend on y. So, we get 3 ¢z |Bo(y)| < C¥, with
C™ independent of y. It follows that, with y fixed, the series

2im —2inn; 2iwp
E e ”E apne y=§ e*™ hy(y)

PEZ neL PEL

= C®),

defines a continuous function on R. , ’ . '
3) For any v,y fixed in R, the distribution 3, (e~ 2™V — e=%mv" )2k gls0

belongs to H;_%er(R) . Therefore, if we define £ > 0 by ¢ == inf{1, M-1} | we have
Z(l +p2)% Ihp(y) _ hp(yl)lz < C?_M Z(l + kZ)—%le-—?iﬂky _ €_2i1rky’52
2

PEL keZ
COly —y'|*
where the constant C® does not depend on y and y'.
4) For every z, y, ¥ € R, we have
|K(z,9) — K(z,9)| < COly —¢/I°.

So, we obtain the continuity of K on R2.
b) Now let us prove that P have K as kernel. This is direct because, Vp € Z, we

have

A

146
(Pu), = Zap,kuk = j hy(y)u(y)dy, V6 €R.
kez
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Proposition 3.20 The proposition 3.19 can be extended to functions u € L*(]0,1]). 8

In the two next propositions, we use the same notations as in Proposition 3.19.

Proposition 3.21 If P is a pseudodifferential operator of order m < —2, then the
summation order Which appears in the expression of K can be arbitrary chosen

PrOOF. For every n € Z the distribution > iz On k€™ ™ Dbelongs to Hl_per R).
Therefore, we have .

S+ ¥ fapal’ < CPu(1+00)7F,
PEZ 2
which implies
M
55 ol 00 ¥
n€Z pel neZ

Prop051tlon 3.22 If Pisa pseudodzﬁezentza] operator on S of order m < =1, then
the following assertions are equivalent «

a) m=—o0; ‘
b) the sequence (apn)p nez Is fast decaying, ie. Vk € Z there exists a constant
C;, > 0 such that ) o
lapal < Co1 479U +07)F Vpimes;
¢) K(z,y) € C.oRxR).

Proor.
Let us prove that a) implies b). For every nez, the dls’cnbu’clon Zkez 1 €2F

belongs to NeerH;_ e (R). Hence we have
D @+ pttH lapnl® < C2(1+12)°, VseR, VM R
peZ

The conclusion immediately follows.
Let us prove that b) implies a). Let m,s € R. It is easy to show that there exists

a constant C® such that
D @+pY m,Zapkuk[ <Cc® 2(1 + B |wel?, Vue H . (R).
PEL keZ kez
Finally, the points b) and c) are equivalent because the series
‘ Zzwpz —~2inny
I P
PEZ neL

converges uniformly on every compact set of R?, Va €N , VB € N if and only if the
sequence (Gpn)pnez is fast decaying.

210



3.1.4.2 Relation between operators and symbols

We begin this subsection with s lemma that gives the structure of any e-symbol of
a pseudodifferential operator. The main important properties connecting operators
and symbols will be deduced from it.

Lemma 3.23 Let P 4 pseudodifferential operator of order m < —lon S, K its
kernel (given by Proposition 3.19) and ¢ € 10,1]. The following assertions are
equivalent

1. a € S™R xR), is 1-periodic on its first argument and is an e-symbol of P:
2. a(z,8) = Je e ¥ L(z, t)dt where L is a function on R x R which satisfies
(a) L(z,t)= K(2,z ~¢), Vz,t € R such that [t| <1 —¢;
(b) L € C(R x Ry);

(c) ¥p,q € N, DED{L(z.t) is a 1-periodic function on its first argument such
that, VN € N, there is Cpg.N>0 such that

'DngL(x, t), < Cp,q.N'tf_N
when |t > 1.

PROOF. Let us prove that condition 1 implies condition 2. Since m < -1, we can
define L by ’

L(z.t) ;= (27r)'1/me“§a(x. £)d¢

IfteRy, z € R, we have
L(z,t) = (2m) = (—4t)~* e®Dfa(z,£)dé, Vk €N,
R

hence we obtain all the required conditions on L.

Let us prove that condition 2 implies condition 1. Let . be real numbers
such that 8 —a = 1 — ¢ and u be a function of Coo1-per(R) which satisfies
supp(u) C Ugez Ja + £, 8 + £[. For any z € Jo, B[, we have

B
(Pu)(z) = / K(z, y)u(y)dy

G
= / L(z,z — y)u(y)dy

(2m)~! /R ea(z, )Xz (€) dE

So, the main point is now to prove that the function

oz, §) =/Re‘iftL(z‘,t)dt
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3.1.4.3 Main result

Proposition 3. 29 Let P be a pseudodifferential operator of order m on S which
admits a as e-symbol (e fixed in ]0,1[). Then, there exists an operator T of order
—oc such that ‘

(P -Tu)(z Zem’w (z,27n)un, Vu € Coo1—per(R).

neL

Proor. We begin with the case m < —1“ Let K be the kernel of P. Let 61,02 be
real numbers such-that 0 < &< &, < 2 and p(t) be a function belonging to D(R)
which is equal to 1 if |t| < é; andto O 1f {t| > 2. We can deﬁne the operator P1 by

(@) : / K(z.y)olz = )uly iy, € Contpe (R)

and the oper.'ator. Ty by Ty = P- P " The operator T is of order' —0Q. Iﬁdeed,
using Proposition 3.19, we have : \ .

T = [ Kt

with
K'(z,y) == K(z,9)(1 — p(z — 9)) € Coo(R X R).

Using Lemma 3.23, the function
oM (z,6) := / VK (2, 9)p(z.— y)dy
R

is a (1 — &,)-symbol of P. For every m € Z, we have a(l)(x,Zﬂ'n) =
e~ 22 ( P, (e%™))(z). The continuity of the operator P, gives

(Plu Yz) = Zez’”"’”a(l)(m 2Ny, Vu € Cool per(R).
nez '

The symbol a(z,£) —a(z, £) belongs to S~(R x R), so the K function defined by

= E 2™ @) (g(z,2mn) — oW (z, 27rn))
neZ : .

belongs t0 Coo(R x R) and allows us to define a pseudodifferential operator T3 of
order —co on S :

(Tou)(z) = /0 dy K(z,y)u(y), u € Co1per(R):

For any ¢ € Co 1--per(R), We have

(Tou) (x Z 2™ (g(z, 2mn) — oMz, 27m))

neZ
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So, we conclude by setting T :=T, = T3

(P =Tu) (z) = (P, + T2 )= e¥™a(z, 2rn)u
nezZ
Let us now consider the case m > —1. From m, we define £ € Ny and s € R as
in Proposition 3.28. One gets P = P' (1 - (& D)Q')“f where P’ is a pseudodifferential

operator of order s on S which admits the e-symbol o/(z, £) := ﬁzz%y The result

immediately follows. 8

3.2 Céa lemma applied to a large’ class of
pseudodifferential operators

Our main purpose is to show how the ©,,-spline wavelets can be used to obtain
efficient and very stable methods of resolution for some kind of boundary equations
To this end, we present a result providing an estimate of Céa type for strongly elliptic
pseudodifferential operators with constant coefficients. It concerns splines of any order
{see also [39]). The technique used here presents a new expression of the condition
leading to the estimate of Céa type. This expression gives then an easy description
of the relations between the degree of the splines and the meshes.

3.2.1 The Dirichlet problem for the Laplace’s equation

From [26], Sobolev spaces are the natural spaces to set the Dirichlet problem.

Proposition 3.30 If s>} and f € H s=3(T"), then the problem

{ —Au
u]r

has a unique solution v € H5(Q). »

0 inQ
f

In practice, the potential’s methods are widely used to solve this problem.

Definition 3.31 Let § € L*(T') and E(z) := —3 In(|z|) (fundamental solution for
—A). The single layer potential of density 3 on T is defined by the integral

VB)@) = [ B-3)84)dots) = =5 [ nlle = 4D B doty), = B,

and the double layer potential of density 8 on I' by

9= [ )00 = L [ €D 5100, e

2r Jr |z —yl?

where v is a unit normal to the bound’ary.,
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Proposition 3.32 For every 3 € L*(T), the functions V3 and K3 are harmonic in
R2\T.

Remark 3.33 Let us mention the physical significance of those potentials. The single
layer potential is the potential of charges distributed over I" with density 3 and the
double layer potential is the potential of dipoles distributed over I' with density
and oriented in the direction of the chosen normal (see [26]). We clearly don’t want
to develop here this physical aspect.

Remark 3.34 In the following, we will systematically choose v to be the unit inward
normal to the boundary.

If we bu>se the single layer poten'pial representation of u
, 1
u(@) = —5- [ (o~ yho) dotw), ze
T Jr
to solve the Dirichlet problem, the boundary equation for v is simply Vv = f with
(Vv)( = —‘——/ln lz —yDv(y)de(y); ze€Tl.
If we search the solution as a double layer potential

pet [EZyn,
ulz) = 27 Jr jx —yl? w(y)doly). z€,

the boundary equation for w is (3 + K)w = f with

Ku(z) = o / %;ﬁw(y) do(y), el

Let us mention a classical important result (see [29]).

Proposition 3.35 The operator V : H5(I') — H**Y(T') is an isomorphism for every
s if and only if the analytic capacity of { is not 1. Moreover % s+ K : H(I') — H*T)
is an isomorphism for every s € R. Since the boundazy is smooth K is a compact
operator from H*(T') to H*(T). s ~

3.2.2 A more general setting

These two boundary operators V- and % + K. can be considered -on functions
u € L . (R). As it is proved in the two following points, they are particular cases
of the following classical pseudodifferential operators with constant coefficients in the
periodic setting

P=b.Qf +5-Q° + Ko
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where by,b_ € C, SR,
= 3 [bPue®™, QPu(x) = 3 sgn(k)|klPue™

ke€Zy k€Zo

and, for all r € R, K, is a compact operator from H”'ﬁ r(R) into Hi_ ., (IR)
By Propositions 3.29, 3.25 and 3.26, the operator b+Qﬂ + b_ Q_ is a
pseudodifferential operator of order 5 on S of e-symbol , R

amo=m+m@«m§y

As announced above, let us consider the particular cases of the double and the
single layer potent1als

a) For the double layer potential, we have

1 : . ,
§+'K: ve L} (R Zu gtk 1 20 +Ku, v
keZo

which corresponds to 8 =0, b_ =0, by = 5 and
Ko: urm % + Ku
since K is compact from H'(I') into itself, Vr € R.
b) For the single layer potential, if ¥° is a parametrization of I* proportional to

arc length and defined in [0,1], we have

VUGMWWH—%AMM%—ﬂMMMS

="§177 /0 lln(%g(m)—__'-;f:;?—!) / In([e?™ — &%7|yi(s)ds

= K1u+V1u

where K is a compact operator from H{_pe,(]R) into Ceo1-per(R), Vr € R (K] is an
integral operator with a Cy, kernel). Since the operator '

1
we _517; /0 In([e%™ — e27|)u(s) ds
is such that :
1
-

k-

A A ’
_ 6277’ ‘/o ln(ll _ eziw‘s})e%wks ds
_ gk / oimks Z cos 27r£s)

e2z1rk »
— {Flk—' if kGZO

0 if k=0,

1
Vl(e2i7rk ) ln(|e2i1r‘ _ e2i“‘s|)e%”ks ds
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we get

=K Pl 2z7rk
Vu 1u+4 kezz ]k{u %€

This corresponds to § = —1, b_ =0,b, = and Ky=K;.

3.2.3 Céa lemma |

Let us present an adapted version of the Céa lemma (see {33]).

Lemma 3.36 (Céa) Let X,Y be Banach spaces and P a bijective operator of
L(X.Y). Let (V;)jen, (resp. (T};)jens) a sequence of subsets of X (resp. Y') such
that dim(V;) = dim(T;) < +oo for every j € Ny. Assume that the following two
conditions are satisfied

1. for every j € Ny, there is an operator P; e L(Y’ T;) such that P;(f) — f in
Y’ forevery f€Y'; '

2. there are ¢ > 0 and a compact: operator K € L(X, X) such that

sup  o(Pu)| = cllullx — || Kullx
veTy,llvllyr=1 i

for every u € V.
Then theze is J > O sucb that; for every j > J and u € X, the system -
v(Pu;) =v(Pu), veT;
has a unique solution u; € V;. Moreover, ‘there is C' > ’O such that

lu = ujllx < C inf |lu—w|x.
weV;

In this lemma, the second condition is called the coercivity condition.

In the next proposition, we keep all the notations of Lemma 3.36 and we follow
the proof of [5].

Proposition 3.37 If X,Y are Hilbert spaces and if the conditions 1. and 2. of
Lemma 3.36 are satisfied, then there is J; € Ny such that for every j > Jy, the

estimation
sup  fu(Pu)| 2 cllullx — [[Kullx, YueV;

veTy,jlollyr=1

remains valid with K = 0 and a smaller constant c.
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PROOF. [t J € Ny ang “ € Vi such thay Kusg There js Y € T} such thas
lorllys = 1 -and Ivl(Pu)I 2 allufly ~ 1K ulf5 With 0 < ¢, < Let ¢ ¢ [0, 27 such,

that [y, (Pu)| = o, (Puje~16. The functjop Uz i= ey, o T; satisfies lloallys = 1 and
va(Pu) > elfuflx — & ullx. We define the Operator T by

T: Y Sy y»—»(y)y

It is an isometyic bijection between y- and Yy,
For every £ e N, we define the Operator S, by

Se=Proyr_p )T(P*)=1 50

We get lim,_, IISe] = 0. Indeed, the Sequence J - B converges strongly to @ and
K* g &.compact opeygt (see [5])
. We define 1 by

K
Vis gy P,T(P*)‘IK*W;

One gets 1/ ¢ Lo Vily, < + 1Py &) and

IV (Pu)|
> Re(V(Py))
Ky

= vy(Pu) 4 Re( (T(P*)‘lk*m) (Pu))

. *¥Y—=1 7% Ku
“Re(((7 - Byp(pry m)(ﬁ’u})
S . . ; f =1y Ky f
=P+ Rl — [ (1 BIT(P)-1g Tealy) (7o) |
= v(Pu) + | xy, ~| (Pu, T-1( _ P, )T(P*)‘IK*HK[,(TTIX);//

i

Z (e = IS,y

0 We cap conclude sinee we have

ety <y PP 2 P!V Pl >

'CJ

AT BTy el

j > Jl", J1€N, chosen sych that 1S < 921 N A

4 Application of the Céa lempm,

APPly the Cgq lemma to Our operator P, we Raturally chooge X = Hfffe,(R) and
H} e (R) for s fixed iy R and we consider the Operator

X into ¥
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For the spaces V; (7 € No), we choose the spaces VJ(-,TH), for r fixed in N and )
fixed in [0,1. The condition ngl) c Hi*P(R) requires 8 +B<r+3
For every j € No, we define the space Tj by ’

2
T, = {(r Oap @ 96 vemy

with m fixed in No. The condition V§2m) c Hi%w R) is satisfied if s > 3
For every j € No, we define P; as the orthogonal projector from Y' onto Tj.

If s > 0, the first condition of Lemma 3.36 is a consequence of the Propositions
3.38 and 3.39 below.

Proposition 3.38 If's > %, the union Ujeno T is dense in Y.

PROOF. Let € € y’. By Riesz lemma, thereis F€Y such that €(-) = (-, F)y. For
(2m) .
g € UjenoV; W€ have o
le = Qap iy = sup le'(f)—{f> NP @l
ity st .

sup |(f, Fyy —{f> 9 Hr o ®|
Iflly st

sup |(f, Py — {(f+ G)vl
Iy <t

|F = Gliv [
Fo—got 3 K% 1Fk— |j2m=9)gi

k€Zo

i

i

I

1l

i

[ R
Fo—go+ 3 Ihp2em= Ik B, gl

k€ZLo

= \|F = glpzmm

i

with G = g°+zkezo \k\Q(m“‘s)gke"%“k‘ cY and F' = FotSorezo ‘k\z(s—m)er—%wk c
HM S (R). We conclude using Proposition 2.16. 1 .

—per
Proposition 3.39 For every feY', we have Pi(f) v f if § — +0-

Proor. Let f e Yy’ and € > 0. By Proposition 3.38, there exists jo € No and
fo € T such that ||f — follyr < £. For every j = Jos it is clear that P;i(fo) = fo-
Then we have

WF — Pl = ILf = follyr + IB;(fo) — PiDllyr = &

So, if the coercivity condition is satisfied, then thereis J >0 such that, for every
j>Jandu€ H ffger(R), the Galerkin system

2
(Puj, 9 HP poe® = (Pu, 9)Hp o®) 9 € V; ™)



has a unique solution u; € V( 7+1) Moreover, there is C > 0 such that

v llu - Ujllyg+€er(m) <C iﬁfﬂl flu— w”z{;’*ﬁﬂ(m)
16

Therefore, the main point is to check the coercivity condition. It is the aim of the
next subsection.

3.2.5 Coercivity

In a first step, we give in Theorem 3.41 a necessary and sufficient condition of
coercivity for the operator

P H (R) = H pu(R): ¥ b Q%u +b-Qu + vo.

1-per

The following lemma will be \seful to prove this theorem.

Lemma 3.40 Let B € R, by,b- €C, T E N such that r > 8 and 0 € [0,2x]. We
consider the function a € 0, 1[— &(a,0,r) where

lﬁ

£(a,0,7) = Z e"”o(b++b_sgn(17+a))z“—_i_‘avﬁ
= ,:_on(a,e,r) + (=1y*c_€E_(a,0.7)
with _ ' "
£ule6,r) = Z(M;;il L ewin= 3 S

p=—00

and ¢y =by +b-, = by — b_. We define the real number v by
= inf{Re(c4+)s Re(c-)}-
1) This function & is continuous and satisfies »

1 +00 tT—BN(7)(i, a,0)
) — — ——————— S
&(a,0,7) Tr+1-0) fb coshi(t) — cos(6)

with » _ o
NO(t,a,8) 1= 6eH(e! — €9) + (~1) e (e” =€)

We also have

al_if(r)l+ (17‘+1"ﬁ£+(a" 9, T) = 1
lim (1 - a) ' PE_(a,0,7) = .

a—1"
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2) Assume (b =0 and b, #0) or (bi,b- €R and ¥v>0). If r is odd (réspectively
T is even), then

E(a,0,7) # O Va e 0,1[e 07 (réspectively 8 # 0).
3) Assume v > 0. If r is odd (respectively r is even), then
0 = 0 (respectively 6 =) = £(a,0,7) £0Va € 1o, 1.
PROOF. See [8]. & ’
Theorem 3.41 Let m be & strictly positive integer, r € N, 5,8 € R; b.,b. € C,
6 €[0,1], P the pseudodifferential operator ‘ »
. PiHPE(R) = Hio(R): uis 5,Q%u +bQPut ug

and assume that the conditions s > 1 and r+ 3 > s+ 8 are satisfied. Then there is
¢ > 0 such that

o S PE, Q@] > el s e
gev; -llgll,,lz:u;;(m=1 '
for every j € N and every f € V;f‘;“) if and only if by # +b_ and the filnbtiqn .
+00 4r—B ar(r) ‘ .
. (7) - PN (t’ a, 9)
o op(a,6) = /0 cosh(t) — cos() at
with o
NOU(t,a,0) := (by + b_)e~%(et — )+ (=1)* by — b_)e (e — e~t),
and 6 :=2mé does not vanish in ]0,1].

PROOF. See [8]. »

In order to use collocation methods, we also need a similar result for the norm
I . |
Proposition 3.42 Let m be a strictly positive integer, r €N, 5,8 € R, b,,b_ € C,
6 €[0,1], P the bijective Dseudodifferential operator .

P: H;fge,(R) — H} o(R): urs b,Q%u+ b Q% + g
and assume that the conditions s > %‘, 7'+:‘1,- >s+8> % and 2m—s > % are satisfied.
There is ¢ > 0 such that

sup (Pf, 9>H1'fi,,,e.(“", —>- c”,f”HfIg,,(R)

(2m) =
g€V ™ gl imes =1

for every j € N and every fe V}f;l), if and only if there is ¢; > 0O such that

sup [P, @ml| = c1ll fllors
9€VE™ ligliam-s=1

for every j € N and every f € V;;“) .
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PROOF. Let us prove that the condition is necessary.
Using Proposition 3.37, one has merely to prove that there exist an operator K,
compact from HS? (R) into itself and a constant ¢ > 0 such that

1-per
sup {Pf, g)m| 2 <l flls+s = 1K fllsss

9€VE™ lgllam—s=1

for every j € N and every f € V;}“)«

Let j €N and f € V5", Forany g € V™ we have

PF .\ g)ml 2 HPS, 9)ap ] = I(PF)(0) 9(0) — foTol.

It follows that there is a constant ¢’ > 0 such that

(sup KPf . ghml 2 NI fllsws = sup [(P£)(0)g(0) — fo"g‘qlu

- 9€VE™ ligliam-s=1 9€V™ ligllam-s=1

There is a constant C > 0 such that, for any g € V;-zm) such that ||gllam—s = 1,
we have .

2/(PAOI9(0) +2|follgol®
c(IPHO)F +1ff?).

[(P£)(©0)9(0) ~ foTo I*

IAIA

Then we define the operator

K- H5*E (R)—-»Hs“’ (R) f—Kf

1-per 1-per
by

(Kflo = VC(PFH)O)
(Kf)l = \/afo
(Kf)x = 0. VkeZ\{0.1}.

This operator K is compact from Hffge, (R) into Hfffe,.(R) since for every
f e H R (R), we have = ’ 4 "

—~per

C(2]bs 3 1HPfe +- 3 senlk) kP 1| +3150P)

k€Zo k€Zo
c(2|<f Wgss gl + 3 ) grse wl?)
’ Hl_per(R) o Hl-per.(R)

2
K g, o

1A

where the functions u;v € Hffge, (R) (since s > 3) are defined by
up =0, ug:=(by + b_ sgn(k))|k|">#, Yk € Z,

and
v:=1 v :=0, Vk € Zy.
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We get

sup [(Pf)(0)9(0) - foo| < | K fllgs+e cay:
gEV(-2m)y"9"2m—s=l ) e
F

which proves that the condition is necessary.
An easy adaptation of the proof above shows that the condition is sufficient. s

The next proposition gives some important particular cases of application. It is
an obvious corollary of Theorem 3.41 based on the second and third points of Lemma
3.40. ' ‘

Proposition 3.43 1) Assume (b_ =0 and by #0) or (by,b_ €R and v>0). Ifr
is odd (respectively r is even), the coercivity condition is satisfied if and only if § # %
(respectively § #0).

2) Assume v > 0. If r is odd (respectively r is even), the coercivity condition is
satisfied in case § = O (respectively 6 = 1) »

Remark 3.44 The condition v > 0 is called the strong ellipticity condition (see [3])

Now in a second step, let us consider our more general operator
P=b.Q% +b_Q° + K,.

As it is proved in. Proposition 3.46, the coereivity conditions for the norms ||| Hi_per(R)
and [| - [|s can be deduced from Theorem 3.41. Lemma 3.45 will be useful to prove
this proposition.

Lemma 3.45 Let H,. H, be Hilbert épacés and K, bea compact operator from Hy
into H,. Then there is a compact operator K. from H, into itself such that

K ull, = | Kullg,, Yu€ Hip.

PROOF.  There are an orthonormal sequence ('dm)meN(; of H; and a sequence
{(Am)men, Of [0, +00[ such that A, — 0 if m — 400 and

KiKu= Y Am(t, tm)mtm, Vu€ Hi.
me&Ny
The operator K defined by
Ku = Z Vam {u, um');},um, Yu € Hy

meNy

satisfies all the required conditions. a
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Proposition 3.46 Let m be a strictly positive integer, r €N, 5,8 € R, b,,b_ € C,
6 € [0,1], P the bijective pseudodifferential operator

P:HIE (R) — Hy_,o(R): ur b, Qiu+b.Q%u+ Ko
where for all t € R, K, is compact from Hffge,(R) into H}_,(R). Assume that
the conditions s > % and r+ %— > s+ [ are satisfied and that the principal part of
P satisfies the inequality of Theorem 3.41. Then there are c;, c; > 0 and compact
operators Ky, Ky : Hi*h, (R) — H;*5, (R) such that

sup (Pf, Qar @ = allfllge gy~ 1B 1fllgers )
2 P 1 per( ) 1 per(
gevi™, gl 2~y =1

and
sup (Pf, g)m| = coll flls+s — | Kaflls+s
9eV™ llgllam-s=1
for every j and every f € Vj(-:;“). These inequalities remain also valid with K, = 0,
Ky = 0 and smaller constants ¢y, ¢2.
PROOF. Let us prove the first coercivity condition. The second one can be established

in the same way.
We write P = Py+ K’ with K' := Ko—T and T : u — uo. Let j € Ny and
fe V%“). We have

ey ”211192 o KPf, gap . .m®l
LY )

> sw (Pof s Dbl = sup KE'f . gap o
9V I8l y2m—s ) =1 9ev; “”g“Hf’_"p‘e:(m:l

> erll Fll sy — 1K Fllog_eniy-
The operator K’ is compact from Hf"'_'ge,(R) into H}_,.(R), for every ¢ € R. By
Lemma 3.45, there is a operator K" compact from Hfffe,,(]R) into itself such that
|IK”u“Hi’j€"(R) < I‘!Klu”ﬁf_per(“(% Vu € Hisjger(R)“

The last part is a direct consequence of Proposition 3.37. 8

3.2.6 Direct consequence
Proposition 3.47 We assume that the assumptions of Céa lemma are satisfied with
X =H,(R), Y=H_,.([R)

1—per
V=V, T={C, Qappam: 9€ V™) ViENg
(seR, meNy, reN, §€[0,1]). Then, ¥j € Ny, we have
”u - ui”Hffge,(R) < C(Z_j)s_(s+ﬁ)|lulle (R): Vu € Hig—per(R)

1-per

ifs+B<S<r+lands+B<r+3.1
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3.2.7 Nitsche trick

Proposition 3.48 We assume again that the assumptions of Céa lemma are satisfied
with
X = H{*2,(R), Y =H;_,.(R)

~Per
V=Vt Ti={(, 9up,.m: 9€ V™) VieN
(s€R, meNy, r€N, §€[0,1]). If in addition, P: Hy*? (R) — Hi_,.(R) is an
isomorphism Vt € R and s > 1, then, Vj € Ny, we have
® < C(T) (275 Tlul| s ®> Vu€H]  (R)

[ ..

1—per

HB<T<s+F<S<r+lands+pB<r+4.

PROOF. Let j € No, u € H{ (R) and e := u — u;. We have
e € Hy*S (R) C HY ,(R). Since

1—per

(Pe, g)mp,.® =0, Vg € V,(zm),

we get : (2m)
<8 , Pfgl)H;"_Tﬁr(R) = O, Vgl € V] m .
We have
Hfﬁ”H{_pe,(R) = heﬁfﬁg_,(m' I{e h>HI"$’§,(R)l'

1l-per

ikl 2my2g-7 =1
- paduil+ 3

Let h e HfT[;fB'T(R) such that ||A| HIm0T () = 1. We have
les W g @yl = e, P*g)ymis ) with g € HT"T(R)
I(ev P*(g - 91)>H{1§€,(R)|’ Vgl € V,GM),

lell e @ IP"(9 = 9ol g2meo-ocmy

IN A

‘ C”e”Hffger(R) llg — gl”H?’_"p‘e:(R)’
where C is a constant independent of g;. Therefore we get
I{e, h)H{'_‘_‘;gr(R)l < C“e”H;jfe,(R) in(lem) llg ~ gl”Hfﬁ‘;;(R)
fnEY; ‘
SO P ullng. (@I g oo gy
C(TY 27> T ull g

1=-per

(M@ |ullng

l-per

C (T2 Tl s

I

®lgll HImHO-T(R)

®(P) ™Al gamso-r )

IA

~per

(R) ”h”Hf'_";fﬁ-T(R)“
Hence we get
lellaz . @ < C"(TME@7) Tlullas @) Vo€ Hi pu(R)-
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3.3 Collocation methods

We consider our operator
P=b,Q° +b_.Q° + K,

bijective f'rom HtE (R) into Hy e (]R Let 6 € [0,1[. We assume again that s > 1,

1-per

2m —s > 2 and r + >s+0> — and we suppose that the principal part of P
satisfies the technical condmon of coerc1v1ty with 8 = 274.

To get an approximate solution of Pu = f, one looks for u; € V(H'l) such ‘that
the collocation equations

(Pu)(27k) = f(27k), k=0.....2 -1, (3.1)
are satisfied.

Proposition 3.49 For 7 € N large enough, the collocation system 3.1 is equivalent
to the Galerkin system

(Puj, @m={f, @m» gEVI™.

PROOF.. See [8]. 1

Now we look at the condition number of the matrix of this system. The integer
numbers m and 7 are fixed respectively in Ny and N; & € [0,1[. We have to choose
some test and trial functions.

a) Let us precise the test functions.
For every s fixed in ]—o00,2m — &[, let {up (+2m) . p € N} be a Riesz basis of
_pe,(R) constltuted by spline functlons of degree 2m —1 such that for every j € N,

the functions vp ™) belong to V( ™ for 0 < p < 2. The Riesz bounds are denoted
by ™ and C(2m) (0 < *™ < C (2my,

If s satisfies 2 ;<s<2m-— 1 the functions
v(()s,2m) =1
and

vz(’s.Zm) — 2a(m— s) em;a.b

if p= 2%+ b is the dyadic decomposition of p {(a € N; 0 < b < 2%) provide a first
example of such test functions.

More generally, if ¢ € {0,...,m} and if s satisfies the condition
$+4—m<s<{+m- 3, then the functions

v(gs,Zm) =1

and
(s 2m) . 2a(£—s)\1,(5)

m;a,b

227



if p = 2%+ b is the dyadic decomposition of p (a € N; 0 < b < 2%) can be used as
test functions.

b) Now let us precise the trial functions.

For every s fixed in R satisfying s < r+ 1, let {u$™*Y : g € N} be a Riesz
basis of Hj_,,(R) constituted by spline functions of degree r. We ask that for every
j € N, the functions u™"*" belong to VJ(.:;H) for 0 < g < 2. Let us denote the Riesz
bounds by d ™" and DI*Y (0 < di* < DI*+Y),

For example, if r is odd. we can choose the Riesz basis

{1.226=90Y), (-—27*"1§): a €N, 0<b< 2%
with £ fixed in {0. .., %5} such that [s— ¢ < §.

The next result shows that for the test and trial functions chosen above, the
condition number of the collocation system is essentially determined by the Riesz
constants.

Proposition 3.50 Let m € Ny, » € N, 5,6 € R, b.,b. € C such that
5<s8<2m-—3%, r+1>s+8>4% and§€(0,1]. If the operator
Hs-e-[f

1-~per

(R) = Hi ,o(R): ur b,Q5u+b_Q%u + Kou

-is bijective and has a principal part which satisfies the conditions of Theorem 3.41
with @ = 2m§, then there is R > 0 such that the matrices PU) (j € N) of dimension
27+! defined by .
| PO .= ((Pués+6'7+l), vézm—s‘zm)>m)05p,q<2i+l
satisfy
14—1 C,(2m)
T](PU)) < RSB 3+B 2m~s

d(r—o—l) (2m¢
s+8 “2m-s

if j is large enough. Here, for any j €N, 5 denotes the condition number for the ¢

norm
a(P) = PO (PP)
with
I = swp [ylwn= swp  sup |z, g)ewnl

Hyll gs 41 =1 iyl g1 =1 lizll gje1=1

PROOF. See [8]. »

228



Chapter 4
Numerical experiments

We have performed some numerical experiments with the double and the single layer
potentials. Our first aim is to test the asymptotic convergence of the condition number
of the stiffness matrix obtained using the ©,,,;x functions. We give also some examples
of convergence of the solution.

In this chapter, we present the results we have obtained as well as the tools used
to carry out these numerical experiments.

4.1 Explicit computation of the functions Vs

In thls section, we explain how to get the polynomlals that.define the spline functions
VY (meNy, L€ {0,...,m}).

For every k € N and j € {0,...,k}, we denote by P[j,k,z] the polynomial
Niy1lyi+11(z). Those polynomials P[] k,z] (ke N, j €{0,...,k}) can be explicitly
computed by induction as follows .

P[0,0,2] = 1,
T
PO,r+1,z] = / dy Plo,r,z —y], Vr €N,
o Jo L

1 z=3
Plj,r+1,z] = / dyPLj—l,r,x——y]+/ dy Plj, v,z — 9],
z—j L O SR
Vr e NOs V7 € {l'r . ‘"’,’:,}"
1
Plr+1,7+1,1] =/ dy P[r,r,z —y), VreN.
(r+1)
For every m € No and n € {0,. .,2(2m — 1) — 1}, we denote by PCW[n,m, z,0]
the polynomial ¢mf[%, +]( z). We have

inf’{2m—2,n-—m}
PCWin,m,z,0] =2 Z Citm+rPln—i—m,m—1,22 —i —m)]

i=sup{—m.n—2m+1}
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where the coefficients ¢, k € {1,...,3m — 1}, are the coefficients of the polynomial
ei(3m-—2)€ D ( 6) ,eie -

taken in decreasing order (¢, is the coefficient of 23™~2).

For every m € No, £ € {1,.. m} and n € {0,...,2(2m — 1) — 1}, we denote by
PCW(n,m,z,£ the polynomlal »P ‘[n __-t_](x) An inductive way to compute these
polynomials is the following , ! '

Fenjn,m,z,4] = PCW(n,m,s,{)ds
2 .
PCWn,m,z, €] = ZFcn Z ~1] + Fch[n, m,x,f— 1].' .
u=0

Of course, we get
Omi'[%‘_n_};] (z) = PCWin,m, z,m], vm €Ny, Vo€ {0,...,2(2m - 1) — 1}

Another more direct way to compute 0m|[£‘ 241y I8 the following

. . i m—1
PCW(n,m,z,m 1 (=1)*P[m + k, 2m——1m+k
22m 1
k=wm+1

. Pln—m- k+12m 1,2z —m —~ k+1]
The couespondmg per10d1c polynomlals '
PCWper[n,m, z,£. j] := \1:5,1;‘,.;[#[, ze)(2), €N E {0, 211}, 2 € {0,...,m}

are given by
o _ _ Floor(279=1n} o B
PCWperln,m, z,¢,5] = 234 > PCWin — k27+,m, 27 (z — k), {]
Ceiling[2-7-1(—dm+n+3)] o V ‘
where we have used Notation 4.1.

Notation 4.1 If z is a real number, we denote by Ceiling(z) the smallest integer
larger than z and by Floor(z) the largest integer smaller than z.

4.2 Boundaries

We choose the two connected open subsets 2 of R? represented Oon Fig 12,

Fig 12
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Their boundaries are smooth. connected and given respectively by

m(t) ((cos(67rt)+8)cos(27rt),(sin(47rt)+8) sin(27rt)), telo,1]

Ya(?)

(3 sin(2xt) + sin(4xt), —3 cos(éwt) - cos(47rt)>, teo,1].

We work with a parameterization by arc length. This requires to solve the
autonomous differential equation

1
Dyl

Wheze 'y(t) t € [0, 1] is the parametnzatlon of the boundary I' = 9Q2. Thls can be
done using a standard integration method (Runge-Kutta method of order 4) before
the computation of the matrices and takes a very short time since it depends hnearly
on the number of. points.

Let 4*(t) be the parametrization of ' proportional to arc length and defined in
[0,1]

Dyu = w(0) =0

¥ () = y(u(tl), L= /O D ()]l dt.

4.3 The functions Ok as test and trial functions

In this section, we give a way to compute the elements of the matrices PY) when the
trial and test functions are chosen to be the same and are related to the functions
Omak )

If we work with the double or the single layer potential. we can remark that, as
far as the test and trial bases are the same, the coercivity condition is satisfied for
§ = 0, independently of the choice of the spline functions.

Let m € Ny and j € N. The matrix P? (see Proposition 3 50) is given by

. é é
tm+%.2m} (m+ 2m)
PY) = ((qu : » Up m )0<p g<2+t

with
(m+£ 2m) 1 lf e =
Uy = -8 e i L
2 2@m;i,k if £=2"+ke No‘,

We get
S P = (27r)—2mL(‘7')Q(‘7')

where the matrices L) and Q) are defined by
(Q(j))p,q = (Pvg 4 2m))( ) 0<pg<2*

. 4L ) . .
LMy = (D™ 7" )(sp), 0<p< 2, 0<q< 2t
(LMog = (21)*"0g0, 0< g <2
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Here the collocation points s, are given by
s = 0 if £=0
Tl HE if =24k

The next two subsections explain how we have computed the matrices Q(7 ) and
L)

4.3.1 Matrix QU

The computation of the elements of the matrix QU) can be performed easily using the
Gauss-Legendre method with weights. ‘It allows us to deal with a logarithm singularity
in the case of the single layer potential.

More- precisely, if we consider the single layer potential problem, the elements
of the matrix QU) are computed as follows (j fixed in N; p € {1,...,2/*1 — 1},
g €{0,..., 27 —1}; n:=21*g,)

; +£.2
@Mpg = (Vo™ 2"™)(s,)
L 27 (n—1)+1
= —27Z' 25 1(nt1) In ('7;—per(sp) - 7f—pet(s)l) vq,l"PEI(s) ds

) [ e . (M) vg(s) ds

27T 2-3~1(n-1) Isp - S|

L 271 ; .
- In(s) (vg(sp — 8) +ve(sp + 8)) ds

2 Jo ‘ v

{m+5 ,2m)

where for the sake of simplicity we write v, instead of v and with

FY;_—-per(S) = 'Y*(S mod(l)),
- Vgi-pe(s) = vg(smod(1)), Vge{0,...,27" —1}.
The first integrals are evaluated using the classical Gauss-Legendre method for

the weight w(s) = 1. The last one is evaluated by the same method for the weight
w(s) = In{s).

4.3.2 Matrix LU)

Forevery i € N and n € {0,. .,2"*1 -1}, let the constant C[n, m, i] be the coefficient
of z™! in PCWper[n, m,z, 0 i) and C[-1, m, i = C[2* —1,m,i]. For every
z €[0,1[\ U2Z," {52}, we have

ottl
D" Omy(z) = (m=1)! 3 Clnm,i] xj 2 ass ()
n=0
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Therefore, for every i € {0,...,j} and every g € {0,...,2/*! — 1}, we have
(LD)ys , = 278 (m — 1)! (C’[Z”lsq, m,i] — C[2*1s, — 1,m, z])

and, Vk € {1,...,2¢ — 1}, we get
(LM gssrg = (LM,

if 7 is such that s, = (s, — 27*k) mod (1). So, it is important to compute the s, and

such 7.
First of all, the collocation points s, (£ € {0,...,27*! — 1}) can be obtained by

the following algorithm
So = 0‘
for( =0; ¢ < j;4+=1)
for(k=2n=01k<2* - L k+=1,n+=2)

s, = 27 1n
For every r € {1,..., j}, we denote by Pl p 7 the inverse of the function 2"*1s
with ‘
s: {0,1,..., 27" -1} - {0}u{27n: i€ {1, .. ,r+1},ne{L,3,...,2°-1}} : L= 5
The points p ) (€€ {0,...,2** = 1}) can be obtained by the algorithm

p(()"‘) = 0,
for(i=0;i<7r;i+=1)
fork=2n=1k<2" -1, k+=1,n+=2)

(-
p,:zf'—z' - k

Now we can easily compute the inferior bloc triangular matrix LU . The
dimensions of the diagonal blocs are given by 1, 20, 21, 22,...27. Remark that if

J € Np, we get
o LU-1 1o
) = :

for some matrices A, B. So, we initialize L) to 0 and fill in it level by level (by a
level we mean all the lines conespondmg to a diagonal bloc as presented above).
For every integer r € [Jm, j], we can fill in the (r + 2)-th level as follows.
In a first step, we fill in the non-diagonal blocs using the algorithm

for(;p =2",£=0;i < 27 i+ = 1,4+ =1)
for(n=0;n< 2", n+=1)
ifl+n<2) (L(j)). o) = 2"'§(m — 1) (C[2n, m,r]— C[2n —1,m, r])

else (L(”) G-y =27 ’E( —1)’( [2n,m,r]—C[2n—1,m,r])“

LPgpn_2r
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In a second step, the diagonal bloc is filled in in a more simply way using the
algorithm

for(s=2"0=0;i <2 i+ = 1,04+ = 1)
for(n=0;n<2"; n+ =1)
fl+n < 2) (L9 prr04m = 2"‘§(m -1 (C[2n +1,m,r} — C{2n,m, r])

else (LY)); g = 2775 (m — 1)! (C[Zn +1,m,r] - C[2n,m, r])”

4.3.3 Results

The figure “Fig 13” (resp. “Fig 14”) gives the £2-condition number 7 of the matrix
PU) for the double and the single layer potential on 1 (tesp. ¥2). It also gives the L?
norm of the error (e;) for the second member f(z) = 2sin(27z) and the estimated
exponent of convergence
L In(gx)
eoc(j) = "OR
Remind that the trial and test functions are chosen to be the same (548 = 2m—s).
For the double layer potential, we have therefore m = s and for m > %, we can
use the Riesz basis {1,0p;;:J >0, 0 <k <27} We treat the cases m = 1 (linear
splines), and m = 2 (cubic splines).
For the single layer potential, we have m = s — -21; and for m > 1, we can use the
Riesz basis {1, Z%Gm;jyk :7>0,0<k <2} We can not use here linear splines.

Double layer Single layer
potential potential
j m=1 - m=2 ‘ m =2
n error | eoc | 7 error ‘j'eoc | 7 error | eoc
22717101 13.46 { 2.6 e-01 20.15 | 4.4 e-02

237120e01]182[1585}9.0e-02]1.55]203.12]4.1e-02]0.10
242 1520211961812 |6.0e-03|3.91]535.43 | 6.8 e-03 | 2.58
244 11.3e02]1.95]1825|54e-04|3.47|79366]7.1e-04]327
244 33e-03[2.01]1827]1.9e-05|4.83|831.60]2.0e-05]5.16 |
245(80e-041206|18.27 | 83e-07]452|833.82]7.6e07]470
2451 1.7e-04 227 ]18.27 | 4.0e-08 | 4.37 | 834.07 | 4.3 e-08 | 4.13

=] Oy O ] o o] =

Fig 13
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Double layer Single layer
potential potential
m= oo m=2 m=2

N~

n error | eoc | ' n eIror | eoc Ui error | eoc
1l 2.35 ] 5.2 e-01 ' 12.87 | 8.7 e-02 23.69 | 3.1 e-01
240 [ 1.5e01]1.80[13.76 | 4.5e-020.96 | 163.97 | 1.9e-01 | 0.73
241 | 42e02[1.83{1435|15e-02|1.62]56502] 1.3e-01]0.48
241 11.1e02]196|1532[29e03[235(921.16 | 8.1e-02]0.73
242 [2.7e03]2.04 15922604343 ]98299]22¢e-02]1.89
242 | 64e04]206)]1600|84¢06|496]989.04 | 1.3e-03]405
243 [ 1.4e04 221 ]16.00 | 3.6 e-07 | 4.56 | 990.20 | 3.1 e-05 | 5.42

| o o | ool =

Fig 14

4.4 A comparison with the functions Vs,

For m fixed in Ny and j € N, it seems natural to compare the construction that we
present in the previous section (O 1 as test and trial functions) with the analogous
construction using the functions Wa,; x.

Let us expose briefly how to compute the matrix

P = (<Pvém+§,2m) i v;m+§,2m).>m)

0<p,g<27+}
if
(m+% 2m) 1 if £=0
Ve =\ g-(m+fy o ;
2 P Womue if £=2"+k €Ny

Retaining the definition of the collocation points given in the previous section, we get
PO = yO TV 4 (2m)-2m i) |
where the matrices LU} and QU are defined by
(Q)pg = (PU™5™)(s,), 0<pq<2
(*C(j))p,q = (Dzmvz()m+§.2m))(sq)’ 0<pg< 2,
and the vectors Y) and LY’ by

, 8 om .
YD), = o™ 7 (0), 0<p< 2
L)y = (@D)oq 0<g< 2L

The chart “rig.15” gives a comparison between the condition numbers obtained
with the functions ©p;x and Won; . This comparison is carried out in the case of
the double layer potential on 7.
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it . m=1 m=2 . m=3

FCtS 61;@;6 Fcts \Ilg;i,k Fets @gmk Fets \1’4;1',]; Fets @3;1;,]9 Fcts \IIG;i,k
3 2.42 21.94 | 18.12. 87.98 150.22 797.11
4 244 2284 ¢ 18.25 88.03.| ~ 150.50 797.13
5 2441 - 2358 1827 | . 88.05] 150.58 797.13
6 | 245, 2418 18.27 88.06 150.58 79713
7 545 2468 1827  8306| 150858  797.13

Fig. 15

4.5 Trial basis different from the test basis

In this section, we present three examples of stiffness matrices in which test and trial
functions are chosen to be different. They are all concerned with the double layer
potential on v, :

4.5.0.1 Example 1: s=m=1;7=3
We choose as bases
w - d1 if ¢g=0 .
¢ - 2°Oq,p if ¢g=2°+b€N,,

o = 1 it p=0
P @l;a,b if p=2°+beNy

and we get , o
PO = ((Puq» vp)l)osp,q<2j+x = L(J)Q(n

where LU is the matrix LV) previously given for m = 1 and where
(Qu))p,q = (Puq)(sp)7 0<pg<2itt

4.5.0.2 Example 2: s=m=2;r=5
We choose as bases
v = 1 if ¢g=0
L 2a@3;a~b if g=2%4b€eN,,

{1 if p=0

T Ones if p=22+beN,

and we get ' o
PO = ((Puq , UP>2)OSp,q<2j+1 = L(J)Q(J)

where LU is the matrix L) previously given for m = 2 and where

(Q(‘j))p,q = (Pu,)(sp), 0<p,g< 2.
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4.5.0.3 Example 3: s=m=3;r=3

Here, we choose as bases

_ {1 if ¢g=0

Y 2704, if ¢=2+be Ny,
1 if p=0
U = ) Opep if p=20+beN,

and we get . o
PO = (( Pu,, ”P>3)osp,q<27'+1 = LOQu)

where L) is the matrix L) previously given for m = 3 and where
(Q(‘j))p,q = (Pug)(sp), 0<p,g< 2t

4.5.0.4 Condition number

Double layer potential
7 Example 1 Example 2 Example 3

n error | eoc | 7 error | eoc 7 error | eoc
451 | 6.7 e-02 596 | 6.2 e-02 7.22 | 1.2 -00
495]113e02{234|700|13e02]224]19.07]7.3e01][0.74
5.06 | 4.0e-04 | 503 |803]|43e04]492({3820]9.9e02]288
520119605442 1811]13e-05]|505[4717118¢02|248
532 52e07]518|811|81e08]|734(49.64]1.2e-03]382
5.42 1 2.6 e08 | 4.35 | 8.11 { 2.1 ¢-10 | 8.55 | 49.87 | 1.1 e-04 | 3.52
551114609416 (811 [81e12]472|49.9211.0e-05] 342

= O U x| QO] DO =

Fig. 16

4.6 A remark about the first basis functions

When we have a look at the figures “Fig. 13” and “Fig 14", we see that in the single
layer potential case, the condition number grows up significantly during the first levels.
So it turns out that it is important to choose very carefully the first functions whose
support is the full intérval. This concerns only a few number of functions (2Celing(J=)
for splines of degree 2m — 1) and can significantly modify the results. This is quite
natural since the choice of the basis is made to obtain a very good asymptotic behavior
which can be damaged by a bad choice of the first functions.

So we propose in this section some alternative first functions. They can in some
cases lead to a significantly lower condition number. For example, in the single layer
potential case on the boundary +;, the condition number of the stiffness matrix
decreases from 831 down to 34 when we use the first functions presented below
with a convenient constant factor.
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4.6.1 General setting

Let m fixed in Ny and let £,, be the integer Ceiling(J,,). We define the functions
S;, 5 €{0, .., 2% — 1}, by

So(ﬂ)) = 1
e2z'7r(2fmk+j)z
Si(z) = S Se{l... 2t —1)
i(2) kezz 2ok + jyom 7 €f{ }
The functions Sy, ..., Seem; are orthogonal in L(]0, 1[) and form a basis of V(Zm) .

For every j € {0,...,2% — 1}, one gets
§j(z —27) = IS, (a),

so it suffices to compute each function S; on I :=]—27fm~1 2=tm-1[
For je {1,...,2 —1} and z € I, we have

Si(z) = —e®i™ Res_z-em( f‘”(z))

sin(rz)
with ‘
. eiz(o -sgn(8)w)

() = : e 9lm+1
fx7 (Z) = W, 0 =2 .

4.6.2 Explicit computation of those functions for m = 2

The functions S; (j = 1,2,3) are given on |3, §[ by

Si(z) = 96(1+6zx-—24z + 32(sgn(z) — i)23)
So(z) = 77:8(1—96x + 256 sgn(z)z®)

The use of the first functions
So R6(51) - Sz Im(Sl)
T y Up = » , Ug 1= , Ug 1=
(1Sollz2go,1p IRe(S)llzzqoap” ~ ISellz2goap 1Zm{Si)llz2go.1p

which are orthonormal in L2(]0,1[) give good results. On ]0,1[, they are given
explicitly by

Ug =

uo(z) = 1

u(z) = \/31)’——;3 (1 - 24x2+32x3—8(2x—1)3)

us(z) = ﬁ—f(l—%x + 2562° +8Z( 1)*(dz — k)3 )
P

us(z) = \/g(&c 3243 +Z Y4z — 1 — 2k)° )
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The figure rig 17 gives a representation of those functions.

2| 15
1
1.5
©.5
[] 0.4 0 8 1
-0 5|

Fig. 17

4.6.3 Explicit computation of those functions for m =3

The functions

o = 1 = Sy Uy = RC(S2) . Un = Im(.S’g)
T T T Sillgeny T ¢ IRe(SHzzgory o NTm(S2)llzzgoap
Re(S:1) Im(S1) Re(Ss)
g = e = U e S
IRe(S1)llz2q0,1p 1 Zm(S1)llz2gop IRe(Ss)liz2go1p
u Im(S:;)
7 —_

I1Zm(Ss)llz2goap

are orthonormal in L?(]0.1[). They are given explicitly on ]0.1[ by

uo{x) =

vy 7
ule) = — | 1 - 32027 + 20480z* ~ 65536z° ~ 4 3 (~1)*(8z ~ k)ﬁ_)

k=1

693 2 4 5 3 x s

uz(z) = 2~ 16022 4 2560z% — 4096z° — 8 3_ (~1)¥ (4= ~ K%
k=1

693 3 s_1g k s

ug(z) = 25 — 640z~ + 4096z° — 1 ST -n¥sz - 1- 2005
k=0

2772
z) = — =2 | 26— 332+ 640(—2 + 3v2)z? — 20480(~4 + 3 VI)z*?
ua(®@ V 3930044 + 2396369 v/2 ( + 640 )= ( )

1 3 N B
+(10 — 7«5)(2 (-Fee-1-20)% - S (-nF@Ez-1- 2k)i) +32768(—7 + 5 v2)z® — 2048(—7 + 5 V(2% — 1)&)
k=0 k=2

2772
= —— | ~40(10 + VZ)z — 5120(—2 + VI)z® + 32768(~3 + 2V2)z®
us(®) Y 3930044 + 2396369 v2 ( (10 + V2)a ( ) ( )=

1 3
+(10~ 7 \/5)(2 (8z—1-20)% = 5> (Bz =1~ 2k)3_) +64(=7 + 5 V2)(4x — 1)1)

k=0 k=2
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44352 =26+ 332 3, . 4
= - — 160(2 + 3 V2, 5120(4 + 3 V2)
(=) V 3930044 — 2396369 V2 ( 1 ( )" + 5120 )=

E 1 3
+1°++-47‘/i (Z (-1*@z-1-20)5 - 3 (-1)* Bz -1 - 2k)i) ~8192(7 + § V2)z® + 512(7 + 5 VZ)(22 — 1)1)
k=0 k=2

44352 .
; = —_—— [ 10(10 ~ VZ)z -~ 1280(2 + V2)z® + 8192(3 + 2 V3)z®
ur(=) V 3930044 — 2396369 v2 ( ( ) 2+ v2)m (B+2v2)=

TR 3
—lo—-"ll—--‘/'z(Z(sas—1-2le)§r - Z(sx—l—zk)i)
k=2

4 =0

1
+16(7+5VE) 3 (~1)*dz -1 - 2k)i)
k=0

Those functions are represented on Fig. 18.

0.

o
oo
L

Fig. 18

240



4.6.4 Examples

Here you have a comparison between some condition numbers presented in “Fig. 13"
and “Fig. 14”7 (left columns) and the one obtained using the alternative functions (right
columns). It concerns cubic splines.

Single layer
potential
On 5 On 7,
20.15| 595 23.69| 3.40
203.12 | 25.44 || 163.97 | 24.67
535.43 | 27.26 || 565.02 | 27.53
793.66 | 29.88 | 921.16 | 29.11
831.60 | 33.79 || 982.99 | 30.13
833.82 | 41.65 || 989.04 | 31.09
834.07 | 54.67 |j 990.20 | 37.19

3] O} G| W] COf D] =%,

Fig. 19
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