DERIVED LIMITS
IN
QUASI-ABELIAN CATEGORIES

Fabienne PROSMANS

Abstract
In this paper, we study the derived functors of projective limit functors in quasi-abelian categories. First, we show that if \(E \) is a quasi-abelian category with exact products, projective limit functors are right derivable and their derived functors are computable using a generalization of a construction of Roos. Next, we study index restriction and extension functors and link them through the symbolic Hom-functor. If \(J : \mathcal{J} \to \mathcal{I} \) is a functor between small categories and if \(E \) is a projective system indexed by \(\mathcal{I} \), this allows us to give a condition for the derived projective limits of \(E \) and \(E \circ J \) to be isomorphic. Note that this condition holds, if \(\mathcal{I} \) and \(\mathcal{J} \) are filtering and \(\mathcal{J} \) is cofinal. Using the preceding results, we establish that the \(n \)-th left cohomological functor of the derived projective limit of a projective system indexed by \(\mathcal{I} \) vanishes for \(n \geq k \), if the cofinality of \(\mathcal{I} \) is strictly lower than the \(k \)-th infinite cardinal number. Finally, we consider the limits of pro-objects of a quasi-abelian category. From our study, it follows, in particular, that the derived projective limit of a filtering projective system depends only on the associated pro-object.

Contents
0 Introduction \hfill 336
1 Quasi-abelian homological algebra \hfill 338
 1.1 Quasi-abelian categories \hfill 338
 1.2 Derivation of a quasi-abelian category \hfill 340
 1.3 t-structure and heart of the derived category \hfill 341
 1.4 Derivation of functors between quasi-abelian categories \hfill 344

1991 AMS Mathematics Subject Classification 18G50, 18A30, 46M20
Key words and phrases. Non-abelian homological algebra, quasi-abelian categories, derived projective limits, homological methods for functional analysis