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Second Hyperfunctions, Regular Sequences, and

Fourier Inverse Transforms

Otto Liess Yasunori Okada Nobuyuki Tose

To the memory of our friend Pascal

Abstract Second hyperfunctions are formal boundary values of microfunctions with
holomorphic parameters defined on wedges in much the same way in which classical
hyperfunctions are boundary values of holomorphic functions defined on wedges. Since
microfunctions with holomorphic parameters are themselves already defined in a for-
mal way, second hyperfunctions have a rather non-intuitive definition and few explicit
examples of second hyperfunctions which are not classical are known. In this paper
we shall show that one can arrive at a better understanding by introducing the notion
of regular sequences of holomorphic functions. We shall then show that representation
of second hyperfunctions in terms of regular sequences is quite efficient in the context
of regularization of the Fourier-inverse transform of functions which appear in second
microlocalization.

Keywords: second hyperfunctions, microfunctions with holomorphic parameters,

Fourier-transform

1 Introduction

Second hyperfunctions, are the natural frame for second microlocalization. They have
been introduced in 1970 by T.Kawai and M.Kashiwara, as a very natural extension of
standard hyperfunctions and have many interesting properties. In particular they form
a rather large space of generalized functions in which calculations are often easier to
perform than in classical hyperfunctions or in distributions. Related to this is the fact

307



that it may happen that certain calculations are meaningless in classical hyperfunctions
whereas they have an easy interpretation in second hyperfunctions: a classical example
is the function 1/(x2 — i2? + i0), which can be given no meaning in classical hyper-
functions, but which has an easy interpretation in second hyperfunctions and gives a
fundamental solution for Mizohata’s operator p(z, D) = (8/8z1) + iz1(8/8zs). (See
[4].) Few other explicit second hyperfunctions which are not classical hyperfunctions

are known however at present.

The basic ingredient in the definition of second hyperfunctions is given by so-called
“microfunctions with holomorphic parameters”. Such microfunctions play in higher mi-
crolocalization roughly speaking the role of holomorphic functions with hyperfunctional
values. Indeed, second hyperfunctions are formal boundary values of microfunctions
with holomorphic parameters defined on wedges in much the same way in which clas-
sical hyperfunctions are boundary values of holomorphic functions defined on wedges.
However, microfunctions with holomorphic parameters themselves are defined in terms
of cohomology classes, so, all in all, the definition of second hyperfunctions becomes
highly non-intuitive. A specific difficulty is, that despite the fact that second hyper-
functions are objects living on the real space, the holomorphic functions which are
ultimately involved in their definition, have domains of definition which are somewhat
distant from the real space and which are often quite small. On the other hand, in
explicit calculations it would often be convenient to use these holomorphic functions
to represent cohomology classes, and then it would be desirable to dispose of large
domains of definition, which come as close as possible to the real space.

In the described context the goal which we have set ourselves for this paper is
twofold. On one hand, we shall show that it is possible to define microfunctions with
holomorphic parameters of the type needed in second microlocalization by sequences
of holomorphic functions which have domains of definition which become increasingly
large and which exhaust the wedge-type domains on which we would like our defin-
ing functions to live. In particular, on any previously fixed compact set inside such a
wedge, one will be able to work with just one single defining function and the domains
of definition of these holomorphic functions will come arbitrarily close to the real space
if the function in the sequence is chosen appropriately. The basic new notion is here
that of a regular sequence of holomorphic functions {h;};>1, so actually second mi-
crofunctions will be defined in the end by sequences of holomorphic functions defined
on on an increasing sequence of wedges, rather than by single holomorphic functions
defined on a fixed wedge. All this is roughly speaking the content of the sections 2 to
4,

Related to this, is our second goal, which is part of an ongoing attempt of the
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authors to construct a theory of the local Fourier transform for second hyperfunctions.
The basic observation is here that second hyperfunctions appear oftén in the form
of formal Fourier-integrals with non-integrable integrands, and the first thing to do
is to give a regularization procedure for these integrals. We shall do this, after some
preparations, in section 7 and it will turn out, that the best way to argue, is precisely to
use the notion of regular sequences of holomorphic functions which we mentioned just
before. In section 9 we shall show how one can use this theory to construct fundamental
solutions for operators of a certain form. Since some of these operators are known to
not admit fundamental solutions in classical hyperfunctions, we obtain in this way in
particular examples of second hyperfunctions which are not classical. (See however
also [8]).

‘e dedicate this paper to Pascal Laubin, who was one of the main contributors to
the theory of second microlocalization. In particular, we would like to cite his recent
paper [9], of which many implications should still be worked out.

2 Definitions and boundary value representations

In this section we discuss boundary value representations for microfunctions with holo-
morphic parameters and for second microfunctions in local coordinates. This is nec-
essary on one hand to review the main definitions and on the other hand since for
the second part of the section the results which can be found in the literture are not
explicit enough for our needs. We also refer to [15), [6], [5], [14] and [7].
We start from the sequence of inclusions
RE=R'xR"¥ 5 RIxC¢ = C!xC¢ =C",

where each map is constructed from the standard complexification RF — C¥. We
denote the three manifolds R*, RY x C"~¢ and C* by M, N and X respectively. The
second inclusion N — X defines the conormal bundle

=T X = TpC!x 4N
along N, and the inclusion M — X defines the conormal bundle
X ™M
along M. We define the real regular involutive submanifold
L= 5 xpex ThX,

in T;,;X. ¥ is identified with the union of the bicharacteristics of the complexification
3 of & which pass through points in £. We also consider the bundle Tgf) —
associated with & — ¥.
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We take coordinate systems = = (z1,...,%,) = (2, 2"), 2 =z +iy = (21, ..., 2,) =
(2, 2"), and (', 2") of M, X, and N respectively, with the conventions " = (z1, .. ., Zg),
2" = (Tge1, -y Tn), 2 = (21,...,24) and 2" = (2441, ..., 2,). Coordinate systems of
T, %, and T3 X are written as (¢, 2"; &), (z;¢'), and (z;€) respectively, where £ =
(&, &) = (£,€") denotes the variables dual to z and & and &” denote (&;,...,&)
and (§a+1,. ., &n).

We introduce the sheaf COy of microfunctions with holomorphic parameters on
£ =T;X by

COy = pun(Ox) ® orn/xd]

and the sheaf BOy of hyperfunctions with holomorphic parameters on N by
BON = CON]N“

Here Oy denotes the sheaf of holomorphic functions on X, px Sato’s microlocalization
functor along N, and ory;x the relative orientation sheaf. These sheaves, together
with the sheaf

.AON = 0,\"1\;',
form an exact sequence
0= AOy — BOy B iy ,CON — 0, (2.1)

where 7y denotes the projection TH X = T3 X \ N — N.
We also introduce the sheaf CZ of second microfunctions along T on T%E and the
sheaf BE of second hyperfunctions along £ on ¥ by

CL = puz(CON)® orgsin —dl,

BZ = C%IE
Denoting by
.Ag; = Aole,
we thus obtain the exact sequences
2
0-+ A% — BE %% it ,C2 — 0, (2.2)
0 CM’): ad B%, (2”3)

where 7rs denotes the projection T'gi =TiE\ T — I. We say that a second hyper-
function w is classical if it bciougs to the image of Cpy in (2.3).

Having defined microfunctions with holomorphic parameters and second hyperfunc-
tions in a rather formal way, we now want to turn to the problem of boundary value

representations.
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The first remark is that, locally, a hyperfunction v{z', ) with holomorphic param-
eter 2" is a class of a finite formal sum of holomorphic functions

v= [ZF,-], Fy € O((U' +4G}) x V' 0 {|Im 2| < 6}), (2.4)

with some positive constant &, open subsets U’ C R? and V" C C*¢, and a family
{G}}; of open convex cones in R?. The right hand side is zero in a neighborhood of a
point (i', ") € U’ x V" if there exist a positive 4, a neighborhood U’ x V" of (&',2"), a
family of open convex cones {G’;}, with C~¥’7 C G, and a family of holomorphic functions
{Fjr};x such that each Fj, is holomorphic on the set

U +4(G+G)) x V' n{|Im7| < §}

and that satisfies Fj; = —Fy; for any j and k, and F; = Y, Fj; for any j.
A class represented by a single holomorphic function F' is denoted by bim e (F),
or simply by b(F). Thus we can write

v = Zmez'eo(Fj)u
7

A microfunction spy(v) with holomorphic parameter is a class represented by a
hyperfunction v with holomorphic parameter. spy(v) is zero in a neighborhood of a
point ¢ = (&, 2";€') if v has a representation (2.4) in a neighborhood of (i, 2") such
that £ ¢ G+ for any j. The microfunction represented by the boundary value of a
single holomorphic function F is also denoted by bim »—o(F'), or simply by b(F), if there
is no risk of confusion. It is well-known that every microfunction v with holomorphic
parameter admits, locally, a representation

V= b!mz’—»O(F)w

A second hyperfunction u(z’, 2"} is, locally, a class of a finite formal sum of micro-
functions with holomorphic parameters
= [Zv,-], v; € COWU' x (U" +iG) x T 0 {| Im#"| < 6}), (2.5)
with some positive &, open subsets U’ ¢ R¢ and U” C R*¢, an open cone I' C R,
and a family {G%}; of open convex cones in R*~¢. The right hand side is zero in
a neighborhood of a point ¢ = (&,2";&’) if there exist a positive §, a neighborhood
U x U” x I of ¢, a family of open convex cones {C;";}, with G”,’ C GY, and a finite
family of microfunctions with holomorphic parameter {v;z};x, such that each v is
defined on
(U x (0" + i(@’j'+ G x YN {|Im2"| < 8},
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such that vz = ~uvg; for any j and k, and v; = Y, v, for any j.
A class represented by a single microfunction v is denoted by byy, .o (v), or, simply

by b(v). Thus we can write

U= Z bim z”-)O(vj)ﬂ
j

A second microfunction spZ(u) is a class represented by a second hyperfunction u,
and sp}(u) = 0 in a neighborhood of a point ¢ = (&;£'; ") if u has a representation
(2.5) in a neighborhood of (i; ¢') such that & ¢ G+ for any j.

It is useful to understand the imbedding morphism (2.3) in terms of boundary value
representations, and we shall now explain how to achieve this.

We recall at first that a microfunction u € Cps defined in a neighborhood of a point
¢ = (#€) € £ can be written in the form

U= bImg—)O(F)a

where F is a holomorphic function on {z = z + iy € U +iG; |y| < §} with an open
neighborhood U € R™ of &, an open convex cone G C R* and a positive §. For this
defining function, we take an open convex neighborhood U C U of i, an open convex
subcone G C G, a positive § < 4, a finite family {G7}; of open convex cones in R*~¢,
and a family {F;}; of holomorphic functions such that each F; is holomorphic on the
set

{z=z+iye ﬁ+i(G+G’,-‘);|y| <8},

and that F is decomposed as

F(z) = z Fi(z), (2.68)
7
on their common domain of definition. Here we have used the convention
G+G = {0,/ +7) € R (1) € G, € G},
Each F; defines a microfunction with holomorphic parameters v; = by, o(F;) on
{(@, 2" =2"+iy";€); (¢, ") € U,y" € G}, ly"| < §,¢ e B},
and the family {v;}; defines a second microfunction @ in a neighborhood of §. The
correspondence u +> i gives precisely the imbedding morphism (2.3).

Remark 2.1. In the explanation above;, we have omitted the details concerning the
ezistence of the functions {Fj}; and the ones related to the fact that @ does not de-
pend on the choice of F, {G7}; and {Fj};. We only note here that for any choice
of {Gf}; satisfying U, G+ = R*~¢, the ezistence of a decomposition as in (2.6) can
be shown using the vanishing theorem of cohomology groups of convez sets in C* with
O-coefficients, and that the “independency” is proved with the aid of some kind of edge
of the wedge theorem.
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We now come to the main result in this section.

Theorem 2.2. Consider pairs of open sets U' ¢C U’ in R and V" CC V" in C*¢,
Also consider an open proper conver cone I' C RY, some strict subcone I of I, and
an open conver cone G' C RY with G' C T't. Assume that the closure of V" is
polynomially convez. Then for any u € CON(U' x V" X TV), there exists a holomorphic
function F € O((U" +iG’) x V") such that w = b(F) in COn(T" x V" x V).

Recall that a compact set in C™ is called polynomially convex if it is an intersection
-finite or not- of sets of form {z € C™;|f(z)| < 1} where f is a polynomial. Also recall
that an intersection of sets of form {z € C™;Re f(z) > 0} with some polynomial f is
polynomially convex if it is compact. In fact, for such a set K and a point z € K,
there exists a polynomial f with X C {Ref > 0} and Re f(2) < 0. By taking
r = maX.ex | f(2)] and g,(2) = (f(2) — 8)2/(r? + s?), we have

K [W{zl19,(2)l < 1} = {=1(2)] < 1, Re f(2) 2 0}.
s>0

Thus, in particular, any convex compact set is polynomially convex.

Corollary 2.3. Let U*, V", T" and u € CON(U' x V" x T") be as in theorem 2.2. Also
consider a sequence of open sets U, CC U’, of open sets V' CC V", and of open convex
proper cones G CC I'* such that U; C U}, V]! C V4, G C G}y, and

[e o)

oC oo
Uu=v, Uw=v", UG =mI"
j=1 j=1

j=1
Assume that the closure of each V' is polynomially conves. Then there exists a sequence
of holomorphic functions F; € O((Uj +iGY) x V') such that for every j, u = b(F;) on
U, x V' x T,

Before we start the proof we recall the following

Proposition 2.4. Let K = K' x K" be a compact set in R? x C*~¢, where K' is a
compact set in R and K" is a polynomially convex compact set in C*~¢. Then

H(K,A0) =0, VYj=1,2,.... (2.7)

Here H(K, AQ) denotes the j-th cohomology group of K with coefficients in .AQ.
Related notations used later on should be self-explanatory.

(To prove proposition 2.4, it suffices to observe that K has a fundamental system
of neighborhoods in C* which are Stein, and that for any sheaf F on C”

Hj(Ka }-.'Rdx@'"‘d) = l_l_lg' H7<Ua-7:)
UDDK
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Cf. eg. [2]. That the K in the statement admits a fundamental system of Stein
neighborhoods follows from the following two remarks: any compact set XK' in R¢ admits
a fundamental system of neighborhoods in C? which are Stein, and any polynomially
convex set in C*~¢ admits a fundamental systems of neighborhoods in C*~¢ which are

Stein.)

Applying proposition 2.4 to the exact sequence (2.1}, we obtain the following corol-

lary
Corollary 2.5. Let K = K’ x K" be as above. Then the map

BO(K) - CO(xYK)) (2.8)
s surjective.

We also need:

Proposition 2.6. Let U' CC U’ and V" <C V" be as in theorem 2.2, and I" C R o
proper open convex cone. Consider v € BO(U' x V") such that

WFa(u) C U x V" x I, (2.9)

Also fix some open convez cone G' CC I'*. Then there ezist § > 0 and F € O(({U" +
iG") x V" {|Im 2| < 6}) such that u = b(F) on U" x V".
We prepare the proof of proposition 2.6 with

Lemma 2.7. For a closed set K' C R® and a closed cone I' C R%, there erists a sheaf

morphism
D =Py CONIT,{,)\ — CON]T;,X

such that ® =id on Int K! x C*~¢ x Int I’ and ® = 0 outside K' x C*¢ x I

Proof. Let & be the Delta-Dirac distribution at 0 € RY, We take a microfunction
k(z',y") € Craa(T35aC??) satisfying
k(@' y') =6(z' — y') on {(«',2';&, ~€); (¢, &) € Int(K' x )},
suppk C {(«',2'; ¢, -€); (', &) € K' x I}
The existence of such microfunctions is clear from the conical flabbiness of the sheaf
of microfunctions. (Here we observe that the support of §(z' — ¢') as a microfunction

is {(z',y5€,7); 2" =y, & + 7' =0}.)
To conclude the proof we define @ = &gy v by

8(u)(&, ) = [ ke 1)uld/, )y
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It follows from the support property suppk C {z' =¢',&' + ' = 0} that ® becomes a
sheaf morphism of COy outside the zero section. The remaining statement also follows

from the two properties of k. ]

Proof of proposition 2.6. Consider a pair of compact sets K’ cC L' in R¢ with U" cC
K' cc U’, and an open set W" in C*~¢ with V” cc W” cc V",

If we can find some hyperfunction with holomorphic parameters w € BOy (R¢ x W)
with the property that u — w is analytic in a neighborhood of K’ x W" and such that
suppw C L' x W, then we can obtain a defining function F of w by curvilinear Radon
transformation of w with respect to the z’ variables. What remains to be done will
then be to adjust F so as to have v = b(F). This can then be done by adding to F
the analytic function v — w.

We will now explain how to obtain K', L', W” and w with the above properties.

We take a compact neighborhood K'of U'inU". Applying to u, the sheaf morphism
® as in lemma 2.7 for K’ x R?, we obtain

®(spy(u)) € CON(U' x V" x RY).

Since this is 0 for 2’ outside K’, we can extend it by zero to obtain v € CON(R? x
V" x R%), which satisfies suppv C K’ x V" x I and v = spy{(u) on {2’ € Int K'}.

We also take a compact subset L' C R? with K’ CC L’ with analytic boundary,
and a polynomially convex neighborhood K” of V" in V”. Applying corollary 2.5 to
L' x K", we get @ € BOy(L' x K") for which v = spy (&) holds on a neighborhood of
#7 (L' x K"). Since % is analytic in a neighborhood of {z' € 8L}, we can multiply &
with the characteristic function xr/(2') of L' and get

w = xp ()2, 2") € BOy(R? x W"),

where W” = Int K”. This w, together with XK', L' and W" satisfies the desired prop-
erties. 0

Remark 2.8. It is not difficult to show that in proposition 2.6 one can always take
“5 = oo” if one replaces the condition “u = b(F)” by the condition WF 4(u—~b(F)) = 0.

Proof of theorem 2.2. By cutting off the support of v using lemma 2.7 and taking the
zero extension, we may assume, from the beginning, that u is defined on R% x V" x R¢
and that the support of u is included in the closure of I x V" x I¥. Then we can use
corollary 2.5 and take & € BOyn (W) with u = spy (%), where W is some neighborhood
of U’ x V" The function F will be the one associated by proposition 2.6 with @. O
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3 Existence of suitable polynomially convex sub-
sets

In this section we prove the existence of certain polynomially convex compact sets
which will be needed later on. For notational conveniene, we work on C™ rather than
on C"% and take z = (21, ..., 2m) = = + 4y as a coordinate system.

We denote by B(r) the open ball in R™ of radius r, centered at the origin. We also
use the following conventions: G(r) = GNB(r) and G(r,s) = Gn{y € R™;r < |y| < s},
whenever we are given some open cone G C R™,

Proposition 3.1. Let K cC K cc U cc U be four subsets in R™ where K and K
are compact and U and U are open and convez. Also consider two proper open conver
cones G CC G in R™ and two positive constants d1 < dy. Then there exists a positive
constant § for which the following condition holds: for any posilive € we can find a
polynomially conver compact subset L C C™ such that

(U +iG(e,d)] U[(U\ K) +i(G(d) UB6))] € L C [U+iG(da)] U[(U\ K) +iB(dy)].

Proof. L will be constructed in the form

_ £
L:=(U+i{lyl <d:)n[) [ {z € C™;Re fore,(z — t) > 0}

teK k=1

for some ¢ > 0, r > 0, & € R™ with 1| = 1 (k = 1,...,¢), where f,,¢ is the
polynomial
forg(2) = —i(2,6) + 0 (2* - r?) /2.

First, we choose finitely many vectors {&;}r=1,. ¢ C R™ with |&| = 1 for which the

cone
G:={yeR™(y,&) >0fork=1,...,0

satisfies G cC G CcC G.
Next we choose o.

Lemma 3.2. Let G CC G and {&}x=1, ¢ be as above. Define the sets V,,(£) by
Vo‘,r(&) = {y € Rm; R‘efa,r,f(iy) > 0} fOT 5 € Rm:

14
‘/17,1 (617 [N ’52) = n V;T,T(ék)"

k=1
Then, we have the following properties.
1. Forany o >0 andr > 0 it follows that V,,(&,...,&) CC G.
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2. For any d, > 0, we can find a positive constant o{d;) > 0 such that
Gn{lyl <di} C Vool -, &), and GN{lyl = di} CC Viol(&s, .-, &)

hold whenever 0 < o < o{d}.

8. Finally, let us consider some arbitrary € with 0 < & < dy.. There is then a positive

constant r{e,d1) > 0 for which
Cm{5<ly|<dl} CcC Va'r( ’éé)

holds whenever 0 < o < o(dy) and 0 < r < r(e, dy).

Proof. 1. V,.(£) is compact if o is positive. Moreover if 7 is also positive,

Vo (6) = {{y. &) 2 o(v* +77)/2} C {{y, &) > 0}

2. Note that 1, (€) decreases as o increases, that the set GN{|y] < d,} is included
in the convex hull of {0} U (Gn {ly] = d1}), and that the set V,o(&,...,&) is convex
and always contains 0. Thus it suffices to show that for some o(dy),

Gn{lyl=di} CC Vyay)ol&) = {2y, &)/y* > o}, for any k.

Also note that since G cc G as cones, GN {ly| = di} cC G and that (y,&) is
positive on G. Thus 2(y, &)/v2 has a positive lower bound for y € G N {|y| = d;} and
k=1,...,¢

3. We can take such a 7(¢,d;) using the facts that V,,(£) also decreases as r
increases, that G N {e < |y| < d1} CC Vigano(&rs -, &), and that 2(y, &) /o —y* > 0

on Vywo(é, ©-. &) O

Lemma 3.3. Let {&}x=1, . be as above. Define the sets W,,(t) by

Wou(t) = {2z =z +1y € C™;Re fr5,(2 - >0 fork=1,...,¢},
Waﬂ,K = m Wa,r (t)

teK
Then we have the following properties:
1. For any g > 0 and any r > 0, we have an inclusion
Worx D R™ +iVo, (&, ..., &),
and an equality
{z+iyeCh2z e K}NWo k=K +iV,, (&,...,&).
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2. We have the two inclusions
{.’L’ +iy € Cm; diSt(.’I,‘, K) >ny€ ‘/<7,0(§1’ e 75@)} - Wa’,r,K"

and

{z +1iy € C™;dist(z, K) > 1, |y| < v/1/0% — r? + dist(z, K)? ~ 1/o} C W,, k.

Now we continue the proof of Proposition 3.1.
We fix o with ¢ < o(d;) as in lemma 3.2 and take ry with 2ry < dist(K,R™ \ K)

and § = \/m —1/0. Then we have for r < rg,
{z+iy;2 ¢ K,y <8} C W ke
For any £ > 0, it is enough to take r with 0 < r < r(e,d;) and r < ro for which
L= (0 +iflyl S di}) N Woyx

satisfies the condition in the statement. [}

4 Regular sequences of holomorphic functions

As we saw in section 2, a microfunction v{z’, z") with holomorphic parameters 2” is,
locally in the 2" variables, represented as a boundary value for Im 2z’ — 0 of a holo-
morphic function h(z', 2"). However, in general, it will not be possible to obtain such
representations globally. In order to use microfunctions with holomorphic parameters
as defining functions for second microfunctions, we shall now represent a global section
v(2',2") of microfunctions with holomorphic parameters in the form of a “boundary
value of a sequence of holomorphic functions”. On overlapping parts of the domains of
definition, the single holomorphic functions will define the same microfunction v and
the domains of definition of these functions with respect to the z” variables will be
increasing in such a way that they will ultimatively exhaust the domain of definition
of v.

To state our main definition, consider an open set I’ C R?, an open convex cone
G’ ¢ RY, and an open set V" C €4, Also fix ' C R%.

Definition 4.1. A sequence {h;(2)};=1,,. of holomorphic functions is called a regular
sequence of holomorphic functions on U’ x V" x I if the following happens:

a) there ezists an increasing sequence of open subsets {V'}j=1, . in V" which ez-
austs V", in the sense that Ui Vi" = V", and a sequence of positive numbers {3;} =12, ,
such that the function h; is defined on the set

{z=(¢,7") € (U'+4G") x V';|Im2'| < §;} (4.1)
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b) for any j, the boundary values bym ;—o(h;) and bmar—s0(hj41) coincide as sections in
COU' x V' x I).

A regular sequence {h;}; on U’ x V" x I defines a microfunction v(z’, 2") with
holomorphic parameter z” on U’ x V” x I" in the following way. For any fixed point
g =(&,5"€) e U x V" x I, we can choose an index j with 2" € V/', and define a
germ v = b »—0(R;) in COy. By the definition of regular sequences, this germ does
not depend on the choice of j above, and the family {v;}4ev'xv»«r defines a global
section v in CO(U’ x V" x I'). We denote this v by bim»—0({h;};)-

In the case when we consider defining functions for second hyperfunctions, a typical
and important case for regular sequences is the one when V" and V" have the form

V"= {2" e U" +iG";|Im2"| < 6}, (42)
VI'={" e V";|Imz"| > 1/5}, (43)

with U” some open set in R*~¢, G an open convex cone in R*~¢ and § a positive
constant. In this case it makes sense to consider the boundary value

u= bImz"—)O(bImz’-AO({hj}j)) € B?;(U/ x U" % FI)

Note that by —0({h;};) is a section in CON (U’ x V" x I"). We denote this second
hyperfunction u by ¥ ({h;},).

Of course, in general, the fact that V" has the form (4.2) does not by itself imply
that V" has the form (4.3). However, if we are only interested in the boundary value
brm 2 —0(v) € BZ of v for 2" contained in a neighborhood of some fixed point " € U”,
we may shrink U”, G" and 8, and we may also renumber j. After having done this, we
may then assume that V” has the form (4.3). More precisely, we have

Lemma 4.2. Let {h;};>1 be regular sequence on U' x V" x I where the domain of
holomorphy of each h; is as in (4.1), definition 4.1. Assume that V" has the form
(4.2). Then for any positive § < 8, any U" CC U" and any strict subcone G" in G,
we can take a subsequence {h,-k Ye=12, which is a regular sequence on U’ x V" x I with

V"= {z" € U" +4G";|Im 2"| < §}
such that each hj, is holomorphic on
{z=(¢,2") € (U'+iG") x V";|Im2'| < &;,,|Im2"| > 1/k},
and that the sequence {h;, }x defines the same microfunction with holomorphic param-

eter as {h;}; on U' x V" x I
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Remark 4.3. Since the microfunction by y0(h;) vanishes outside the set {¢' € G'*},
there is no direct meaning in considering a requler sequence in the case when I'NG't =
(. It is therefore worth noticing that in the definition, we have not asked for any relation
between G' and I, The reason for this is that we may want to restrict a sequence {h;};
initially defined on U’ x V" x I (and for which we had that T'NG' # () to the “same
sequence”, but defined on a smaller set of form U' x V' x I with U' c U", I c I and
vrc v,

Trivial examples of regular sequences are constant sequences defined as follows.

Let h(z) be a holomorphic function defined on a set of form

(U'+iG") x V' n{|Im 7| < §}.
Also define {V}'};, {4;};, {h;}; by
Vi'=V" & =6 hj=h (j=12,..)

Then the {h;}; define a regular sequence of holomorphic functions. In this case, the
microfunction v with holomorphic parameter associated with {h;} on U’ x V" x R? is
nothing but by (k). Moreover if V" has the form (4.2), then the boundary value
u = by 2r0(v) € BE is classical.

Conversely, we can show, using remark 2.1, that any classical second hyperfunction

u has, locally, a representation

u= Z bImz"—)O(v/c)
k

with microfunctions with holomorphic parameter v;’s, where each v; can be associated
with a constant regular sequence.
For general second hyperfunctions, we give,

Theorem 4.4. Letu(z',2") € Bg,q be a second hyperfunction defined in a neighborhood
of ¢ = (&, 2";€') € . Then there ezist reqular sequences {R%}; on a set of type

U' x (U" +4G}) x ' 0 {|y"] < 8} (4.4)
with u = 3, 0*({hk},), where U' x U" x I" is a neighborhood of § and G}’s are open
convez cones in R*¢,
Remark 4.5. Let K" C R* ¢ be a compact set and consider a second hyperfunction
u defined in a neighborhood of {(2',";€'); 2" € R*?} with some fized i’ € R* and
& € RY satisfying suppu C {z" € K"}. In this case we can take the regular sequences
{h%}; in theorem 4.4 on some larger domains than those considered in (4.4). For
example, if we fiz subsets K" and U" in R*¢ with K" CC U" cC R*¢, we can take
regular sequences {h%}; on U’ x V"¢ x T, where each V"™ C C*¢ includes not only
(U" + 4G 0 {ly"| < 8} but also U" \ K". This fact can be proved with the aid of
proposition 3.1.
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5 Weight functions

In the following we shall consider weighted L®-spaces. (For the terminology also cf.
remark 5.3.) The weights will be of two types, associated roughly speaking with first
and second microlocalization. These weights will be defined on sets of form:

' x R n{&|€" < 6|¢'|}, or (T" x ") N {&; |¢"] < 81€']}, (5.1)

where I' ¢ R¢, I' ¢ R*¢, are open convex cones in R?, respectively R*¢ and § is
strictly positive {or sometimes, § = +00). In some cases we shall also allow for I = R¢
or I' = R? We shall denote by

H={0:T" xR 5 R,;Ve,3C. 5.t 4(§) <el¢] +C,, f € €T x R4},  (5.2)
and by
F={p:I'xR"* > Ry;Vj € N,36, > 0,3C; > 0 s.t. p(€) < |€"]/7,

if |€"] < 6;1¢] and €] > C;}-

Functions in F shall be referred to as “sublinear”. When we use sublinear functions
to describe some geometry, the situation will become somewhat simpler if we assume
that they depend only on the variable £ It is then useful to note that for £ € H and
6 >0, the function £'(¢') = supjen<g¢ £(€',€") is sublinear and satisfies £(£) < #/(¢)
on {§ & €I, |€"] < 6]¢'|}. As a consequence we may assume in the sequel always that
£ depends only on &'

It is also clear that it is no loss of generality to assume that the sequences j -— d;,
which appear in the definition of F are strictly decreasing to zero and we shall do so
in the following without further mention.

Lemma 5.1. a) Let §; 0 and C;  oo. Then there is a sublinear function p such
that
{€e R <G 0mlEl < < GlE1 c {Ee RS < p(€)) (B3)

b) C’onversely, if we are given a sublinear function p and a sequence 8\ 0, then there
is o sequence C; /oo such that

{€e R 1€ < p(€), 16" < &ife} | J{E e R €1 < G, 618 < 1€ < §51€'1)
j=1
Proof. a) It is no loss of generality to assume that §,C; ,* co. We define p by the
conditions: ' k
p(&) = C;0; if [€] > Cjo1, 851 [€'] < |€"] < 65| or it Cjy < |E'] < Cj, [€"] < 8511]E7).
321



To prove (5.3) assume then by contradiction that |£”] > p(¢’) and that C;_; < |¢'] < C,
8i1l€] < 1€ < 6;1€'], for some j and s, s < j. Then p(¢') = Cyds, s0 §[¢'| > [¢"] >
p(€') = C,5,. This contradicts [¢'| < C, since §,/6; < 1. This gives (5.3). Let us also
check that p is sublinear. Let us then fix ¢ and assume that k is chosen with 6 < &.
It is clear that p(&') < e|¢'] for [€"] < 8;|¢’'|. On the other hand on [£"] > 6[¢'], p is
bounded by max;<x C;d;, so p(&') < el¢'| + max;<x 6;C;.

b) It suffices to choose C; so that p(¢') < 6;41|¢'|/2 for |€'] > C;. Indeed, in that
case |€"] < p(€') is not compatible with §;4.|€'| < |€"} if |¢'] > C;. O

2. We next consider the following definition

Definition 5.2. a) Consider some open convez cone I' C R*. We denote by M?(I)
(the “two” comes from “second”) the space of measurable functions p: ' x R*~¢ —» C
such that we can find sublinear functions £, p and ¢ € F so that

(&)l < exp [6(€) + ()], f & € T, [€"] = p(€), €] < 81€'|- (5.4)

b) Two functions u € M2(I") and ji € M2(I") will be called equivalent on T' NIV
if we can find ¢ > 0, sublinear functions £, p', and d > 0 so that

1) - B(€)] < exp [€(€) — dl¢"ll, VE e T'N IV, 1" 2 4(€), 1" < €] (5.5)

Remark 5.3. a) In some arguments, it seems more appropriate to replace pointwise
inequalities as in (5.4) and (5.5) by similar L?-type inequalities. This is of course also
the main reason of why we call the functions in H and F “weights”. However, in the
present paper we have no particular advantage from working with L% inequalities, and
will not do it.

b) There is no deep meaning in the presence of the term I'(€) in the exponential in
(5.5). Indeed, we can alternatively ask that for some suitable sublinear function p we
have

(&) — ()] < exp [~dl"]], if € € T' NIV, [€"] > p(€), IE"] < cl€.

In a future paper it will turn out that AMM?(I) corresponds roughly speaking to
the space of Fourier-transformed of second hyperfunctions. We shall also need a cor-
responding space in the case of second microfunctions.

Definition 5.4. Consider some open convez cone I' C R¢ and some open cone I C
R4, We denote by M2(I",T") the space of measurable functions p : I' X I — C such
that we can find sublinear functions £, p and o € F so that (5.4) holds, if we add to it
the condition £ € T". Moreover, two functions u € M2(I',T") and i € M2(I, ")
will be called equivalent on (T' N TY) x (" N T") if (5.5) holds if we add the condition
e NI there.
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To state our next result we introduce a notation. To do so, we shall fix a sequence,

4; ¢ 0 and denote by
S; = {& 61181 < 1€"] < 6;1€1} (5.6)
We shall have sometimes to assume that §; — 0 sufficiently rapidly, so the §; may vary
from argument to argument and the notation S; will always refer to the sequence §;

just considered.

Remark 5.5. In view of lemma 5.1 the following two statements are equivalent if we

are given some sequence 0; N\ 0:
a) there is a sublinear function p so that some given property P holds for |£"] >

(&),
b) there is a sequence C; — oo such that P holds for £ € S; if [€'] = C;, whatever

J is.
We have the following estimate:

Proposition 5.6. Consider p € M*(I"). If C; — oo sufficiently rapidly, then we will
have

(&)l < exp [2€71/3], for £ € S;, [€1 > Gy, 1€"] > p(8)- (5.7)

Proof. Let ¢ € F and a sublinear £ be given such that |u(£)] < exp [¢(&') + ¢(£)] for
g eT, ¢ > p(&), 1€"] < 5l¢'| In view of our notations, w(€) < |¢"|/j if € € S; and
|€] = Cj, so that w(€) < exp [£(&) + |€"]/j] when & € S;, |€] > C;. The proposition
will follow if we can show that £(¢) < |£7|/j for £ € S; and [¢| > Cj, provided C;
is sufficiently large. This is an immediate consequence of the sublinearity of ¢ when
combined with the fact that on S; |€"] > 6;41/€}. O

Lemma 5.7. Let £;,7 > 1, be a sequence of sublinear functions. Then there is a
sublinear function £ and a sequence of constants C; so that £;(§") < £(&') for |€'] > Cj,
vj. ‘

Proof We choose constants Cj so that
L&) < |E/k L] 2 Ch.

We also define Cy by Ci = max;<x Cj and set £(€') = |¢'|/k if C) < |€'] < Cpyr. It is
then clear that £ is sublinear and it remains to check that £;(&') < £(¢") it [’} > Cj. In
fact, for C; < |€'] < Cyq1, s > 7, we will have that £(€') = |€'|/s. On the other hand,
C; > Cjs, so for [€'] > C we have £;(¢') < [€'|/s. This concludes the proof. O

Lemma 5.8. Let ¢ € F and fix p sublinear. Then ¢ is sublinear on the set

A={ e L;|¢" < p(€)}. (5.8)



Proof. By the definition of F, there are §;, C;, so that p(§) < |€"|/j+C; if [€"] < 4;1€'].
However, on A, |£"] < §;]¢'| if |€'| is sufficiently large, so we obtain (&) < [€"]/5 + C},
if |¢'] is sufficiently large. This gives the desired statement. O

Proposition 5.9. Let §; \, 0, I, cC I, Il cC I, and p be given. Then there exist
C®- functions e; and o sublinear function p,. such that:

a) e;(§) =1if& e, & €T, |€"] < 6;1€1/2, 1€"] Z p+(£)),
b) €;(€) = 0, when [§"] < p(&'), or & ¢ T, or &" ¢ T or [¢"] 2 &€,

o) [Ves(&)] <.
In particular, the e; vanish of infinite order on the boundary of {§;¢ € I'",¢" €

I, 1" < 1€, 16" = p(€1)}-

Proof. If the conclusion of the proposition holds for some p., it holds for any larger p, .
We may therefore choose p,. in various “subcases” during the argument independently.

We next denote by A;, respectively A;-", the sets:

A ={§¢ el el [ < 6ii€], 1€ 2 ()},

Al ={§¢ e T, &" e T 1€ < 61€1/2, 16" = p+(€)}-

It suffices to show that if p, is chosen suitably, then dist (A;-*,UA,-) > ¢ for some ¢
which does not depend on j. In view of lemma 5.1 this will be the case, if we can find
a sequence C} /oo such that if we denote A+ the set

{€ € T, x T 16" < 651€'1/2,1€| 2 C; provided §,41[¢'] < [€"] < 6,/¢'] for some s},

then dist (4;, CA;*) > ¢”. To see that such a sequence C] exists, we fix a constant
c1 so that |§' — 7| < ¢1|¢'], respectively [§” — 7| < ¢1|€"], implies [§'] < (1 +1/4)|7,
Il < A+ 1/4)18), 1€ < 1+ 1/490"], In" < (1+1/4)[¢"]. Tt folows in particular
that if simultaneouly [£' — 7| < ¢1/€| and [€" —7"| < ¢1|€"|, then |7"| < §;|7'|/2 implies
|€"] < 6;|¢’'| Also fix a constant ¢, such that o' € I',, & ¢ I, repsectively n” € I'},
§" ¢ I, implies [¢' — | 2 ex(I€'] + 7)), [€" — 0" 2 e2(I€"| + In"]). Assume now that
n € AJ* and that £ ¢ A;. We want to show that then | — 5| > ¢ for some ¢ which
does not depend on j. The condition £ ¢ A; means that at least one of the following
holds: i) & ¢ IV, ii) €&" ¢ I, iii) |€"] > §,1&], or iv) |€"] < p(£'). In the case i), we
thus have ' € I, &' ¢ I". We therefore have |’ - 7f'| > ¢,]€’|. This gives [ — 7] > ¢,
if we assume that || > C} and Cj is large enough. A similar argument also holds in
case il). Assume now [£”| < §;|€'|. In this case however, we have seen that we must
have one of the following two inequalities: |&' — 7| > ¢1]&'| or |€” — 1| = 1]€"|. Since
we can now continue as above, this shows that also case c) can be treated, increasing,
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if need be, the Cj. We are are then left with the case [£"] < p(¢'). Also in this
case only | — 7| < ¢1€'] and |€" — 7"| € ¢1|€"] may cause problems. However, if we
choose py. such that pi(£) > 2upy,y_erj<e e £('), then we cannot have simultaneously
'l > (1), 1€"] < p(€), 1€ = 7| £ al€'| and [€" — 7| < c1]¢”]. This conludes the

argument. (]

6 Regular sequences of measurable functions

In addition to regular sequences of holomorphic functions we shall also consider regular
sequences of measurable functions. These are sequences of measurable functions u; :
I" x I'" — C such that we can find §; \( 0, d > 0, and sublinear functions £;, p, such
that

()] < exp 45(€) +21€"1/3, € € T',€" € T"|€"] 2 p(€), )" < 8¢, (61)
115(8) = ()] < exp[6;() — die” ]}, i € € T, € I, p(€) < |E"] <S¢,k <
(62)

We shall sav that two such sequences {p;};>1 and {f;},>1 are equivalent and write
{521 ~ i}
if we can find 6; "\, 0, p sublinear, d > 0, so that
1s(€) — B(6)] < exp[45(€) — dl¢”]], if & € T',€" e T, p(€) S "] < 1€ (6:3)

Here I” and I are open cones in R?, respectively R*~¢. The cone I" will usually be
convex, but the cone I'” could in principle be R*~¢ or R*~¢ itself. (This case will
correspond to second hyperfunctions, whereas the case I' convex corresponds roughly
speaking to second microfunctions.) In the remainder of this section we shall always
work with I = R*~¢. The case of a smaller I'” gives no additional difficulties.

Remark 6.1. The condition (6.1) can be replaced by the following. there are d; ™\,
0,¢;, p and a constant § > 0 such that

Ly ()] < exp [45(€') +21€"/5], € € T, 6" € T, (') < 1€"] < 6l¢') (6-4)

It is then clear that all relevant conditions are given on sets of form {£;¢§ € I',¢" €
T, p(€) < |€"| < 8|&'|} and in particular, there is no reason for the u; to be defined
outside such sets. However, also the “converse” will sometimes be useful: the p; are
defined on all of IV x ' and satisfy the condition:

()] < exp [4;(¢) +21¢" /5], if € e T, 6" €T", 5 2 1, (6.5)
rather than (6.1).
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Trivial examples of regular sequences of measurable functions are the “constant”
sequences obtained in the following way: we start from a given u € M2%(I") and
consider § N\, 0, C; 7 oo sufficiently rapidly. We then set u;(¢) = 0 if [€"] > §;|¢'],
or €] < Cj, pi(€) = p(§) if |&"] < 6;{¢] and |€] > C;. It is immediate that this
defines a regular sequence. Indeed, for a suitable choice of d; and C; we shall have
[ ()] < exp[e(€) + |€"]/4] for large £ and the fact that p;(€) — ux(€) vanishes for
|€"] < §;]€'| when k < j leads to (6.2). Moreover, if 4; and fi; are two regular sequences
associated with some given y in this way, then {;};>1 ~ {fi;};>1, as is easy to see. If
we identify p € M?(I) with the regular sequence {u;};>1 constructed just before, it
makes then sense to consider the relations p ~ f and p ~ {v;};51 for p, i € M*(IV)
and a regular sequence of measurable functions {v;};>1. It is immediate that the
equivalence relation p ~ [ defined in this way coincides with the one introduced in
section 5. We have in fact the following simple:

Lemma 6.2. a) Let i be given in M?(I") and assume that o ~ {v;};>1 for some regular
sequence vj. Then we can find d > 0, a sequence §; 0 and sublinear functions p,¢;
such that

() = vi(&)] < exp [¢;(€') — dIg"]], if p(€') < 1€"] < 651€"].
b) Let u, i be given in M*(I'). Then u ~ [i in the sense just introduced, if and only if
we can find ¢ > 0, sublinear functions p, ¢, and d > 0 so that

[(€) — (&) < exp [€(§) — dI€"},VE € T, p(€) < [€"] < 8¢’ (6.6)
Proof. a) This is immediate from the definition.

b) Let us consider some sequences &; ~, 0, C; / oo (sufficiently rapidly) and
denote by {u;};>1, {f;};>1 the constant regular sequences associated with p and
as before. The assumption is that {1;};51 ~ {f;};>1. In particular we have that on
€ e € €S, [ule) — MO = lis(€) - is(€)] < exp [4(€) — die”]] < exp [4(€) — di€”]
if £ is large. This gives (6.6) with 6 =4, g

We can also associate elements in M?(I”) with regular sequences:

Theorem 6.3. Let {u;}; be a regular sequence of measurable functions on I' x R*—¢.
For each fired j° the function p = pjo belongs then to M*(I") and satisfies that p ~
{pitiz1

Proof. We fix jo and denote u = ;. Once we prove that 4 € M2(I"), it is immediate
that g ~ {u;};>1. It will thus suffice to prove that u € M*(I").
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We use here that {u,}, forms a regular sequence of measurable functions. We may
therefore assume that there exist §; \, 0, d > 0, and sublinear functions ¢;, p satisfying
the condition (6.5) and the condition

|15 (€) — p(E)] < exp [¢;(€) — dI€"]], i &' € IV, p(§) < €] < 6[&'), k <

By replacing ¢;(¢’) by the function max;<x<; £;(¢'), we may assume, from the beginning,
that £;(&') < €;11(&') for any j and &'. Also recall that what we want to do is to find a
sublinear function £ and ¢ € F for which the condition (5.4) in definition 5.2 holds.
To find ¢, we observe that for a sequence of sublinear functions {£;};, we can find,
(using lemma 5.7) a sublinear function ¢ and a sequence of positive numbers {C;};
such that £;(¢") < £(¢') holds for any j and any & with || > C;.
Next we define (&) by

_Jloglu(&) - &), p(€) < |g"
(&) =
0, p(€) > 1¢"].

The proof will come to an end if we can show that ¢ € F. For any j > jo and £ with
p(€) < |€"] < 4;|€'| and |¢'] = Cj, we have in fact the following two estimates

[u(€) - p;(€)] < exp[£;,(&) — dIE”]],
1 (8)] < exp [;(£) + 21€"]/7],

which implvy
[1(&)] < 2exp [¢(€) + 21"/ 5]

Thus we have
(&) < 21€"/5 +log 2 if p(¢') < [¢"] < 6,1€'], €' = C,

which already shows that ¢ € F (if we replace the sequences {d;}; and {C;}; by their
subsequences {dy;}; and {Cy;}; respectively). |

7 The Fourier-inverse transform

Let I" ¢ R%, I C R*¢ be open convex cones, consider a sublinear function p : R — R
andlet u: {E€ R & e, & e T, p(¢) < |€"] < 6|¢'|} — C be a measurable function.
‘We shall assume for simplicity, if not specified otherwise, that T” and I are proper
cones. We shall denote the set {¢€ € R*;& € I,£" € I, p(¢') < |¢"] < 6|€'|} in the
sequel by A and assume that for some sublinear function ¢ and some ¢ € F

) < exp L&) + p(€")], € € A4, (7.1)
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i.e., p € M2(T',T"). We can then choose §; N\, 0 and C; ,/* oo so that
()] < exp [¢(&') +1€"1/1] if € € A, 16" < 6,1€'], 1€l = C;. (7.2)

We want to give a meaning to the integral

/ exp [i{z, €)]u(€) dé, (73)

which, apart from a multiplicative factor (27)~", should be the Fourier-inverse of p.
Since the integrand u(€)exp [i(z, £)) is not in L}(R") for fixed z € R*, we have to
indicate a regularization procedure for (7.3). Actually, the regularization of (7.3} will
be in second microfunctions and no meaning will be given to the integral in (7.3) for
fixed real z. We consider the functions h; defined formally by

me = [ exp [z, )1u(€) . (49
§€AIEI<8;1¢"]
Under suitable additional assumptions h; will be holomorphic on R* 4 iG; with
Gy =Ins(I" x T N {|€"] < &1€'1}) ",

this is eg. the case when |u(£)] < exp[l(¢')] for £ € A. Regularization of F~'(u)
will then essentially be in classical second hyperfunctions. We shall briefly discuss
this situation later on and it has also been discussed in {12]. However, in the general
case, the domain of holomorphy of h; will be smaller and in particular remain at
some distance from the real space, due to the factor exp(|€”|/4) in (7.2) which is of
exponential growth type.

To calculate reasonably large domains of holomorphy, let us fix a vector " € Int "'+
with inferepe (9", £"/1€"]) = 1 and consider the sets

Vi=R +i((0,9"/5) + Gy), j=12,....

The integral in (7.4) is then defined for z € V; and defines an analytic function there.
In fact, we have, for any y = (0,¢"/) + § with § € Gj, the estimate

(y,) 2 1€"l/7 + (§,€), ifE € I' x I, [€"] < 6;{¢']-

Therefore, if we fix some compact set K C G, then we obtain at first that (7, &) > cl¢],
Vje K, VEe T x I, |€"] < §;|¢|, for some ¢ > 0 which depends only on K and then
that

| exp [i(z, E)]u(€)] < exp[€(€) — (7, )] < exp [¢(¢) ~ cléll, §=Imz—(0,5"/]) € K,

it € € A, [€"] < §l€), |€] > C;. This shows that the integrand in (7.4) has an
exponential decay estimate uniformly in z on any compact set in Vj.
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Now define G’ = IntI"t, G” = Int I’*. Then Gj includes G’ x G” and G; increases
with j. Moreover if we set V" = R*¢ +4iG" and V' = R*¢ +4(y"/j + G"), we have
that V' also increases and exhausts V", ie, V" = {J; V" It follows in particular from
our discussion that the h; are holomorphic on (R? +1G") x V}'.

Lemma 7.1. {h;}; forms a regular sequence on (R* + i) x V".

Proof. We have already observed that V" = U,' V/' and can argue as above to show
that the difference

hi(2) = hjs1(2) = exp [i(z, §)]u(§) d¢

'/56:4,6”1 1€'1<1€1<851¢|

is analvtic on the set R* +4((0,y"/) + G} j+1), with
Gisir = Ib({€ € T' x T"; ;1 1€"| < J€"} < §1€'1HH).

Thus it suffices to show that G; ;11D {0} x G". For any y" € G”, there exists a positive

constant ¢ with
W€ /E) 2 ¢ i €T

Then for any ¢ € IV x I with §;.4]¢'| < |€”],
((0,9"),8/1€1) = cl€"|/1€] = djur/ (8141 +1)

holds and implies that (0,y") belongs to G; ;41 O

Denote by u = (27) " sp%(b({h;};51)). It is immediate that the second micro-
function « does not depend on the choice of the §;. This shows that u is associated
directly with p. We shall call u the Fourier-inverse of u and write

u=F} (),
or sometimes
u = Frr (1),
if we want to make I and I explicit in the notation. This F~1(u) is defined on
R x R? x R4 x R*¢, and satisfies '

supp F~ () C R x TV x R*4 x T

Note that the second hyperfunction b?({h;};>1) does not depend on the choice of
d;. However, if in the definition of the set A, we replace p by some other sublinear
function g, o' larger than p, then the regular sequence defined by (7.4} will change,
and the difference gives a non-zero contribution as a second hyperfunction. (Actually
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this difference belongs, in general, to A%). This is the reason why we have defined
the Fourier-inverse transform F~1(u) as a second microfunction and not as a second
hyperfunction. Also see remark 7.3 later on.

We shall also consider the corresponding situation when we work with p : {£ €
R & eIV, p(€) < |€") < 8¢} = C, ie., p € M*(I'). In this case, we choose a finite
collection of open convex cones I'} C R*~¢ with Ui I = R"¢ and write p in the
form p = 37, pu; with the y; defined on {€e R e, p(é) <€ < 6l€')} = C,
but supported in {£ € R*; &' € I, € T, p(€') < [€"] < 6/¢'|} -+ C and satisfying
1£;(6)] < |u(€)|. We have then already given a meaning to F~'(u;) and set

Froan-a) = Y Foipn(uy)- (7.5)
=1

It is easy to see that as a second microfunction (i.e., as an element in B?/ A% on
R? x IV x R*~¢, F~'(u) does not depend on the splitting of 4 in the form g =375, p;.
Remark 7.2. Assume that p € M?(I") and that some open (not necessarily convez)

cone I C R is given such that u ~ 0 in M2(F',T"). Then
supp F~Hu) C RE x TV x R4 x (R*4\ I'™). (7.6)

Remark 7.3. The main reason why in (7.4) we restrict integration to the set p(¢') <
|€"] < 6;1€'] is that (7.2) is only known to hold there. Let us in fact for later use discuss
the following situation: we are given some measurable function v : T' x T — C such
that

(6] < exp [4(€) + 1€")/d], for € €T x T" (7.7)
Also define h', h", by
W(z) = / exp [i{z, £)] v(€) dé, (7.8)
['xI?,6;1e'|<le"]
Hi(z) = / exp [i{z, £)] v(€) dE. (79)
P/XI" g ISP (E)

Then bim —o(R')(-, 2") vanishes as a microfunction with holomorphic parameters de-
fined on a set of the form RY x R% x (R +i(y"/j + G")) with 4" € G = Int T"+.
On the other hand, bim»—o(A")(:,2") does not in general vanish as a microfunction
with holomorphic parameters. However, it is defined globally with respect to the 2"-
variable, i.e., bimy—o(R")(, 2") € CON(R?E x R¢ x C*~%), and gives a A% contribution.
This shows that F~(v) does not depend on the choice of p in the regularization proce-
dure, and also implies that when u is a measurable function which satisfies the estimate
(7.7), then we can define F~1(v) as a second hyperfunction rather than only as a second
microfunction. See the explanation after proposition 7.4.
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The results in the following proposition are obvious.

Proposition 7.4. ) Assume that u € M*(T') and that it satisfies for some sublinear
function £ and some constants ¢, d > 0 the estimate

(&) < exp [€(§) — dl¢"l], € e T, [€"] < cl€'], 1€7] > pl£])- (7.10)

Then F~Yu) = 0. In particular, equivalent p’s will lead to the same Fourier-inverse

transform.

b) Assume that there is an open convex cone T" C R"¢ so that

(&)l < exp [ — dIg"]], & € T, &" € T, |¢"] < clE', 1€7] > p(€) (7.11)

Then F~Y(u) = 0 as a second microfunction on RY x R4 x I x I,

As remarked already a number of times, calculation of F~!{(y) is considered here
in second microfunctions rather than second hyperfunctions. When p € M(I"), this
is due to the fact that estimates are know to hold in general only for |¢"| > p(&).
When on the other hand, u is defined on a set of form {£ € R*; & € IV, |€"] < §|¢'|}
and satisfies |u(£)] < exp [4(£) + ¢(€)] on that set, then we can define a regularization
of the formal integral [exp [i(z, £)]u(€) d€ in second hyperfunctions on R* x I' in
the following way: we consider a finite collection of open convex cones Iy C Rr~¢
with U = R* ¢, and split p into a sum of form y = Y, up with pe(€) = 0 if
E¢ T T, [ue(€)] < |p(€)]. We are then left with the problem of regularizing = (1)
in second hyperfunctions, and this will be done by considering regular sequences of form
hyi(z) = f!&”l <5,le1] €XP [#{z, &) ue(€) d€. The main new thing is here of course that we
do not cut away the part |£"] < p(¢') in the domains of integration. It is easy to see
that >, F~!(u) is then well-defined as a second hyperfunction.

Also the following remark is elementary

Remark 7.5. Let p be a measurable function on T = {£ € RM; € € TV x R4, |¢"] <
5IE'}, 0 < 8 < o0, and assume that for some sublinear function £ we have

[u(€)] < exp £(6'),VE €T (712)

This is thus a function in M?(L'), but it is also a function of the type for which one
can calculate the Fourier-inverse transform in classical hyperfunctions. Indeed, we can
calculate the Fourier-inverse F~(u) in the following way: at first we consider the

Sfunction

h(z) = /6 e li(z u(e) de (713)
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It is immediate that h s defined and analytic on the set {z € C*;Im z € Int '}, We
can therefore set uw = (27)""b(h) where b(h) means the hyperfunctional boundary value
in first hyperfunctions.

On the other hand, we can also calculate w' = F~Y(u) as a second hyperfunction.
It is then interesting to note that u' is precisely the second hyperfunction associated
with u by the immersion of microfunctions into second hyperfunctions. In fact, we can
take a decomposition p = Y, wx with supp p C I N {€" € T{} for open conver cones
TY c R*¢ s above, and define

hilz) = / exp [i{z E)lue(E) dE
gergrert

Then hy, is holomorphic on R*+i(Int T++Int T4L) and each hy forms a constant reqular
sequence on R x R% x (R4 4 iInt T%L), which we sum up to define u'. It follows
then immediately from the definition that these hy, satisfy h = Y_, hi on their common
domain of definition, which corresponds the decomposition (2.6) in the ezplanation of
the imbedding morphism Cyls — B% in section 2.

The preceding remark simplifies calculations in many situations, in that we can
argue classically if this makes sense. Thus in particular, the Fourier inverse of the
function 1 in second microlocalization is just the class of the Delta-distribution in
second hyperfunctions.

An interesting situation appears when rather than starting from a function u €
M2, T") we start from a regular sequence {u;};>; defined on I x I'". We can then
associate with the sequence some u € M2(I",I'") as in theorem 6.3 and then calculate
F-Y(p). It follows immediately that F~*(u) does not depend on the choice of y, so
we can in fact define F~1({y;};) by F1({u;};) = F~'(p). That this is a natural
construct follows from the fact that when we will want to calculate the direct Fourier-
transform of some second hyperfunction, we will in fact intuitively have to calculate
the Fourier-transforms of the elements h; of some regular sequence of holomorphic
functions, and thus arrive in a first step to some sequence w;, j > 1, rather than to
some single function . We shall not further develop these ideas in this paper however.

Theorem 7.6. Let I, cc IV, T¥ cc I, 61; < §; and consider p € MA(I',I").
Define B; by

By ={§€e (\TY x DU x (M"\T)}u{§ e I' x I, 63,1 < 1€" < 6,11}

and h;j by
m@ = [ exp (2, £)] w(€) d€. (7.14)
J Bj,|€"1<6;1¢'|

Then h; is a regular sequence and b ({h;};>1) =0 on R* x Int T’} x Int T}
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Proof. The first statement, about “regular sequences” is by now trivial. For the re-
maining part of the statement, there are three different situations to be considered:
i) when suppu C (I \ I}) x T), ii) when suppp C (I' x (I \ IY)), and iii) when
suppp C {€ € I" x I, dy;[¢'] < [€"] < 6;1¢'1}

In the case i) the single h; vanish as microfunctions on R? x IV with holomorphic
parameter z” in R*=¢ + iI""+. Therefore b?({h;};5>1) = 0 in this case.

In case ii), we can write u as a finite sum of functions g’ in M?(I" x ') which
have supports in convex cones of form I" x I contained in I x (I \ I'V). We may
then from the very beginning assume that u has this property. Denote in fact by i
a closed convex cone such that [ C (I \ I'/)) and assume that supp u is contained
in I' x . The h; are then a regular sequence of holomorphic functions defined on
R* +4(I"L x ["4). The corresponding microfunction with holomorphic parameter 2" is
thus defined on R¢ x TV x (R*~? 44["+). Therefore b?({h;};) = 0 on R* x Int T% x I'}.

Finally note that the case iii) is trivial, in that then the boundary values of the cor-
responding h; already vanish as microfunctions on R x R? with holomorphic parameter
2" in R*¢ 4 40"+ , O

In the sequel a function i : F — C, F open in C*, shall be called almost analytic,
if there is a constant d > 0 and a sublinear £, so that

Bu(Ol < exp [£(Re (") — d|Re("|] for (€ F. (7.15)

The main result in this section is now the following result of Paley-Wiener type (for
a related result in distributions, cf. proposition 2.1.15 in [10]):

Theorem 7.7. Consider T, ', p, as above and let u: A — C be a function with the

Jollowing properties:

a) [(&)] < exp [€(&) + ¢(§)), VE € 4,
b) there exists a sublinear function p and an almost analytic extension of p to o set
of form: ‘
F={¢eC%|Im(| < c|Re¢",Re(’ € I",Re(” € T”,|Re ¢"| < 6| Re (],
|Re"| > p(Re (")} (7.16)

such that
(O] < exp [{(Re (") + ¢(Re () +¢[Im(]], on F. (7.17)

Then F~Yp) =0 in C?(|z| > ¢, € Int TV x Int T").
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Proof of theorem 7.7. The assumptions in the theorem refer to the set F' (defined in
(7.16)), but in the proof it is more convenient to assume that we work on the larger

but, geometrically speaking, simpler, set
F'={¢eC"|Im(| < c|Re("|,Re(' € I",Re(" € T",|Re {"| < ¢|Re {'[}. (7.18)

This is possible in view of the following remark: if u is defined on F, satisfies (7.17) and
is almost analytic there, then we can replace it by an equivalent y', which is defined
on some set of form F', satisfies (7.17) on F”, and is almost analytic on F”. Indeed, it
is trivial that, replacing p, if necessary, by some larger o/, we can find an extension p'
of u defined on F' such that we have (7.17) and for which

|06/ (€)] < Eexplé(Re (') + p(Re () +&|Im (][], on F'\ F.

The new part in F' is when |Re ¢"| < p(Re ('), (for some suitable sublinear function
p,) so we should essentially estimate (Re ¢) +¢|Im (| by £(Re (') — d| Re ¢"| on such
sets, if ¢ and d > 0 are suitable. Here we note that we actually only need this on
Im | < ¢/ Re ¢"]. We now apply the following remarks:

i) on sets of form |Re ¢"| < p(Re ('), ¢(Re ¢) can be majorized by £'(Re (') for
some sublinear function ¢ and thus d| Re ("] < dp(Re ('),

ii) we can estimate £|Im (] by ¢| Re ¢"|, which in turn is etimated by co(Re {’).
Therefore ¢(Re ¢) + ¢|Im ¢] < ¢"(Re ¢') + cp(Re(’) + d|{Re ¢"| — d|Re ¢"| <
"(Re (') + cp(Re (') + dp(Re (') — d|Re {"].

We now return to the proof of theorem 7.7, assuming that 4 is defined and almost
analytic on F’ and satisfies (7.17) with F replaced by F'. We have to show that the

regular sequence
me = [ exp [i(z, €)]u(6) de
§er £ er” [€"[<4;1¢']

gives the zero- second microfunction on {|z| > ¢} x IntI" x IntI'™. Let us then fix
20 with |z°] > &. We want to show that F~!(u) = 0 near 2° x Int I x IntI. We
shall do this by writing {h;}; as a sum of three regular sequences, each of which with
appropriate analytic extensions. The basic idea is to deform the integration contour
{& € € TV, &" € T";|€"] < 6,|¢'|} into the complex domain. More precisely, we shall
consider the set

£
o]

We note then that 8B = Dy U Dy U D3, where

B={(eC(=¢+iorHE", € e, " eI, [¢" < 45[€,0< o <6} (7.19)

0
D1 = {£;§I € PI’§” € F”? Ié.”[ S 57I£II} 7D2 = {< € Cna( = §+25|z—0||£”|’§ (S Dl})
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Dy ={CeC(= §+wI ollé"l ,E€8D,,0< 0 <6}

At this moment we basically want to apply the Stokes theorem, in order to replace
integration on D; by integration on B, Dy and Ds. Since we want to use the assumption
on Oy, it is natural to write d€ on R® as d{; A --- A d¢,. The Stokes theorem then

states that
|| explt Ol - Ao = [ et Z aC]u(C 48 NGy A - A dn,
which, by abuse of notation, we shall write as
[ explite (@) = [ exp e, 100 A,
8B B

It follows that we have
h7(z) = I,(z) +II7(Z) + III](Z)
where

Ii(z) = [ expli(z, ()] 9u(C) dA(Q) , 11i(2) = ~ | expifz, ]u(¢) d¢,
B Dy

I11(2) = — /D exp [i(2, )u(C) de
3
What we have to show is that all three integrals define regular sequences of holomorphic

functions which can be extended analytically to appropriate sets in such a way that

their second boundary value vanishes.
In the case of I;(2) this follows from our assumption on du. Indeed, by assumption

|Ou(€ + wﬁg—]]f”])l can be estimated by

Cexp[£ (R€(§+w|——||§”l)) d| Re(¢ +wl OIIE"I)"I] = gexp [¢(¢) — dl¢"]),

0
whereas (with the notation ¢ for £ + ia%rllf” D

Rei(z, §+w llf”])< —(z°,Im¢) + |Rez — 2°||Im ¢| — (Im 2z, Re ()

|z°
< (0|Rez — 2°] + [ Im 2"])[¢"] - (Im 2/, €).

1t is clear from this that for z with Im 2’ € Int T+ and §| Re 2~ 2°|+|Im 2”| < d/2, our
integrand can be estimated by ¢exp[¢(¢')—(Im 2/, ') — (d/2)|¢"|] which is of exponential-
decay type, so I;{z) is holomorphic on

{z€ CIm2 € IntI"*, 6| Rez — 2°| < d/4,|Im2"| < d/4},
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and gives A% contribution, that is, zero contribution as a second microfunction.

We next study II;. For ¢ € D, we have

Rei(z,{) = Rei(z, €+25| ollf"l>< —8|2°||€"] + 6| Re 2 — 2°| [€"] - (Im 2, £)
< —(8]2°] - | Rez — 2°| — [Im2")|¢"| - (Im 7, £')

and

(e + i6 !l€"!)|<exp[€() + (0 +1/9)1€").

Since |2°| > £ we get again exponential decay in |€'| and |¢"], if Im 2’ € IntI' and
§|Rez ~ 2% + | Im 2| < (8|z°| — 8¢ — 1/5)/2 for large enough j. The argument is then
continued as in the case of I;.

Finally, we have to study I1I;. The boundary of D, has the following structure:

8Dy = ({&€edl’ x I, [¢"| < ile'H U ({& € e T x oI, [€"] < §5[¢'1})
U{g e T x I3 |€"] = 1€}

The relevant estimate for p is

(€ + o= Py lf"l)l < exp[£(€)) + (g0 + 1/)I"]]. (7.20)

As for Rei{z, (), ¢ € Ds, we notice that

—(Rez,Im({) = —(Rez,0 ll&"l) = —02°| |¢"| + o] Rez — 2°| [¢"].

|z

Again this will suffice to compensate for the term eo|€”| in the exponential of the
right hand-side of (7.20) if |°]| > ¢ and |Rez — z° is small. As for ~(Imz,Re () =
—(Im 2, ), we will have to consider the cases £ € 1" x I, £ e IV x ", and {{;€ €
' x I |€"] = &;|¢'|} separately. However, we are here in a situation analoguous to the
one considered in theorem 7.6 and we can omit details. O

8 Fourier-inverses and derivatives

We study in this section derivatives of Fourier-inverses in second microlocalization.
The assumption is here that u € M?(I",T”). Denote, as in section 7, by A sets of form
{&g el ¢ el ¢ < 8lEL 18" = p(€)}-
Then, if A is suitable,
Oh;(z)

B | o P NEIE) de (5.1)
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This shows that the classical formula F~1(&u) = (~i8/8zx)F~(u) holds also in
second microfunctions.

Only slightly more complicated is the case when we consider multiplication of
F~(u) with z, for some fixed k € {1, ..,n}. We must assume here of course that
p can be derivated in & and that (8/9&)u € M*(I',T"). We use that if u = F~}(u)
is the second microfunction associated with the regular sequence j — h;, then zxu is
the second microfunction associated with the regular sequence j — z.h;(2) and that
2 exp iz, £)] = —1(0/0&;) exp [i(z, £)]. Let us also choose a sequence of C®- functions
J —> e; as in section 5. Then we may assume that h; is given by

hy(e) = / exp [i(2, ) e; (E)u(e) de.
£€A,E"<5;1¢']
It follows in particular that
izkhy (2) = / {(8/060) exp iz, €)1} e, (€)u(€) de =
£€A,[€71<5;1€|
- / exp [i(z, €))(8/ 064 e; (€)u(€)] . (82)
EEA,E"L5;1¢

(It is now also clear, why we introduced the cut-off functions e;: by using them we
have avoided boundary terms from the partial integrations in the last equality, in that
e; vanishes of infinite order on the boundary of {€ € 4;|¢"| < §;/¢'|}. Such boundary
terms could have been treated in principle also quite easily, but they lead to Fourier-
inverses of measures on the boundary of the sets {£ € A, [€"| < §;|¢'|} with growth-type
conditions rather than of measurable functions in M2(I",T") )

Here, however, the regular sequences

me = [ exp (2, €)1 (0/06:) e €] d
§eA,1€7|<6;1¢']

and

HORY exp [i(2,£))(0/9%: () dé
£€A,(87|<651¢|
define the same second microfunction. We obtain, all in all, that
—igpF 7 (u) = F((8/06) -

It is easy to see that the same holds also for second hyperfunctions associated with
functions in M?(I") and we omit details.
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9 B2-solutions for Turrittin’s equations

At first we describe an abstract setting in which our calculations can be performed. We
start from some natural number k£ and some rational number 0 < & < 1 and denote by
a =0a/(1+a). Thus, o and a are somehow conjugate in the sense that 1/a—1/a = 1.
The assumptions on « imply @ > 0. We also choose some constants aj,s € C, 4,7,
natural numbers, such that a;,s = 0 unless

r<kr+s<kak-r+j)=s (9.1)

Note that this gives a bound also for j, so there are only finitely many constants
ajrs 7 0. We next consider the operator in two variables
i OF - g ;0 —
plz,D) =1~ 3 U+ 237 T Sa]”a Txla ~ 1= VASY (9.2)
imss
The fact that multiplication with x{ comes after derivation in zi, is of course for later

convenience.
By making a formal Fourier transform we obtain the operator

q(f, 85 61 + Z Ay s§1£2 (93)
s og].
This is actually an ordinary differential operator in & with & as a parameter. We are
interested in a solution of the equation ¢(£,8)p = 1. The formal Fourier-inverse of
such a ¢ would then be a solution of p(z, D)u = §, § the Dirac distribution. (See 7.5
and section 8.) We shall see in a moment that in some interesting situations, we can
give a meaning to this in second hyperfunctions.
To study ¢(&, &) = 1, we shall denote by Q(¢,d/dt) the operator
k 7 dj
Q(t, d/dt) =t* + %—“_‘saﬁst I8 (9.4)
and denote by u a function such that Q(¢, d/dt)u(t) = 1. If we denote by p the function
w(€) = u(& /&%), then we shall have

0(6,200(6) = (6 /55) + ittt ™ (Spu) (6/69) -

]

éé“[(fl/f;)nu(fl/f‘zl) + Zajr‘sfé) -:'m.-m~ja(§1/§ )7 <dt7 > (fl/gg)] = §a

3,78
since we assumed that s — ka + ra ~ ja = 0 for all j,7,s such that aj, # 0. The
sought-for solution for g(&, d)(€) = 1 is then p(€) = p(£)/&5*. To obtain reasonable
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estimates for ¢, we shall now assume in addition that the equation Q(t,dt)u(t) = 1
is known to admit a solution u such that u(t) = O(exp[|t]**®]) for the constant a
introduced above. Since a(1 + a) = a, this gives for ¢ that

lo(€)] < cléal ™™ expl&1]'*2/161°).

This means that ¢ satisfies the estimates of a function of the type considered in
section 7 and therefore its Fourier-inverse can be calculated in second hyperfunctions.

Remark 9.1. To get a feeling of condition (9.1), assume that ajo gy # 0 for some j°.
Then we must have & = k/(k+j°) and ajo, =0 for all j # j°. The “a” corresponding
to this a is of course a = k/j°. Assume now also that ajq = 0 whenever r # 0. The
operator @ then reduces to

Q(t, d/dt) =t* + 3 ay z (9.5)

, 7,058 g

The associated characteristic polynomial is A — Q(t,)\) = t* + 2505 GiosX’ and the
roots A(t) of Q(t, \) = 0 satisfy [A(t)| < c(1 + [t])¥/7°. WKB-analysis for the solutions
of Q(t,d/dt)u == 0 therefore indicates that the asymptotic behaviour of these solutions
should be of growth order exp [c|t|"**/°], which is ezactly what we need to make our

arguments work.

We now specialize to the case when k = 2. and assume that aj,; = 0 when r # 0.
The operators which still fall in this class are then of form

s

& e ; O
8—z%,u + Z i sajosil/‘{'g;g . (96)
j?s

The condition (9.1) comes here to s < 2, a(2+ j) = s. If ajop; # 2 for some j°,
then o = 2/(2+ j°), so the only other nonvanishing coefficients ajo, can be ajo for
j=(2+7°/2—2=(°/2) — 1. In particular 5° must be even. Setting j° = 2¢, the
operators under consideration are thus of form:

p(z, D) = (8/021)% + i* 2yz(0/07)* + i* "2 Azt1(8/B1x5) (9.7

for some natural number ¢ > 1 and some constants v, A, v # 0. We have of course
a=af(l—a)=01+0/1+0)L="¢

Such operators are particular cases of a class of operators introduced by Grushin. It
is known that when v = 1/4(#~2) p(z, D) is solvable classically unless A = £—2n({-+1)
or A=/{—2—2n({+1) (nis an arbitrary natural number. Cf. [1]. Strictly speaking,
the paper [1] studies distribution solutions, but, since it is known that the classical
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Mizohata operator is not locally solvable in hyperfunctions, the argument of [1] also
works in hyperfunctions, and shows that the equation (9.7) is not locally solvable
in hyperfunctions for the exceptional values of XA mentioned before.) The following
discussion is therefore interesting precisely for these exceptional values of A.

We shall now study the solvability of p(z, D)E = § in second hyperfunctions, check-
ing that the operator satisfies the remaining condition considered in the first part of
this section. (See later.) The ordinary differential operator @ corresponding to (¢, 9)
is after a renotation for constants

o= [(2)"-s(3) " -]

We have then to study Q(t,d/dt)u = 1 and we shall add to this the-initial conditions
u(0) =2'(0) = - - = u?*1(0) = 0. The considerations above can then be applied (and
this is what we called a moment before “the remaining condition”), if we can show
that |u(t)| < cexp[At'*Y/¢. We shall explicitly solve the equation Q(t,d/dt)u = 1,
together with the initial conditions, by power-series expansion. In fact, assuming that
u = Y 2ouit! = 3 225ut’, we obtain, with the convention u_y = u_; = 0, the

following recursive relations for the u;, for j > 2¢:

_pU=e-n-G-2+y 1
iG=1- G -2+ TG - G2

1 1
= — - Uj_g—1 + C 57 - Uj2g2-
JG=1- G- T G- G2y T

Uj )Uj—ze-z =

We can consequently estimate u; by

i <8 [y gl oy gl 09

where d = max(|b], |c|).
We shall now prove:

Proposition 9.2. There are constants ¢, A, such that
[u(t)] < dexp[AtitYY, te R (9.9)

Proof of proposition 9.2. We may assume that ¢ > 1 and that 4 > 1.Since exp [At!*1/¢]
=Y 02 o(AT¢7+7/4) /1), the proposition follows intuitively if we can show that Ju;t’] <
cA" ¢+ ¢ Pt for j =71 +71/¢L, i.e forr ={j/(£+1) Thisis not exactly correct, since r
will not in general be entire for entire j. The first thing is of course to work with the
Gamma function rather than with factorials. We shall in fact at first show by induction

that for some A’ ,
A"

lujl < TGEETT) (9.10)
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We are therefore reduced to prove that

F(T—%T) A1 F(ZLe— Al-26-2
F(ZQJ— —12)7(7—1) G-0" ( (J—% 2)y3(i=1) G-2+D =

(9.11)
Here we shall assume £ > 1 and we may assume that A’ > 2d,A’ > 1, so it will suffice
to show that we have the following two inequalities:

(£+1) 1
<1
I“((J_Hl_l) iG=1-0G-9

e( ﬂ 2)) GoD oot St

I

Both these inequalities are obvious.

We have now proved (9.10) and want to show that it gives (9.9). In doing so, we
may group the terms in Y ¢ u;t7 into £ + 1 sums, acording to the value of j modulo

£+ 1. More precisely, we write

o0
Z ut! = Z"h(“—l)t SRS Z uz(e+1)+1tl(e+l)+l -+ Z Ui(e+1)+eti“+l)+eu (9.12)
=0 ’ =0 i=0

We can now estimate the single sums and take the case of 3 o) ui(“l)ﬂt"(“’l)’“l for
exemplification. We can estimate this by

A/tli(£+1)
{4+1)+1 < / l—
Z!uz(€+1)+1'|tl IAter (i€ +£/(£+1))

=0
< A Z

It suffices now to fix 4 and ¢’ > 0 with A > A"'*Y¢ and such that |A't |2+1/"7
¢ exp[(A — AT+ [g|1+1/8), =

Alp|1+1/8yit
'1tl ) < IAIﬂZ'H/Z exp“A/tlHl/E]

Similar arguments are valid for many other equations. We shall in fact now consider

a second class of equations of the type of the equations considered in the beginning of

this section, namely equations of form

k k

m 0
Tk,mu = [(—9;']2; + ax, ‘-—7;-]11, =f, (913)

Oz
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where k and m are natural numbers. When k£ = 1 and a = 7 we thus just obtain
Mizohata’s equations. (Traditionally the Mizohata operators are written as v —
(8/8x; +1x0/Bx2)u, but in the present context we prefer to interchange the roles of z;
and z,.) In the case of general m and k we shall call T, yu = f “Turrittin’s equations”.
The reason for this terminology will be explained below. The only non-vanishing term
is with § = m,r = 0,5 = k, so the condition (9.1) holds with & = &/(k +m). The
ordinary differential operator Q(¢, d/dt) associated with p is
a” ok

Q(t,d/dt) = [EZEE +t7]. (9.14)
The value a = /(1 — ) associated with « is @ = k/m. The fact that the arguments
introduced above are applicable for the present situation follows then from the following

Lemma 9.3. Let u be a solution of Q(t,d/dt)u = 1 with the initial conditions: u(0) =
coo =ym=D) = Q. Then there are constants c,c so that

[u(t)] < cexp [ct'+*/™)]. (9.15)

The proof of this result is parallel to that of proposition 9.2 and we shall omit details.
Indeed, this kind of estimates has also been studied for the solutions of Q(¢,d/dt)u =
0 by Turrittin himself, which explains our terminology. It follows that Turrittin’s
equation admits a fundamental solution in second hyperfunctions for any m and k.
The case when a = ¢, m = 1, and & is odd is of special interest, since we then obtain
the Mizohata operator in the classically unsolvable case.
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