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Differentiability of functions with values in some
real associative algebras: approaches to an old
problem

by

R. Delanghe, R. S. Krauf$har and H. R. Malonek

Abstract

During the last one hundred and fifty years several mathematicians and physicists
considered the question of generalizing real or complex differentiability and derivability
to the case of algebra-valued functions and their relation to higher dimensional function
theories. In this paper we give an overview of some attempts and approaches.

1 General remarks and historical review

1.1 Origins of the problem

The classical definitions of differentiability and the differential as the linear part of the in-
crement can be extended in several ways. The extension to functions defined on a real or
complex Banach space is one of the most general ones. It leads to the concepts of differen-
tiability in the sense of Gteaux or Fréchet. '
The concrete determination of the differential, i.e. the approximation of the function con-
sidered in a neighbourhood of some point by a linear mapping, is an important operation in
differential calculus in finite dimensional real or complex vector spaces.

As an example we refer to the well-known fact that if X = R™ and Y = IR™, then the
derivative of a real differentiable function f : X — Y is defined by the Jacobian matrix

which is a continuous IR-linear mapping from R” into R™.
This type of derivative is a directional derivative: it is related to the fact that division by an

element of the scalar field is possible.
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But in the case of IR! and C this scalar field can coincide with the elements of the vector space itself
and then the derivative - a (1 x 1)-matrix - reduces to a single function. In these cases differentiability
(or derivability, considered as the equivalent property that the derivative is a well-defined function)
can simply be defined by requiring the (local) existence of the limit of the difference quotient.

Moreover, the case of a complex-valued function of a complex variable yields a qualitatively new ef-
fect compared with the IR? setting: if the limit exists, then this implies immediately the independence
of the direction in which the limit is obtained. As a consequence, such functions - belonging to the
well-known class of holomorphic functions - satisfy the Cauchy-Riemann system. Notice hereby that
C enriches the character of IR?: it is a real division algebra and a field.

As the famous theorems of Frobenius, respectively Hurwitz state (see e.g. [54]) the algebras R, C
and T are the only real associative division algebras, while the algebras R, €, IH and O are the only
normed real algebras. Hereby, R, C and H stand for the algebras of real numbers, complex numbers
and real quaternions, while © denotes the algebra of Cayley numbers (real octonions).

Since H is a skew field, it thus seems natural to ask whether differentiability of a function f : H —» H
can be defined in a similar way as in the cases R or €. This question was posed already at the end of
the 19th century. However, it took almost a century to find the right answer or, more exactly, the right
answers.

Due to the historical development we do not only consider quaternion-valued functions of a quater-
nionic variable but also functions with values in a Clifford algebra. Indeed, € and H are special cases
of real Clifford algebras, but there is more: although the latter algebras are in general not division
algebras, they. allow Cauchy-type theorems and thus lead in a natural way to a function theory in
higher dimensional Euclidean spaces.

At the beginning-of December 2000, Pascal Laubin asked the first author for information about the

- problem of differentiability of functions of a quaternionic variable. The circumstances we know have
not allowed an extensive exchange of ideas and results on this subject. The authors of the present
paper hope that the survey given may shed some light on this problem.

1.2 Attempts with unsatisfactory results

If one thinks of generalizing the concept of differentiability and derivability to higher dimensions,
then classical real and complex calculus suggest to consider differential quotients.
The first step in this sense was made by R. W, Hamilton in 1860, who - as is well known - invented

the quaternions in 1843.
In trying to introduce a three-dimensional analogue to the complex number system, he found out that
his new numbers should have four real components and that the commutative law of muitiplication

should be abandoned.
The algebra H of real quaternions that he constructed has three imaginary units i, j and k which

satisfy the multiplication rules
: ij=k, jk=i, ki=},
P=pP=k=-1
A real quaternion z is then a number of the form
z=xgl+zi+xoj+ a3k, z;€R, j=0,...,3
Defining the anti-involution z — %z on H by

Z=1x91— z1i — z2j — z3k,
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one obtains that
zZ=zZz=|2? =22+ 2%+ 2%+ 22

whence any z € H, z # 0, has an inverse

a4 Z
(1

As already mentioned, the algebra H is not commutative. One has e.g. that ij = k while = -k
For a function f : IH — H, R. W. Hamilton considered in [19] a limit of the form

tAz) —
lmuﬂ?_), teR, zeH 60
t~—0 t
which, however, is not the limit of a quotient generally defined by the two quaternion-valued incre-

ments of function and argument.
A quaternionic differential quotient is a limit of the form

dim, (e + 2 - ) (82) ™ ®

or

. -1
Al;x_r_)xo (Az) (f(z + Az) - f(z)) 3)
Observe that these differential quotients can be defined since H is a skew field.

One of the first authors who dealt with such kind of differential quotients in general division alge-
bras generalizing IR and € was G. Scheffers in 1893 (see {46]). He considered the example of the
function f(z) = 22 and concluded from it that one can only find in commutative division algebras
non-constant functions for which limits in the sense of (2) and (3) exist and are uniquely defined.
For this reason G. Scheffers restricted himself to the case of commutative division algebras. However,
his assertion is not correct, since the limit (2) exists for quaternionic functions f(z) = az + b where
a,b € H, and the fimit (3) for quaternionic functions f(z) = za + b. If @ is a real number, then both
limits exist and equal a.

Nevertheless, his paper had an important influence on the development of quaternionic analysis. R.
Fueter, one of the founders of quaternionic and Clifford analysis (cf. [10, 11, 13]), mentioned in [10}
the paper of G. Scheffers in order to motivate a generalization of complex analyticity to the quater-
nionic case by means of a different approach, namely by the so-called Riemann approach which is
based on considering quatermomc valued functions in the kernel of the quatetmomc Cauchy-Riemann
operator D := 34 + 2L am 55%‘1 + gﬁk
And in fact, we will see that generalizing complex analysis to quaternions by using the approach (2)
or (3) is not very fruitful.
As far as we know, the first authors who analyzed exhaustively for which quaternionic functions the
' expressions (2) or (3) exist were N. M. Krylov in 1947 and his student A.S. Melijhzon in 1948.
In [37] one can find a detailed proof of the property that functions of the type f(2) = az + b are the
most general ones for which (2) exists. Analogously, functions of the form f(z) = za -+ b are the only
ones satisfying (3). In [23] the case (3) is already treated. Hence, a generalization of differentiability
in the sense of (2) or (3) leads to a very restrictive class of functions.

Because of a lack of scientific communication, the results of N. M. Krylov and A.S. Melijhzon re-
mained unknown for quite a long time. J. J. Buff proved e.g. in 1973 in [4] that functions of the type
f(2) = ez + b, where « is a real numbset, are the only ones for which both limits exist.
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In the same year C. A. Deavours published a paper on quaternionic calculus (cf. [5]). He referred
to the work of R. W. Hamilton and mentioned expressions of the form (2) and (3). He observed that
f(2z) = 2% is not quaternionic differentiable in this sense, which motivated him to discuss immedi-
ately the Riemann approach.

In 1979 A. Sudbery also considered the problem of generalizing the concept of differentiability to
quaternions. He gives in [51] an elegant proof of A. S. Melijhzon’s and J. J. Buff’s results by identi-
fying H with €2 and using arguments from the theory of complex analysis in two variables.

The arguments of A. Sudbery justify in a very convincing way and this in accordance with R. Fueter,
that the already mentioned Riemann approach may be considered as being the only successful way
for generalizing classical complex function theory to the case of functions of a quaternionic variable.
But it is surprising to see that neither A. Sudbery’s paper from 1979 nor the first monograph in the
field of Clifford analysis [2] from 1982 brought to an end the discussion about possible concepts of
quaternionic differentiability. Almost ten years later (1991) the article [55] proposed some very for-
mal constructions of partial derivatives with respect to a quaternionic variable, mainly for simplifying
calculations, but without describing the class of functions with such properties. In a series of articles
([271,[281,{29]) one can find similar attempts made by S. Lugojan and this until the 90’s. In these
papers the author tried to avoid problems with the limit of the difference quotient by using an equiv-
alent definition of the derivative as derivative in the sense of Fréchet of a function f : IH — . But
the class of differentiable functions in this sense contains again only linear functions. Moreover, no
further applications or conclusions are given.

In the following sections we will see that a careful adaptation of the general methods of real and
complex analysis together with the use of some specific properties of the non-commutative algebras
considered lead to the characterization of two important classes of functions by means of suitable
differentiability properties.

2 Quaternionic differentiability

In this section it will be shown how a subtie use of non-constant structural sets in H leads to a class
of differentiable functions consisting of all Mbius transformations in IR* and constant functions.

2.1 Structural sets and differential forms of the first order

For the sake of simplicity, weputi=14;,j =épandk = izand ip = 1.

For z € H, Re(z) = zy is called the real part and Pu(z) = 2143 + &2¢2 -+ x3¢3 its pure imaginary
part.

On H one can introduce a scalar product via < a,b >:= Re(@b). The induced norm on H coincides
with the Euclidean norm in R*. :

Let © C H be an open set and let f :  — H be a quaternion valued function. Then with respect to
the standard basis (g, 41, 42, 43) of H we may write

3
Fz) =3 ifi(2),
=0

where f; are real valued. If f is real differentiable in the usual sense, then its differential is given by
#=3 L, @
S0z
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The differential of the identity function 2 +» 2 is then

3
dz = ijdz;. )]
=0

Passing to a more general basis we introduce
Definition 1. A set of four quaternions [¥] := {Ug, U1, Uo, W3} is called a structural set, if
< U, U >=dj;, for 0 < j, k < 3, where 63, stands for the Kronecker symbol.
Structural sets have been introduced and widely used in hypercomplex function theory, e.g. in the
works of M. Shapiro, N. Vasilevski and V.V. Kravchenko (cf. e.g. [24, 50]).
Usually, it is assumed that it is sufficient to consider structural sets of “constant” type, i.e. obtained
by applying a rotation to the standard basis (see [14]). In what follows it will be shown that it may be
useful to consider "non-constant” structural sets as well.

2.2 Linear fractional functions
In [21, 22] the following notion of quaternionic differentiability was introduced:

3
Definition 2. Ler Q C H be an open set and let z* € Q with 2" = 35+ ¥ ij2}.
j=1

Then f : Q — H is called left quaternionic differentiable at z* if there exist three C°(Q)-functions
Wy, ¥, W3 : Q — Pu(H) satisfying ar each z* the relation < U;(2*), ¥i(2*) >= d;; and such
that :

[¥]y~1
Jdm (82%)7HAS) ©)

exists, Hereby AZY = Azg + 2 Az;¥,(2*) with Azy, = zp — 2}

[ is called left quaternionic dzﬁerennable in QL if [ is left quaternionic differentiable at every point
z €.

In an analogous way, right quaternionic differentiability may be defined for f :  — H, namely by
requiring that for each z € 2, there exist three C%(Q)-functions @, 3, &3 : @ — Pu(lH) such that
< ®(2), Bx(2) > = djx and

Jim (A4 [#h)-t o)

exists.

The limit |
[¥]y—~1
(a4

may be considered as 2 linearization of the function f at the point 2* with respect to the orthonormal
basis {1, ¥;(z*), ¥2(2*), ¥3(2*)] and it is equal to the expression yﬁ (2*), which may be tegarded
as the left quaternionic derivative of f at the point 2*.

Notice that a C*-function f is left quaternionic differentiable in €2 if and only if
af af
=T — 8
azk(z) k(z)am()? k 1’2’37 ( )

where ¥, (z), ¥a{z), U3(z) are C%-functions being mutually orthonormal to each other at each point

of the domain 2.
As will be seen, non-constant quaternionic differentiable maps are nothing else but conformal maps

in the sense of Gauss.
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Definition 3. Let Q C H be a domain. A real differentiable function f : 0 — H is called conformal
in the sense of Gauss, if there exists a strictly positive real valued continuous function X on T,

z > A(2), such that
< df,df >= AMz) < dz,dz >. ¢

As in complex analysis we have

Theorem 1. The set of left quaternionic differentiable functions coincides with the set of right quater-
nionic differentiable functions. A quaternionic differentiable function is either a conformal map in
the sense of Gauss or a constant map.

In contrast to the complex case the set of conformal mappings in higher dimensional Euclidean space
R™ (n > 3) is - by the famous theorem of Liouville (cf. [26, 17]) - restricted to the set of Mdbius

transformations.
Therefore, a C*-function is quaternionic differentiable if and only if f is a linear fractional function,

i.e. if there exist four quaternions a, b, ¢, d such that
f(z) = (az + b)(cz +d)~ .

According to e.g. G. Z6ll [56] we know that the Mdbius transformation f can also be written in the

form
f(2) = (27 + 8" (za + B)

where a, 8,7, 6 € H are - up to a non-zero real factor - uniquely defined by the coefficients a, b, ¢, d.
Remarks:

1. From Theorem 1 it thus follows that with a quaternionic differentiable function two structural
sets [¥] and [®] may be associated such that for k = 1,2,3

O y=w )% k=

_a_.,;:_,;(z) = \Ilk(z) a.’llo’ k= 1,2,3 (10)
and P of

b?k(z) = a_.’bo(}k(z)’ k=123 (11)

In general, [¥] # [®].

2. Furthermore, notice that if f is a linear fractional function with ¢ # 0, then with each point a
different structural set is associated. Only if f has the form f(2) = (az +b)d™! (i.e. if c = 0),
then the associated functions U; are constant functions which in general are different from the
canonical structural set [1, 41, é9, i3]. For details see [22].

3. If one restricts himself to the constant standard structural set, i.e. if we set ¥; = i;, then
precisely functions of the form f(2) = az + b or f(z) = za + b are obtained. The use of
structural sets thus provides a significant extension of the strict definition of differentiability
given in (2) or (3).

4. According to [37] a function f(z) = az + b whete a € H\R is only left differentiable with
derivative equal to q, but not right differentiable in the sense of (3). However, Theorem 1 tells
us that every left quaternionic differentiable function in the more general sense of Definition
2 is also right quaternionic differentiable with the same derivative. One could think that this
result yields a contradiction but it does not, since we are working with structural sets. Indeed
each f(z) = az + b where z = 29 + z41 + @213 + z3i3 can be written in the form f(2) =
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2% + b where 2% = g + 2, ¥; + 2,F5 + z3¥3 is another structural set. So f is also right
quaternionic differentiable with the same derivative, but as already mentioned, with respect to
another orthonormal basis. Only when ¢ is real, one obtains ¥; = i; whence we are in the
case treated by J. J. Buff.

5. The paper [3] is also dealing in part with the problem of this section. However, the authors
arrived at a wrong conclusion, namely that a function f is conformal in the domain © if and
only if there is a constant structural set [¥] such that

df (2) = (dzo + ¥1dzy + Pedzo + ‘1’3“‘3)585;(2) 12)

holds for all z € 2.
They have not observed that in general the structural sets are C%-functions which take different

values at each point of the domain. Furthermore, they did not establish an explicit relation
between (12) and a condition of differentiability.
The article [22] provides therefore in some sense a rectification and compietion of [3].

3 Hypercomplex differentiability and derivability

In Section 2 we saw that quaternionic differentiability characterizes the class of linear fractional
functions. The fact that the algebra of real guaternions is a skew field was essential for this type of
differentiability.

Now we shall be concerned with some kinds of differentiability for a class of Clifford algebra valued
functions, the so-called class of monogenic functions.

As has already been pointed out in Section 1, € and H are special cases of real Clifford algebras, but
in general Clifford algebras contain zero-divisors. However, just as in the quaternionic case, a Rie-
mann approach to a function theory in Clifford algebras could be sucessfully developed. The question
if'a Cauchy approach is possible remained an open problem for a long time.

The fact that a Clifford algebra in general is not a division algebra suggested the idea to define differ-
entiability in this case by the local linear approximation property without looking for some equivalent
differential quotient as has been done in Section 2 in the case of quaternions. The consequence of
such an approach (cf. [31]) was that it was not possible to obtain an equivalent for the complex
derivative of a holomorphic function in the form as it would normally be expected. Indeed, whereas
the derivative of a holomorphic function is again 2 holomorphic function, it follows from the approach
mentioned that the derivative has the form of a vector of monogenic functions. However, recently the
notion of derivability for Clifford algebra valued functions has been introduced in [15] and within
that framework, monogenicity of a function is equivalent to the existence of a “derivative”. The result
thus obtained confirmed in some sense a remark made by S. Semmes in the problem section of [45]
(page 25) where he noticed:

I like to think of Clifford analysis (and other Riesz systems) as being “codimension-1
complex analysis” on IR™.

Indeed, the consideration of certain relations between differential forms in codimension-1 (or, equiv-
alently, the validity of special relations involving integrals over hypersurfaces) permits to show that
every monogenic function possesses locally a (monogenic) derivative and that a Clifford algebra val-
ued function over R™t! with derivative (i.e. a derivable function) is a monogenic one.

Subsection 3.1 studies linear mappings and the corresponding linear approximation property (leading
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to the definition of differentiability ) whereas the second subsection considers the question of the ex-
istence of a derivative (leading to the definition of derivability) of a Clifford algebra valued function
in R™*, Of course, in classical complex analysis, both concepts are equivalent. This is not anyrore
the case in the general Clifford algebia setting. Indeed, differentiability is related to 1-forms while
derivability is related to n-forms.

3.1 Local linear approximation of C{, ,-valued functions defined in R™**

Let the vector space IR™ be endowed with a non-degenerate bilinear form of signature (0,n) and let
C¥y 5, be the universal 2”-dimensional real Clifford algebra constructed over R%”. According to the
multiplication rules

exe; + ejex = —201e9, k,=1,...,n,
theset {e4 : A C {1,...,n}} witheq = ep,€py...€h,, 1 Shi <...<h, <n, e =¢e =1,
is a basis of Cly,. The conjugate & of @ = 3 4 apeq € Clyy, is given by & = 3 4 a484 where
as€Randéy = &, Eh,_; ... 6, Withé, = —e, (k=1,...,n)and & =¢y = 1.
Identifying each element z = (29, Z1,. . . , £,) of R*** with

z=2Zo+z1€1 + ... + Tpey € A:=spang{l,e;,...,en}

the conjugate of z is given by
n
Z=1x9— Z Trek.
k=1

The norm of z € A is |z] := /zz. Like in H, it immediately follows that each z € A\{0} is
invertible and its inverse is 2
-1

27 == —

[21*

In what follows we consider Cf ,-valued functions defined in some open subset  C R™, je.

functions of the form
f(2) =Y falz)ea,
A

where the f4(z) are real valued and we regard them as mappings
f:QCR" = A w3 Clyy. 13)

Historically (cf. Chapter 2 of [2]), Clifford algebra valued functions generalizing the holomorphic
functions were defined as elements of the kernel of the Cauchy-Riemann operator D inIR**!,n > 1,
given by

2 0l ta
dzy ‘0z | MOz,

Functions f satisfying the equation Df = 0 are called left monogenic and solutions of fD = 0 are

called right monogenic. In general, only left monogenic functions are considered, the theory of right

monogenic functions being analogous.

The theory of functions related to the Cauchy-Riemann operator in R™*! is nowadays commonly

called Clifford analysis. The conjugate Cauchy-Riemann operator is defined by
) 0 a 3

e ) = €y
8zg Az ™ 8y,

D = (14)

15)
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thus providing the factorization DD = DD = A,., where A, is the Euclidean Laplacian in
R+, Some basic examples of monogenic functions are

2 =T — ZToek; To, Tk €R, k=1,...n.

These functions are totally regular in the sense of [6] since (2;)™, m € NN, is still monogenic. Un-
fortunately, the same is not true for z € A - neither z nor 2" belong to the kernel of D. Nevertheless,
it should be noticed that z* k € IN, are null-solutions of DAL, . » in RZ™+2 (see [25]).

The following representation of the increment of Af of f in a neighbourhood of z & z € R"*!
shows the special role of the totally regular functions z,, k=1,...,n.

In the sequel we put # = (21, 22, .. ., 2,). Notice that for each z = 29 + z1e; ++ - + zpen € Aand

k=1,...,n
. zegtepz

R =
2
Some formal coincidence with the corresponding Cauchy approach to holomorphic functions of sev-
eral complex variables suggests to introduce 2 norm of Z by means of

s k=1,...,n

W3l =< Z,2>3= (i +... + zmG)} = (nad + 23 + ... +22)5.
Suppose that f is real differentiable at 2, then (cf. [31]): ‘

of of of

Af(z) = -8—:1:—0le0 + 6_1:1Ax1 SRR %;Awn + o(|Ax])
= AzgDf +
7] 8
+(Azy — elAzO)a_a{l +-o 4 (Azy — e,,A:z:o)a—:;L + o(jAz])
= AZon
of | .. of 7
+Azn B, + ot Az"@zn +o(|AZ])) . (16)
where
. oflAz]) . o(lAZ])
A A A A — an

Besides the assumption of real differentiability we hereby used the transformation
Zp:=ZTg, and 2z =T —Toer, k=1,...,n,

with inverse

To =20, Tp=20€+2 k=1...,n
Monogenicity of f,i.e. Df = 0, implies now that the differential of f in (16) becomes approximately
a linear combination only in 7 increments and this fact is the key to the desired concept of hypercom-
plex differentiability which should characterize the class of monogenic functions in the way complex

differentiability characterizes holomorphic functions.
Indeed, following [31] and the previous lines of reasoning we ate led to consider the isomorphism

R™ = H® = {7: % = zy, — zoex; 2o, Tk € R}.

It defines a second hypercomplex structure, different from that given by A = A,,. The similarity with
€™ and at the same time their differences become clear by considering n copies €, of € identifying
ie, (k=1,...,n); zo 2 Re; zx = Sz; where z € €, and taking then €y, := —~e,C. We obtain
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H" as the cartesian product H" :=C; x »-- x €.

From this point of view, a mapping f € C1(Q;Cf ) may be regarded as a mapping from H" into
Cly, and we may ask for the general form of C{y ,,-linear mappings from H™ into Cly 4.

In this context it is important to point out that H™ is a special subset of the n-fold cartesian product
(Clon)™ of Cly, but not a Céy ,-submodule since AZ, or ZA belong to H™ if and only if A € R.
Nevertheless the imbedding of ™ in the module (Céy )™ enables us to use the properties of (Clgn)"
for describing CZg ,-linear mappings from H" into C4y 5, in the following way (cf. [31]):

Theorem 2. A left Cly p-linear mapping €y, € L(H™;Cly ) may be represented as
(B)=2ndi+ - +2An

where A € Clyy,, (k=1,...,n).
In an analogous way, a right Cly ,-linear mapping {r € L{H™; Cly ) may be represented as

er(%) = Az + - Apzg,

where Ay, € Clon, (k=1,...,n)
Moreover, the elements Ay, and Ay, are unique.

Equipped with the general form of the linear mappings £1,(¢g) € L{IH"; C4, ), the following defini-
tion ({301,[31]) now seems very naturai:

Definition 4. Let f be a continuous mapping from a neighborkood of Z € H™ into Cly 5. Then f is
calied left hypercomplex differentiable (resp. right hypercomplex differentiable) at 7 if there exists a
left (vesp. right) Céyy,-linear mapping £ such that

.+ AR = F(2) - UAT)|
A a7 =0. as

We say that a function f is hypercomplex differentiable in @ C RP! = H" if it is hypercompiex
differentiable at all points of ).

Obviously, the relation (18) implies that the differential of a left (resp. right) hypercomplex differen-
tiable function has the form of

_ af '
df =dz p, + oo+ dzy B | (19)
resp. df = ga%dzl + et —a;:f—dzn. 20)
n

So, we have

Theorem 3, [f f (2) is hypercomplex differentiable then the corresponding linear mapping €y, (resp.
€g) (also called the L resp.(R-) derivative) is determined in a unique way.

The following theorem shows that the concept of hypercomplex differentiability represents the Cauchy
approach to the theory of monogenic functions.

Theorem 4. Let f = f(Z) be continuously real differentiable in an open set O C H™. Then f is
hypercomplex L- (R-) differentiable in Q, if and only if f is L- (R-) monogenic in k.
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Let us illustrate this in R® = .4, = # by the following example. Take the monogenic polyromial
h(x) = Z1Z2 — TpT€) — LoZ1€2. @hn

Then h may also be expressed as

1
h(z) g[(zelezz + ejzez + e1zepz + ejzzey)
+ (zege1z + epze;z + eazerz + egzzer)]

1
= E(zlzz + 2221)

The last expression allows a simple direct calculation of the increment and its linearization:

1
5[(21 + Az ){z2 + Azg) + (22 + Az) (21 + Azy) — (2122 + 2221))

1

-2—[(Az1 vzt 2z Dzg+ Dz 21+ 20 Az)) + (Az Az + AZzAzl)]
21 - Azg + zp - Az + o{]|AZ]])
Az -z + Azg - 21 + o()|AZ])).

Hereby, we used the property that
Azy 2o+ 21 Dzg = Az 21 + 20 - A2y

Finally notice that neither the product z; - 25 nor z3 - 2; permits a representation of the increment as
a pure left- resp. right-linear expression, because they are not monogenic. This fact sheds some light
on the contrast between €™ and H™ which is caused by the non-commutativity of the Clifford algebra.

3.2 The codimension-1 case: monogenic derivatives

From (19) it is clear that in the case of monogenic functions the derivative will be given by the
gradient of f with respect to & = (3, ...,%,). Of course, this is a vector of monogenic functions
which defines f up to a constant [31]. Notice that in the complex case

1}:_1. Af 1Df ( af

dz Ar50 Az 2 2\ 9z 8m1 Bxl

while in our case, for n = 1 we obtain 3‘%«
This corresponds to the fact that, by identifying e; by 1,

21 = &) — woer = e(z0 + e17y).

However, for n > 1, hypercomplex differentiability does not clarify the role of Df as a possible
candidate for the “’derivative” of a monogenic function. Let us now describe how this can be realized.
As far as we know A. Sudbery was the first who noticed in [51] that in the case of a monogenic
quaternion valued function f the exterior derivative of a special 2-form is equal to the quaternionic
surface element multiplied by Df. As is usual in the theory of differential forms such a multiplier
is called a differential coefficient (cf. [8]). In this sense A. Sudbery explicitly considered Df as the
derivative of f and gave a characterization in terms of limits of partial increments of f.

Notice that the calculus of non-alternating quaternionic differential forms used by A. Sudbery was
some years later generalized to the case of special monogenic functions by J. Ryan [44] and this by
using tensor calculus methods and the Hodge star operator, without mentioning D explicitely nor its
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possible interpretation as 2 monogenic derivative. A general theory of differential forms in the frame-
work of Clifford analysis, including homology theory and topics related to integral theorems in €*
may be found in [47], [48] or [43].

Following A. Sudbery’s idea our aim is to show how the hypercomplex derivative of a (left) mono-
genic function f can be defined as the (left) differential coefficient of two differential forms of degree

.
As before consider a real differentiable function f : Q — Cly 5, Where Q C A is open. Its differential
at a point z € A is then an R-linear mapping and a Cfy ,,-valued I-form df : 4> Cly 2

df = aafd 0+afdx1 +5a—f——dxn 22)
n

The differential forms needed for our purpose are elements of the real vector space of .A-valued p-
forms AZ “1» With a basis of real p-forms consisting of exterior products of the real 1. foxms dzg, k=
0,...,n. The differential of the identity function f(z) = z given by

dz = dxg+eydr -+ epdzy, 23)

will play an essential role. Applying to A-valued forms the well known Hodge star-operator *, a
linear transformation between the pairs of spaces A% and /\SZH)_” , is obtained, i.e.

* 3 /\ /\(Ml) p, 2=0,...,(n+1).
Insuchwayforf=1¢ /\A
*1 = dV|gn+1 1= dzg Adzy A Adiy,
is the volume element in R™*!, while for dz = dzg + e1dz - - - + epdz, We obtain
*dz = do(n) i= dig - erdd; + - + (—1)"endZn.

Hereby, as usual,
dZj=dzoA--- A [dz‘i] Ao Adzy,.

Notice that for n = 1,
*dz = dz) — idzg = —idz = dzny

and that (cf. [32]) in the setting of H"
domy i=dzi A+~ ANdzy.

Now consider the 1-form
Pudz = ejdzy + ... + epdzy,.

This 1-form is related to a hyperplane zg = ¢, ¢ € IR, and can be considered as a 1-form in ,/\iqzo=c =
Ak~ . With respect to the variables (z1, ..., 2,) the corresponding volume-form is given by '

dV|ge =dzi A Adzp,
and the corresponding surface-element is
+(Pudz) = dog,y) = —e1dio1 + exdion + - + (—1)"endEon. (24)
Here the Hodge star-operator has been applied to Ak~ and the notation dip , (m = 1,...,n) means

that in the ordered outer product of the 1-forms dz, (k = 0,...,n) the factors dzg and dz,, are
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absent.
Notice that for n = 1 we obtain the constant 0 - form dog) = —e; = ~i, i.e. exactly the factor that

is necessary to pass from 2z € Cto z; = —iz € C;.
Now let v = (vg,01,. .., %p-1), 0 L 1 < vy < -+» < Yp1 < n, be a multi-index. Every basic
p-form w, € /\’j‘ can be written in a unique way as

wp = dTyy, AdTy, A .. AdTy,_; = dz,.

Furthermore, for a given set f, = f,(2) of n;— 1 Cfp »-valued continuous functions in @ C 4

open, wp = 3.,d2,f,(2), 1esp. w, = ¥, fu(2)dz,, is called a left, resp. a right, C4p ,-valued
p-form.

Definition 5. Ler
wp = Z dz, fu(2)
v

be a continuously real differentiable left p-form on 2 C A. Then its derivative dwy, is defined as the

(p+ 1)-form
dwp = Y (~1)Pdz, Adf,(2)

where df, is the differential ( 22) of fu, i.e. the outer derivative of the O-form f,.

For right p-forms or two-sided p-forms wj, (i.e. having Cfy ,-valued coefficients on both sides) the
definition of dw,, is straightforward.

The significance of the special differential forms do,y and dV|g»+1 now becomes immediately clear.
Indeed, consider the n-form w = doyy,) f. Then

dw = (-1)"dog,) Adf
. R . 7] o,
= (-—1)n(d.’l,‘0 —eydZ; + -+ (~l)n6nd$n) A (dxo—a—z% + d:l:la;c{" + e
of
v +»d$n'a';:—n')

dv(Df),

whence w is closed if Df = 0, i.e. if f is monogenic.

Let us now introduce the notion of hypercomplex derivability.

Definition 6. A function f : A — Cly;, is left derivable at z € A if it is real differentiable at z and
there exists Ag1(z) € Clyp, such that

d(do(n-1)f) = doy Ay,L(2). 25

Analogously, a real differentiable function f at z € Ais right derivable if there exists A r(z) €Clyy
such that

d(fda(,,_l)) = Af‘R(Z)dO‘(n) » (26)
Ay,1(2), respectively A p(2), are called the left, resp. right, derivative of f at z.

We have
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Theorem 5. A real differentiable function f : Q@ C A — Clyy, is left derivable if and only if
Df(z) =0, z € Q, i.e. f isleft monogenic in Q.

The proof relies on the relation
_ 1 SO P
ddom-nf) = (~1)""'do(n_1) Adf = 5do)Df ~ Sdotm) Df @n

Theorem 5 motivates the treatment of %5 f as the derivative f7(2) of the monogenic function f.
Indeed, as we have seen in the case n = 1, putting e; = %, we have that

That for f monogenic in €, 3D f is monogenic in £ is a simple consequence of DDf = DDf =0
inQ.

Finally, notice that by Stokes” theorem it is also possible to express the hypercomplex derivative é_ f
as the limit of a quotient of two integrals. »

Indeed, suppose f is monogenic in 2 and § C § is an oriented differentiable n-dimensional hyper-

surface & with boundary 88. From (27) it follows that
1o
d(don-1)f) = do(n)5Df (28)
whence by Stokes’ theorem

L
| @) = [ dow3DF. @9)

Now take z* € S and consider a sequence of subdomains {S,,,} which is shrinking to z* if m — oco.
Then

sDf = Jm [ /Sm da(n)]wl / . @), (30)

m—00

It thus follows that the nature of the derivative %5 is that of an areolar derivative (cf. [52] and [53]).

4 Final remarks

As was already mentioned in the very beginning of the paper, finding an appropriate definition of
differentiability of functions with values in some real associative algebras and building up a related
function theory, was a research topic already dealt with more than a century ago (see for instance R.
W. Hamilton and later on A. C. Dixon (cf. [19, 71)). The lack of a satisfactory answer - already in the
case of the algebra of real quaternions - led G. C. Moisil, N. Théodoresco, R. Fueter and successors
to concentrate on other approaches to function theory.

Nevertheless, many attempts were still made to solve the differentiability problem for such algebra-
valued functions defined in higher dimensional Euclidean space. In the previous sections we pointed
out some of them.

The paper [16] is a good reference for early results on function theory in algebras and describes other
attempts for defining a meaningful concept of differentiability (different from those we mentioned
and not leading to linear fractional or monogenic functions in the case of Clifford algebras.)

The study of functions of a quaternionic variable via the representation of real quaternions by pairs
of complex numbess has also been developed (cf. [40], [35], [36], [41D).

244



A concept of hyperderivability was given in [38]. It leads indirectly to a justification of the conjugate
Cauchy-Riemann operator as representing the quaternionic derivative (like it was done by A. Sudbery
before in [51]).

V. Soudek also started his paper [49] with the question of differentiability, but his aim of splitting IH-
valued differential forms over IH with the help of the Dirac operator as well as the Twistor operator
confirmed that quaternionic differentiable and hypercomplex differentiable functions are important
and, in some sense, complementary classes of functions.

Also motivated by physical problems like in the case of V. Soudek is the view on the differentiability
problem explained by K. Imaeda in.[20]. The special feature of his Lecture Notes is the consideration
of biquaternions and the interpretation of the hypercomplex derivative as a functional derivative which
is only a former term for areolar derivative.

This leads us again to Pompeiu’s notion of dérivée aréolaire ([42]) which we already mentioned at
the end of Subsection 3.2.

The original definition deals with domains in IR? and reads as follows.

Let 2* be a fixed point in a domain G C € where G is bounded by a finite number of piece-wise
smooth Jordan curves. Consider a so called regular sequence of subdomains {G,, } which is shrinking
to z, if n tends to infinity and whereby z, belongs to all G,,. If for some function w in G,

1
-— 31
/3 . wiedz e

im -
n-+00 mes Gy, 2i

exists, then this limit is called the areolar derivative of w = w(z) at 2,.

Pompeiu’s motivation for considering such type of derivative came from measure theory (cf. [52])
and in this setting only weak smoothness conditions on w were required.

Now observe that the combination of Stokes’ theorem for C- functions

%/alcw(z)di = -//Gazwdzdy, 32)

and the two-dimensional version of the mean value theorem for Lebesgue integrals

. 1 .
nll)nolo mes G, //G,, fE)dedy = ()
leads directly to
lim [——l—l / (z)dE] = Bu(z") 33)
no0o | mes Gp 2 8Gn v - ’ -

which is exactly a relation of the form (31). It shows that §,w is an areolar derivative (but also dzw
as we can see by substitution of Z by z in Stokes’ theorem). But, as

mesG=/d:z:dy=——1—,/ d2 A d3 34
G 2 Jag
we see that 2¢ mes G, in (33) can be substituted by — faG,. dz A d%. Hence

1

38| er w0 = o 9
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It is easy to verify that (35) may be derived from (30) in the case n = 1. This justifies to call 1D an
aerolar derivative in the sense of Pompeiu, as we did in Subsection 3.2.

However, notice that in the higher dimensional case the integral [, 5., 40(n) is not a product of mes S,
with a constant Clifford number. The complex case is therefore exceptional, since dog) = —e; & —i
is constant. The deeper reason for this phenomenon stams from the fact that in the case of IR?, dimen-
sion 1 and codimension-1 coincide. And this is clearly also the reason why the complex derivative
of a holomorphic function can be represented in two equivalent forms: as an ordinary derivative (i.e.
ordinary differential quotient) and an areolar derivative. Notice also that, in order to obtain (30), we
have put some smoothness conditions on the functions considered.” This is mainly due to the fact
that the measure theoretical relevance of Pompeiu’s approach is not essential for the problem we are
dealing with.
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