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Abstract

We show that different hypercyclicity criteria are equivalent by using the ab-
stract version of Mittag-Leffler theorem. We also reduce to the context of invert-
ible operators an open problem of Herrero which asks about the hypercyclicity
of the direct sum of a hypercyclic operator with itself. !

1 Introduction

One of the “wildest” behaviours that a linear operator T : E — E can exhibit
is the existence of vectors € E whose orbit Orb(T, z) = {z,Tz,T?%z,...} is dense
in E. In such a case T is called hypercyclic and z is a hypercyclic vector for T
This is only allowed for infinite dimensional spaces E (see, e.g., [7] and [4]). The
first example was given by Birkhoff [6] who showed that the translation operator T, :
H(C) — H(C), f(z) — f(z+ a), (a # 0) is hypercyclic on the Fréchet space H(C) of
entire functions endowed with the compact-open topology. Later, MacLane [13] proved
the hypercyclicity of the differentiation operator D : H(C) - H(C), f — f'. The
first example of a hypercyclic operator on a Banach space was given by Rolewicz [15]
showing that the weighted backward shift AB : [, — I, (21,23,...) = (Az2,Axs,...)
is hypercyclic if [A] > 1. All these proofs were direct, but probably the argument of
Rolewicz indicated the possibility to give some kind of general criterion under which an
operator is hypercyclic. This criterion was finally found by Kitai [12] in her unpublished
Phd Thesis. Later, Gethner and Shapiro [8] rediscovered the criterion. Since then many
hypercyclicity criteria have been given and our intention here is to unify these criteria
by using a Mittag-Leffler argument.

Our framework will be continuous linear operators T : E — E (T € L(E)) on
F-spaces (i.e., complete and metrizable topological vector spaces) E. The following is,
essentially, the original hypercyclicity criterion (see [8, Thm. 2.2 and Remarks 2.3]):

Theorem 1.1 (Kitai/Gethner-Shapiro) Let E be o separable F-space and T €
L(E). If there are dense subsets X,Y C E, amap S:Y — Y, and an increasing
sequence (ny) of natural numbers such that
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(i) T %0, for any z € X,
(i) S™y LA 0, foranyy €Y, and
(i1)) T oS = Iy, then
T is hypercyclic. In fact T admits a dense Gs-set of hypercyclic vectors.

The hypothesis easily imply a property known as topological transitivity, namely,
for every U,V C E non-empty open sets, there is n € N such that T*(U)NV # . The
rest uses a Baire argument.

This criterion might seem & bit too technical, but it is easy to compute in concrete
operators. This is the case for Rolewicz’s example by setting

X=Y:={z=(x) / 35 : zx=0Vk >}
and §:Y - Y, (z1,2s,...) — (0,121, 325, .. ); or MacLane’s differentiation operator
if we set X =Y = {polynomials}, S(z") := f:‘:ll , extended by linearity to Y. In the
case of Birkhoff’s example, Godefroy and Shapiro [9] proved the hypercyclicity of T,
by considering the dense subspaces of H(C):

X :=span{e"® : |e*| <1}, Y :=span{e™ : |e]> 1},

and S :=T.,.

Juan Bés observed [3] (see also [5]) that the hypothesis of the hypercyclicity criterion
can be substantially relaxed. More precisely, there is no need to impose the existence
of a right inverse S of T on a dense subspace of E. This is what today is known as the
Hypercyclicity Criterion:

Theorem 1.2 (Bés) Let E be a separable F-space and T € L(E). If there are dense
subsets X,Y C E, an increasing sequence (ng) of natural numbers, and a sequence
{Sn,: Y = E, k €N} of maps such that

(i) Trex %0, for any z € X,

(i) Sn.y L0, foranyy e, and

(i) (T™ o Sp, )y LA y, for anyy € Y, then
T is hypercyclic.

Bes’s criterion is related to a problem of Herrero [11): Does every hypercyclic opera-
tor T' satisfy that T®T is also hypercyclic? To be precise, T satisfies the Hypercyclicity
Criterion if and only if T@®T is hypercyeclic [5, Thm. 2.3]. Therefore, Herrero’s problem
is equivalent to the open problem of whether every hypercyclic operator satisfies the
Hypercyclicity Criterion. We reduce this problem to the context of invertible operators.

Other criteria have been given by Grosse-Erdmann [10]. In [2] we showed that they
are actually equivalent to Bés’s criterion. In this paper we close the circle and prove
their equivalence to the original criterion.

We will use the following abstract version of Mittag-Leffler theorem (see, e.g., [1,
Thm. 2.4]).

Theorem 1.3 (Mittag-Leffler) Let (X,) be a sequence of complete metric spaces
and let f : Xny1 = Xa, n € N, be continuous maps with dense range. Then, for every
non empty open subset U C X1, there exists a sequence {2, € Xn , N € N} such that
21 €U and fo(Tpy1) = T4, n €N,
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2 Main results

(From now on F will be an F-space and T : E — F a continuous linear operator
with dense range. This condition is necessary for hypercyclic operators. We consider
the subspace of vectors which admit a backward orbit (also known as the infinite core
of T,

F={ze€E/3;)CE : zy=2, Tziy1 =, Vi € N}

It is well known that F is a dense subspace of E. Indeed, it is a consequence of
Mittag-Leffler theorem if we set X, :=F, f, =T, foralln € N.
The space of backward orbits of T is then defined as

G:={(z) € [ E/ Tais1 =, ¥ieN}.

ieN

We endow G with the inherited product topology and it is an F-space. In fact G is
the projective limit of the projective spectrum of F-spaces

(X,, = E, fi,j = Tj_i M Xj - Xi)iSjEN“

Moreover, T' induces a natural operator T:G — G, (x;) — (Tz;). Observe that
T(z;) = (Tx1,1,23,...) and that T is an invertible operator whose inverse is the
backward shift B: G — G, (z1,%2,...) — (Z2,Z3,... ).

The following proposition links the dynamics of T and 7" and it is the key point to
establish the main results.

Proposition 2.1 T : E — E is hypercyclic if and only if the invertible operator
T:G — G is hypercyclic.

Proof. Let (Un) be a basis of open neighbourhoods of 0 (0-basis in short) in E. A
simple computation shows that a 0-basis in G is given by the sequence

Upm={(z) €G | 2, €Upn}, nmeN

_ Let suppose that T is hypercyclic. For the first implication it suffices to show that
T is topologically transitive. To do this we have to prove that, given (z;), (v;) € G,
n,m € N, there is k£ € N satisfying

T (@) + Unim) 0 (96) + Onim) # 0
We know that there is k£ € N such that
T* (@0 + Un) N (Y + Un) # 0.
The density of F in E gives
(Zn + Un N E) O (T Hyn + Un) = (2 + Up) 0 (T Yy + Un) N F # 0.
Then there is z € U, N F such that

(*) Tk(l'n + Z) € Yn + Un.
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Pick 2z;, ¢ > n, so that T+ "z = 2z, and set zj == Tz, j = 1,...,n. Therefore
(%) € Upm and (x) yields

T* ((z:) + () € @) + Unm.

Conversely, if T is hypercyclic, we consider the first coordinate projection P, : G —
E and the commutative diagram

¢ -ZI.,¢q

PIJ« Pil
E-L.E

where P, has dense range since F' = P;(G). The conclusion follows from [14, Lemma
21). #

Remarks:
(1) The space F becomes an F-space when defining on it the final topology 7
associated to P, : G — F. A O-basis in (F, 7) is given by the sequence

Vam =T (UnNF), n,meN.

We then have that T'| : (F,7) — (F, ) is continuous and that the inclusion (F,7) — F
is continuous and has dense range. Moreover the proof of last proposition shows that
the surjective operator T'|r : (F,7) — (F,7) is hypercyclic whenever T is hypercyclic.
This should be compared with the Hypercyclicity Comparison Principle (see [16, p.111])
which says that, if F is a dense and continuously embedded subspace of E, and T :
E — E is an operator such that F is T-invariant and the restriction |z is hypercyclic,
then T is hypercyclic.

(2) Instead of the space of backward orbits we could have defined the space of full
orbits of T

H:= {(27@) S HE / TiBi.H =Ty, Vi e Z}
i€Z

In such a case H is the projective limit of the projective spectrum of F-spaces

(Xi=E, fij:=T"": X; > X,)icjez,

and the operator T : H — H induced by T is nothing but the forward shift.
We analogously have that T is hypercyclic if and only if T';: H — H is hypercyclic.

Proposition 2.1 allows us to restrict Herrero’s problem to the context of invertible
operators

Theorem 2.2 There exists a hypercyclic operator T such that T @T 1is not hypercyclic
if and only if there is an invertible hypercyclic operator T such that T & T is not
hypercyclic.
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Proof. If T is hypercyclic then the corresponding invertible operator T:G-G
on its space of backward orbits G, is also hypercyclic. On the other hand, G @ G is
the space of backward orbits of T@® T and T & T is the operator induced by T & T..
So, if the latest is not hypercyclic, we conclude that T @ T is not hypercyclic. 8

We can finally establish the equivalence of all hypercyclicity criteria via the invert-
ible operator T': G — G

Theorem 2.3 All hypercyclicity criteria are equivalent.

Proof. If T': F — E satisfies Bés criterion, then T&7 is hypercyclic [5, Thm. 2.3,
and so is T & T by the previous result. This implies that T is hereditarily hypercyclic
with respect to some increasing sequence (my) of integers [5, Thm. 2.3]. In particular
we have that, for any U,V C G non-empty open sets, there is £ € N such that

T™(UYNV £ 0.
Equivalently, if B is the backward shift on G,
UnNB™(V) #0.
This yields the existence (see, e.g., [10, Thm. 1]) of y € G satisfying
By FeN) =G={Fmy : kel

In other words, if ¥y = (y1,%9,.. . ), then

(*) {(ymk+17ymk‘+27 ) N AS N}u =G= {(kaylvaky% . ) c ke N}u

We define Sy, := Yme1, m > 1. S is well defined since y,,, # y, if m # n. Otherwise,
Ym = Yn for m > n would mean T "y, = y,, that is, 7™ "y; = y; and therefore y;
would be a periodic point for 7', contradicting the density of {(T™*y;,...) : k € N}
in G by just looking at the first coordinate.

If we set P; : G — E the j-th projection, j > 0, we get that

Vi={ym : m21}={P(B" ) : m>1}

is dense in E. Moreover, if we select a subsequence (j) of (m;) such that limy Bty = 0,

then . .

for all m > 1. On the other hand, since T is hereditarily hypercyclic with respect
to (ms), so is T, and we can find 79 € E such that {T%z, : k € N} is dense
in E. Pick then a subsequence (ng) of (ji) satisfying lim; T™xzy = 0 and define
X :={T™zy : m > 1}. We finally conclude

(1) lmp Tz =0, forallz € X,

(i) limg S™y =0, for ally € Y, and

(iii) TSy=y, forallyecY. &
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Observation: The following improvement of Gethner-Shapiro’s hypercyclicity cri-
terion can be obtained: The dense sets X,Y C E can be supposed subspaces and
S:Y — Y can be taken linear. Indeed, it is not difficult to notice that the sequence
of vectors (y,,) in the previous proof is actually linearly independent. We then set
X := span Orb(T, z¢), Y := span(ynm), and extend S to ¥ by linearity. (i), (ii) and
(iii) are also satisfied for these new sets. We do not know, however, whether the dense
subsets X and Y can be supposed to be equal in general.
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