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SURJECTIVITY OF CONSTANT COEFFICIENT
PARTIAL DIFFERENTIAL OPERATORS ON A(R*)
AND WHITNEY’S C;-CONE

RUDIGER W. BRAUN, REINHOLD MEISE, AND B. A. TAYLOR

Abstract. Constant coefficient partial differential operators on the space
of all real analytic functions in four variables are considered. The variety
of their symbol is decomposed using methods of algorithmic algebraic ge-
ometry. This decomposition is needed for the application of a geometric
characterization, given recently by the present authors, of those operators
whose symbol satisfies Hormander’'s Phragmén-Lindeldf condition, which,
by earlier work of Hérmander, is equivalent to the surjectivity of the dif-
ferential operator on the space of real analytic functions.

1. Historical background. Let P(D) be a constant coefficient partial differential
operator in A(R™), the space of all real analytic functions on R” with values in C.
It was shown in 1971 by DeGiorgi and Cattabriga [11] that P(D) is onto provided
n = 2. They also conjectured that the analogous result need not hold for n > 3.
In fact, they conjectured that the heat equation would be a counterexample. Their
claim was proved in 1973 by Piccinini [20]. In the same year, Hérmander [13]
provided a characterization of all surjective constant coefficient partial differential
operators on an arbitrary convex set in terms of a Phragmén-Lindelof condition. A
vast amount of research followed, of which we can mention only some: Andreotti
and Nacinovich [1] and Boiti and Nacinovich [3] considered related problems for
systems and Zampieri [24], Braun, Meise, and Vogt [8], and Braun [5] considered
the analogous problem in spaces of ultradifferentiable functions.

It turned out that some more questions lead to characterizations in terms of
conditions of Phragmén-Lindeldf type. This includes investigations of phenomena of
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Hartogs type by Kaneko [14], the characterization of the constant coefficient partial
differential operators that admit a continuous linear right inverse on C*(Q2), & C R®
a convex domain, by Meise, Taylor, and Vogt [17, 18], and existence problems for
extension operators investigated by Meise and Franken {12].

2. Hérmander’s Phragmén-Lindeldf condition. Let P(D) be a constant coeffi-
cient partial differential operator and let V be the variety of the principal part of the
symbol P, Hérmander has shown in [13] that P(D): A(R") — A(R") is surjective if
and only if the following Phragmén-Linelof condition holds for the plurisubharmonic
functions on V; here plurisubharmonicity in a regular point is defined using a chart,
while in a singular point we require only that ¢ is locally bounded and satisfies
lim sup._. $(C) = ¢(2).

The precise result is:

Theorem (Hérmander [13]). P(D): A(R™) — A(R"™) is surjective if and only if
there is A > 0 such that each plurisubharmonic function ¢: V — [—o0, 00| which
satisfies (o) and (B) also satisfies (v), where

(0) ¢(z) < |z| forallze V,

(B) ¢(2) <0 forallz€e VNR",

(v) ¢(2) < Allmz| for allz € V.

3. Introduction to the present paper. In general, it is not easy to relate this
(or any other) Phragmén-Lindeléf condition to geometric properties of V. Until
recently, n = 3 was the only case for which a characterization was known. This
result, due to Zampieri, will be stated as Theorem 7 below. We will then recall our
recent characterization for the case n = 4 from [7]. Roughly speaking, in n = 4
the investigation consists of two steps: First, the variety V' has to be decomposed
Second the local Phragmén-Lindelof principle (see Section 5) has to be investigated
in one point of éach of the sets that were constructed in the first step. There are
several examples in [7] for the second step. Thus, in the present paper, our main
emphasis will be on the first step. It turns that in order to decompose V in the way
needed for the first step, some algorithmic commutative algebra (i.e., calculations
with Grobner bases) is needed. We will describe this in detail in Sections 18 and 19.
The operator that will serve as an example is

i il & 4 &
Oy dr2ow? Oy Ow? Oydow 9
We have chosen it because we think its variety has an interesting geometry, while
still being tractable. We show in Example 22 that P(D): A(R*) — A(R?) is not
surjective. Note that, by Hérmander [13], surjectivity of P(D) depends on the
principal part alone. So it suffices to consider homogeneous polynomials.

4. General setting. We denote by B(z,7) := {y € C" | [z — y| < r} the euclidean
ball of radius . For an open set {2 C R" the space A(£2) consists of all real analytic
function f: @ — C.

If P =3, <m Ga?* is a polynomial of degree m, then P, := > jaj=m @a2" denotes
its principal part and

1) P(D) =
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is the corresponding partial differential operator. The variety of its principal part is
denoted by V = V(P,,) = {z € C* | P,,(z) = 0}.

The set of regular points of a variety V is denoted by Ve, the set of its singular
points by Ve

Instead of the Phragmén-Lindeldf condition given in Section 2 we use the following
one:

5. The local Phragmén-Lindeldf condition. For € € R* and 7y > 0 let V
be an analytic vatiety in B(€,7¢) which contains £&. We say that V satisfies the
local Phragmén-Lindeldf condition PLyy(€) if there exist positive numbers A4 and
7o 2 71 2 13 such that each u € PSH(V N B(£, 1)) satisfying

(@) u(z) <1, ze VN B, 1)
and

(B) u(z) <0, z€e VNR*"N B, 1)
also satisfies

(7) w(z) < Allm=z|, z € VN B(£.73).

6. Theorem (Hormander {13]). The operator P(D): A(R") — A(R") as in Sec-
tion 4 1s surjective if and only if V(P,,) satisfies PLio.(§) at each £ € V(Py,) NR®\
{0}.

The advantage of the local condition PLy,.(€) is that near £ # 0, a homogeneous
variety V' looks like the product of a variety W, of dimension dimV — 1, with a
complex line. This fact will be exploited in Proposition 15.

In the case n = 2, the variety V in Theorem 6 is just a finite set of straight lines
through the origin. Hence the initial result of DeGiorgi and Cattabriga [11], referred
to in Section 1, is an immediate consequence of Theorem 6 The case n = 3 was
solved by Zampieri:

7. Theorem (Zampieri [23], see also Braun [4]). The operator P(D): A(R?) —
A(R®) is surjective if and only if for each € € V NR®\ {0} the following holds:

Each irreducible component [We of the germ [V¢ s regular at € and the dimension

at & of WNR? as a real analytic manifold is 2.

It is easy to see that the wave operator with one silent parameter,
8 b2 &
22 5 32
Ox Oy Oz

is surjective, although V(P) = V(P) is singular and irreducible at (0,0,0,1). This
shows that the condition of Theorem 7 is not necessary if n > 4.

P(D) = AR?) — AR,

8. Overview over the case n = 4. For n = 4, it is shown in [7] that the geometric
characterization of the surjective operators P(D) on A(R?) involves the solution of
two different problems:

(I) characterize when a germ [V}, satisfies PLic(€),
(II) identify a finite subset S of VNR*\ {0} such that it suffices to check PLjo.(€)

at all points in S.
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Both steps are carried out in [7]. In fact, in [7] detailed instructions are given how to
do part (I) in finitely many steps. In the present paper, we explain how (II) can be
accomplished using Grobner basis algorithms. We will start, however, by recalling
step (I) from [7]. To do so, some notions have to be introduced first.

9. Real simple curves. A map v: |0, — C", a > 0, is called a real simple curve
if it admits a convergent Puiseux series expansion «(t) = Y72 &t/? with ¢ € N
and |§,| = 1. The vector & is called tangent vector to v at the origin. We are
only concerned with properties of v near ¢ = 0. Hence it is no restriction to assume
that o is chosen so small that « is injective. The image of v is called its trace, it is
denoted by try = v(]0,af). A simple curve v with try C R is called a real simple
curve.

10. Conoids. Let « be a real simple curve in C", let d > 1, let M be a subset of C",
and let R > 0 be sufficiently small. Define

D(v.d, M,R):= | (v(t) +t'M).
0<t<R
The set I'(7,d, M, R) is called a conoid of opening exponent d, core 7, and profile M.
truncated at R, provided that it does not contain the origin
If the opening exponent is 1 and try is a line segment, then I'(y,d, M, R) is a
cone. The idea behind the concept of a conoid is the following: When one wants
to investigate directional properties of V, then one looks at V inside a sufficiently
small cone. However, sometimes this investigation is not fine enough. Then one can
look at V inside a suitably chosen conoid.

11. The limit varieties T, 4V. First, recall the definition of the classical tangent
cone T,V to a variety V ¢ C" at some point z. It consists of all ¢ € C" such
that there are sequences (z,)nex in V and (rp)pes in C with lim, s 2, = z and
HMpmoo {2 — 24) = C.

To define an extension of this notion, fix d > 1 and a real simple curve 7v: 0, o[ —
R™ and set for ¢ € ]0, o

1
Visa:={weC*|y(t) +wt? e V} = —(V—1(t).
t

Then the limit variety T, 4V is defined to be the set of all ¢ € C" such that there
are sequences (¢;)jen in ]0,af and (w;)jex in C" satistying

lim ¢; =0, limw;=¢, and w; € Vg g
J—0 J—00

It is shown in [6] that T, 4V is an algebraic subvariety of C* In fact, in [6] conver-
gence is proved in a stronger sense: There we show that the current of integration
over V, 40 converges to a current T, 4[V] as t tends to zero. Furthermore, we show
the existence of finitely many algebraic subvarieties Wi, ..., W, of C" such that
T,4lV] = $h_n;[W;], where n; € N and [Wj] denotes the curtent of integra-
tion over W; (i.e., we show that T 4[V] is a holomorphic chain with nonnegative
multiplicities).

For d > 1 the limit variety T, 4V is invariant under translations in the direction
of &, the tangent to . Furthermore, T,V = ToV — & (see (6], Proposition 4.1 for
both results).
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12. (v,d)-hyperbolicity. Let W be an analytic variety of pure dimension & > 1
in a neighborhood of { € R®. A projection w: C* — C" is called noncharacteristic
for W at ( if the rank of « is &, image and kernel of 7 are spanned by real vectors,
and T,W Nkerw = {0}.

Let V' be an analytic variety of pure dimension k in C”, let v be a 1eal simple
curve, let d > 1, and fix { € T, 4V NR™. We say that V is (vy, d)-hyperdolic at { with
respect to the projection 7 if 7 is noncharacteristic for T, 4,V at ¢ and there is a
conoid I'(w, d, U, R) where U is a neighborhood of { such that z € VNIT'(~,d,U, R) is
real whenever w(2) is real. We say that V' is (v, d)-hyperbolic if V' is (v, d)-hyperbolic
with respect to some projection.

13. Hyperbolicity in conoids. Let V be an analytic surface in C® which contains
the origin. We say that V is hyperbolic in conoids if for each real simple curve «v
and each d > 1 the following two conditions hold:

(a) T4V satisfies PLy(¢) for each ¢ € T, 4V NR3,

{(b) V is (v, d)-hyperbolic at each real point of T, 4V which is regular.

Note that by the last remark of Section 11 the variety T, 4V is simpler than V:
for d > 1, the limit variety T, 4V is the product of a curve and a line and 7,,V is
the translated tangent cone TV, which is a cone over a curve. In particular, there
are geometric criteria for condition (a): In the case d > 1, the limit variety T, 4V
satisfies PLy,(¢) for each ¢ € T, 4V NR? if and only if the criterion of Theorem 7
holds at each ¢ € T, 4V NR3. In the case d = 1, the limit variety T,V satisfies
PLyoc(¢) for each ¢ € T,1VNR? if and only if T,V satisfies the criterion of Theorem 7
and TpV contains no irreducible component which is elliptic (i.e., intersects with R3
only in {0}). For details and proofs see [7], Lemma 3.17.

14. Theorem ([7], 5.3). Let V be an analytic surface in C* which contains the
origin.- Then V satisfies PLic(0) if and only if V' is hyperbolic in conoids.

It is shown in [7], Theorem 5.3, that it suffices to check conditions (a) and (b)
of Section 13 only at a finite set of pairs (7, d) and that this set can be determined
from the geometry of V. The details of that construction are given in [7], 5.1. The
essence is the following: For £ € S? let B denote the branch locus of the restriction
of an arbitrary projection along £ to V, ie,

Be={ze V| (Vf(2),§) = 0},

where f is a square-free function whose variety is V. Then basically only those pairs
(77, d) have to be considered such that the origin is singular in T, 4V and such that for
almost all £ € 5?2 there are at least two branches S; and S, of B NR3 such that the
Puiseux series expansions of S; and Sp coincide with the Puiseux series expansion
of v up to, but not including, the term with exponent d, and such that the coefficient
of % of at least one of the curves S; or S, differs from the corresponding coefficient
for 4.

In particular, the verification of hyperbolicity in conoids can be reduced to the
investigation of a finite number of conditions.

So far, we have accomplished step (I) of our general scheme 8. The connection
between step (1) and step (I} is established by the following reduction argument:
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15. Proposition ([7], 6.1). Let P € Clz,...,2,41] be homogeneous and let £ €
V(P)NR™!, ¢ 0 be given. Choose &1,. ..,&, € R*? such that {&1,...,6n,€} 45 a
basis of R™* and define

Q) = P(Z 26 + 5), 2 =(2,...,2,) € C".
Jj=1

Then V(P) satisfies PLio(§) if and only if V(Q) C C" satisfies PLyoc(0).

Unfortunately, Proposition 15 is insufficient from a practical point of view, since
it requires the investigation of PLi,(€) for an infinite number of points.” However,
concrete calculations show that the points in V/(P) NR” fall into only finitely many
classes of points which are all “alike”. To derive a general result from this observa-
tion, the definition of one of the more exotic Whitney cones has to be recalled.

16. The Whitney cone Cy(V,p). Let V be an analytic variety in C*, let p € V.
A vector v belongs to the Whitney cone Cy(V,p) if there are sequences (2;)jen
in Vieg and (vj)jen € C" such that each v; is tangential to V at z; and such that
lim; ..o 2; = p and lim;_.e v; = v (see Whitney [22], Definition 7.1H). Furthermore,
we define

Co(V)={(z,v) € C*" | z€ V, v e Cyv,2)}.

Note that C4(V,p) is algebraic and that it contains the tangent cone T,V, which
is C3(V,p) in Whitney’s notation. In particular, dim Cy(V,p) > dim V. Contrary
to the behavior of T,V it may happen that dim Cy(V,p) > dim V. However, it was
shown by Stutz [21], Proposition 3.6, that the set of p with dim Cy(V,p) > dimV
is an analytic subset of Ve of dimension not exceeding dimV — 2. We need the
following version of this result for the algebraic case:

17. Proposition. If V is a homogeneous algebraic hypersurface of C* andp €V,
then
(a) Cy4(V) is a homogeneous algebraic subvariety of C**,
(b) S:={p eV |dimCy(V,p) =n} is an algebraic subset of Veng of dimension
not exceeding n — 3.

Proof. By Chirka (9], Proposition 9.2, the set Cy(V') is analytic. Since V is homoge-
neous, it is easy to see that Cy(V, Aw) = Cy{V, w) for all A € C\ {0}. Since Cy(V, p)
is a cone, the definition shows that Cy(V) is homogeneous. By Chow’s theorem ([9],
Remark 7.1) we infer that Cy(V) is algebraic. This proves part {a) of the claim.

For the proof of part (b), note first that by the result of Stutz mentioned above, S
is an analytic subset of Vi, of dimension not exceeding n — 3. Let now f1,..., fx €
Clzo,- . ., 2] be generators for the ideal of all polynomials vanishing on C4(V). Note
that z € S if and only if {z} x C* < Cy(V'). Thus

S={zeC"| fi(z,v)=0forallj <k veC}
Hence S is the intersection of a family of algebraic sets, thus algebraic. 0

18. Calculation of S. Assume V = V{(P) for a square-free homogeneous polyno-
mial P. The proof of Proposition 17 provides a hint how to determine the set S
explicitly. Since S will play a role later on, we describe this algorithm now:
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By the proof of Chirka [9], Proposition 9.2, C4(V) is the euclidean closure of
U {w} x T,V

WEVieg

Since C4(V') is Zariski closed by Proposition 17, it contains the Zariski closure of A
On the other hand, the Zariski topology is coarser than the euclidean topology.
Hence Cy(V) coincides with the Zariski closure of A. Elimination theory provides
an algorithm to determine the Zaxiski closure of the projection of an algebraic set
In our case, we write A = w(B) for m: C* — C**, (2,v,7) + (2,v), and

B={(z,v,7)€C¥" | P(z) =0, (VP(z),v) = 0, (VP(2),7) = 1};

note that the purpose of the last equation in the definition of B is to exclude points z
in Vg Let I C Clz, v, 7] denote the ideal generated by gy := P, gy := (VP(z),v),
and g3 := (VP(z),7) — 1, and let I, := INCJz, v] be the corresponding elimination
ideal. Then

Ca(V)={(z.v) €C* | g(z,v) =0 for all g €I}

by Cox, Little, and O’Shea [10], Theorem 4.4.3 To determine the elimination ideal
Is,, let G be a Grobner basis for 7 with respect to an elimination order where the
T-variables are considered larger than all others. (See [10], Exercise 3.1.6, or Becker
and Weispfenning [2], Remark before 6 14, for the definition of an elimination order.)
By [10], Exercise 3.1 5. or [2]. Proposition 6.15. the elimination ideal I, is generated
by :
Gop =G NClz, 1]
Denote the elements of Gy, by by.. . ,b,. Then
Cy(V) = {(z,v) € C*™ | bj(2,0) =0 for j =1,.. ,t}

To determine S, it is necessary to find those z € V for which the elements of Gs,

provide no restrictions on v, ie., if b; is decomposed as b;(z,v) = Zaez\'g bia(2) v®,

then ‘
S={2€C"|ba(2) = 0 for each a}t.

This is a descrlpnon in terms of finitely many polynomials since all but a finite
number of the b;, vanish identically

19. A partition of V. To go on with step (II) of our general plan (see Section 8),
we decompose an arbitrary homogeneous hypersurface V < C* into four parts:

(a) V3 is the set of regular points of V' \ {0},

(b) Va:={z ¢ Vsmg | z#0, Ving regular in 2z, dim Cy(V, 2) = 3},

(c) Vi = Vang \ (2 U{0}),

(d) Vo := {0}
It is shown in {7], Lemma 6.6, that for 0 < d < 3 the set Vj is either empty or of
dimension d and that Vy and V3 N R* consist of only a finite number of connected
components,

Remark. In Example 22 we will present a case where Vi ¢ V, although ViNV, # 0.
This shows that (Vy)o<a<s is not a stratification of V.
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The usefulness of the partition V(P) NR* = |J3_, Vs N R? stems from the ob-

servation [7], Proposition 6.7, that PLy.(€) does not change its boolean value if £
varies in a connected component of V; NR* for fixed d € {0,1,2,3}. This leads to
the following result:

20. Theorem ([7], Theorem 6.9). Let P € C[Zy,...,Z4] be a polynomial and let

Py, be its principal part. Let Z4,,...,Zqn, be the connected components of ViNRY,
d=1,2,3. Then the following are equivalent:

(a) P(D): A(R*) — A(R*) 1s surjective.
(b) V(Py) satisfies PLic(€) for each & € V(Pr) NR*\ {0}
(c) For each d € {1,2,3} and each j € {1, .., Na} there is € € Zy; such that

V(Py,) satisfies PLic(€).

(d) For each & € V(Pn) NR*\ {0} ull reductions of P, at & are hyperbolic in

conoids at the origin.

(e) For eachd € {1,2,3} and each j € {1,..., Ny} there is & € Zy; such that a

reduction of P, at £ is hyperbolic in conoids at the origin.

21. Remark. (a) Our algorithm calls for a decomposition of VuNRY, d=0,1,2,3,
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into connected components. If this is too difficult, it obviously suffices to give,
for each d, a finite sequence 241, ..., 2ax, in Vg NR? such that each point in
V; N R* can be connected by an arc to at least one zg;.

(b) The most difficult part in the construction of the sets Vy, d = 1,2,3, is

to determine the set S = {z € V | dimCy(V.2) = 4}. This part of the
construction is described in Section 18. Then the points zy4; of part (a) have
to be found. To do that, it is useful to write V and Ve as analytic covers.
Finally, for all d and j it has to be checked whether V satisfies PLioe(24,5)-
This process is described in [7}, Theorem 5.3

(c) We give a short sketch of the proof of Theorem 20 because it shows why the

result is limited to dimension 4 or less. It can be seen from the definition
that the set of points € € V N R™ such that V satisfies PLjoc(€) is open in
V AR for all n. To see that PLy,.(£) is either true or false for all points in
a connected component of V; N R* simultaneously. it has to be shown that
PLioc(€) fails in a whole neighborhood in V3 N R™ of £ if it fails at £ This
is easy in the case d = 3 since at a regular point £ the property PLic(£)
holds if and only if the real dimension of V NR™ at £ coincides with the
complex dimension of V at £. In more abstract terms, this argument uses
the fact that since all regular points in a suitable neighborhood share the
same complex structure the only important aspect is how well this complex
structure overlaps with the real analytic structure of V N R™. Of course, in
singular points, the complex structure may vary even if one stays inside Ving.
However, Proposition 4.2 of Stutz [21], which is one of the main ingredients
in the proof of Theorem 20, states roughly that the complex structure of Viing
does not change as long as one stays within a connected component of V3.
In general, for higher codimension no similar result is known to the authors.
Fortunately, in our case, i.e., for n = 4, the remaining set V; consists of finitely
many lines. By homogeneity, it suffices to consider only two antipodal points
on L NR? for each of these lines.

Note also that attempts to generalize Theorem 14 suffer from a similar
problem.



22. Main example, part I: Construction of a partition. Let P denote the
polynomial associated with the partial differential operator defined by (1), ie,

P(z,y,2,w) = 22yw? — y*w® — y2Pw + 2°.

Then P(D): A(R*) — A(R?) is not surjective.
To follow the scheme presented in Remark 21(b), we begin with the singular set
of V:=V(P). It is easy to see that

Vang = ({(0,0,0)} x C) U (C* x {(0,0)}).

Hence Vo = {0} and V3 = V' \ ({(0,0,0)} x C) U (C? x {(0, 0)}). To deter-
mine V; and V; it is necessary to calculate all points z with dimCy(V,z) = 4.
To do so by the method of Section 18, define the following three polynomials in
(.’L' Y, z,w, 5»%(»‘0 L )‘ 2204 )€C12
01 = P = 22yu? — gPuw? — y2tw + 25,
= (VP(z,y,2,w), (£, (,w))
= 2yaw? + n(ws? - 3y?w? — 2Pw)
+ ((=3y2w + 52%) + w(2ywz? — 2w — y2®)
g3 = <VP($,y»Z,w) (l{ A VY > ]-a
= 2syzw?® + Mw?z? — 3y*w? — 2Pw)
p(—3y22w + 52*) + v(2yuwa® - 2w — y2®) — 1.
We will call the variables &, A, 4, and v auxiliary Following the algoxithm described
in Section 18 we have to find a GrSbner basis for the ideal I generated by g,
g2, and gz with respect to an elimination order for which the auxiliary variables
are considered larger than the others. We have used the computer algebra system
MapleV to calculate such a Grobner basis. The termorder that was actually applied
was a block order in the sense of Becker and Weispfenning [2], Example 5.8(iv), where
a graded reverse lexicographic order (see Cox, Little, and O’Shea [10], Definition
22.6) was used in each block and the variables in the blocks were ordered as w <
(<n<f<w<z<y<zand kK <A <p< v Theresulting (reduced) Grébner
basis, which we denote by G, contains 32 elements. It will not be reproduced here;
G and the program for the calculation of the points p with Cy(V,p) = C* can be
found on our homepage.
The Grobner basis G enables us to determine the elimination ideal Ip,. To do

this, we have to remove all elements from G that depend on the auxiliary variables
The following five elements remain: hy := gy, hy := ga, and

hs := ((202°2yw — 20y° z2w)¢ + (2y%2® — dy'zw + dePyPw — 2Pzzw)w)E
+ ((80y*zw + 10z*2w — 4022 27w + 10y%2* — 10222%)¢
+ (=2y2® + 22w — 827w + 22tyw ~ 172 + ByPw)w)n
+ (50w — 20y32° + 1002%y3w — 502%yw + 2022y2°)¢?
+ (—112%2%% + 32%%w ~ 3yPw + 20zt 2y + 2029° — 4029522 + 112%5*)w(
+ (42 + 2° ~ 2p°2® — 8yta® + 4y%)w?
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hy = (Quzzt + 4rtzyw — 4l z2w)E + (—ytw? — y22t — 222* — 82l w + 2y Pw?

+ 2zt 2w + 22yzw — wy?2® — 223w + 6ytaw)n

+ (222 + 2yt 2w — 10y°w + 202%y>w
+ 32 — 2y’ — 10atyw — 222 2p%w)¢

+ (=22 — 82°2® — yPw + 421® — y°2° + datzy + 2224 + 22Pw)w,
hs = 2yzw2’€ + (Z2wz? - y*uw? ~ 322w - y2Pw + yuwis®)n

+ (5y°2w + 2y2* ~ 52wyz)( + (—wy? + 2y2°2? — 2%y + 22w — 2% w,
A point p = (z,y, 2, w) satisfies dim Cy(V,p) = 4 if and only if hi(p,-) = 0 for
1= 1,...,5, ie, at all points where the coefficients of all monomials in £, 7, (,
and w vanish. (These coefficients are polynomials in z, y, z, and w.) It is easy to
read off these 21 equations from Ay, ..., ks. They are again solved with the help of
a computer algebra system. The set of solutions consists of four lines:

L, =C x {(06,0,0)}, L3 = {(z,2,0,0) | z € C},
Ly = {(0,0,0)} x C, Ly = {(z,~2,0,0) |z € C}.

This implies at once

4 4
Vi=JL\{0} and Vo= (C*x{0,01)\|JL;
J=1 j=1

Since we are proving that P(D) is not onto, we will skip the construction of all
zq,; and give only one point £ where PLio(€) fails. There are several choices for &.
The general idea is that points in Vi NR* carry the most information. Therefore,
we use £ = (1,0,0,0) in [7], Example 7.13, where the present result is announced.
On the other hand, the points in ¥V; NRR* are the most difficult ones to investigate;
s0 here we use a point in V3 NR%, namely £ = (0,1,0,0).

23. Main example, part II: Investigation of PL;.(0,1,0,0). The first thing
to do is to calculate a reduction of P at £ = (0,1,0,0).. To do so, use the basis
(51752753,6) with & = (170’070)’ §o = (0,0,1,0), and & = (01070’1) We set
a = (a1,as,a3) € C* and define

3
Q@) = P(3 as6; +€) = atad - af ~ ajas + o}
j=1

We have to investigate whether W := V(Q) satisfies PLi,c(0). The first step in this
investigation is to determine the tangent cone. Since the lowest order term of @
is a2, it follows that ToW = C? x {0}. Hence it is immediate that PLioc(£) holds for
each £ € ToW NR3. For v € R%\ {0} denote by 7, the real simple curve v,(t) = tv,
0 < t < 1. The condition of Theorem 14 now requires the investigation of (7, 1)-
hyperbolicity for all v in ToW N 2. However, in [7], Remark 5.4, we describe a
method to single out a finite system (S;)1<;j<s of subsets of ToW \ {0} such that it
suffices to check only one v in each S;. Doing so, it turns out that an interesting
direction is v = (0, —1,0).

We claim that W is not (v, 1)-hyperbolic. To see this, note first that by [7], 3.19,
one can pick an arbitrary noncharacteristic projection in the Definition 12 of (v, d)-
hyperbolicity. We set #(ay, az,a3) = (a1,a,0). To look at the inverse images of
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points of the form (0, —, 0), we have to solve the equation ~ai—(~t)%az+(—t)® = 0.
The Puiseux series expansion of the solution is

a3 = it*2 + higher order terms .

Thus W is not (v, 1)-hyperbolic at 0 with respect to 7, and thus, because of 7],
3.19, it is not (7, 1)-hyperbolic at 0 at all. We have finally proved our claim that
P(D): A(R*) — A(R?) is not surjective.

24. Connection to properties of elementary solutions. Hormander’s investi-
gations are based on Fourier analysis. Thus his work and all work that is based
on it are limited to convex domains Starting from Kawai [15] in 1972, criteria for
the surjectivity of P(D) on A(Q) for arbitrary domains Q have been given in terms
of elementary solutions. This has finally led to a characterization by Langenbruch
[16] in terms of conditions on the real analytic singular support in the real analytic
category of hyperfunction elementary solutions.

This has the following interesting consequence: Take a partial differential operator
P(D) in four variables whose variety V satiesfies the geometric conditions of [7] (see
also Theorem 14). Then Langenbruch’s result implies the existence of hyperfunction
elementary solutions with large lacunas in the real analytic singular support. Except
for very simple cases, no direct proof of existence for these elementary solutions is
known. It is an open problem, posed by Langenbruch in [16], to construct these
hyperfunction elementary solutions with large lacunas in the real analytic singular
support for operators P(D) which are surjective on A(R™) but not locally hyperbolic.

25. Connection to the existence of a continuous linear right inverse. Meise,
Taylor, and Vogt [19], Corollary 3.14, have shown that a homogeneous partial differ-
ential operator P(D): C®(R") — C**(R") admits a continuous linear right inverse
if and only if P has no elliptic factor and P(D): A(R") — A(R") is surjective. Thus,
the results of [7] and of the present work also yield a characterization of the homo-
geneous constant coefficient partial differential operators on C°(R") that admit a
continuous linear right inverse.

It should be noted that Meise, Taylor and Vogt have shown in [17] that the exis-
tence of a continuous linear right inverse for P(D): C®(R") — C®(R") implies the
existence of distributional elementary solutions with large holes in the support. Ex-
cept in simple cases, there is no explicit construction for these elementary solutions.
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