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Abstract

In this paper, we study the derived functors of projective limit functors in
quasi-abelian categories. First, we show that if £ is a quasi-abelian category
with exact products, projective limit functors are right derivable and their de-
rived functors are computable using a generalization of a construction of Roos.
Next, we study index restriction and extension functors and link them trough
the symbolic Hom-functor. If J : J — T is a functor between small categories
and if FE is a projective system indexed by Z, this allows us to give a condition
for the derived projective limits of £ and E o J to be isomorphic. Note that
this condition holds, if 7 and J are filtering and J is cofinal. Using the preced-
ing results, we establish that the n-th left cohomological functor of the derived
projective limit of a projective system indexed by Z vanishes for n > k, if the
cofinality of 7 is strictly lower than the k-th infinite cardinal number. Finally,
we consider the limits of pro-objects of a quasi-abelian category. From our study,
it follows, in particular, that the derived projective limit of a filtering projective
system depends only on the associated pro-object.

Contents

0 Introduction 336

1 Quasi-abelian homological algebra 338
1.1 Quasi-abelian categories . . . . e e e e e e e 338
1.2 Derivation of a quasi-abelian category e e e e 340
1.3  t-structure and heart of the derived category PO 75
14 Derwatlon of functors between quasi-abelian categones . 7

1991 AMS Mathematics Subject Classification. 18G50, 18A30, 46M20.
Key words and phrases. Non-abelian homological algebra, quasi-abelian categories, derived pro-
jective limits, homological methods for functional analysis

335



2 Projective systems in quasi-abelian categories 345

2.1 Categories of projective systems . . . . . - 7
2.2 Projective systems of product and coproduct type e e e ... 346
2.3 Injective and projective objects . . . ... ... ... ... ... .. .. 348
2.4 Index restriction and extension . . ... . ... ... . ......... 349
3 Derivation of the projective limit functor 352
3.1 The case where £ has enough injective objects . . . . .. .. ... ... 352
32 Roos complexes . . . . . O 13 %
3.3 The case where £ has exact products C e - 131
3.4 Derived projective limit functor and index restnctlon e e e e .. 360
3.5 Dual results for the inductive limit functor . . . .. ... ... ... .. 362
3.6 Relations between RHom and derived limits . . . . ... .. ...... 363
4 Derived limits and the symbolic-Hom functor 366
41 The symbolic-Hom functor . . . . . . . 14141
4.2 Derivation of the symbolic-Hom functox ..... C e e e Ce e 367
4.3 Links with the derived projective limit functor . . . . . ... .. ... . 370
44 Indexrestriction. ... ... ...... ... ... .. ..... 374
5 Derived projective limits and cofinality 379
5.1 Cofinal index restriction . . . . ... ... ... .. ... ... C e 379
52 Cofinality and amplitude of derived projective limits. . . . . .. .. .. 380
6 Pro-objects 381
6.1 Categories of pro-objects . . . . . .. .. .. .. i .. 381
6.2 Pro-representable functors . . . . . P 1.
6.3 Representation of diagrams of pro—ob ]ects .......... C e e e 385
6.4 Limits in categories of pro-objects . . . . .. .. .. ... .. ...... 387
7 Derived projective limits and pro-objects 390
7.1 Pro-objects of a quasi-abelian category . . ... ... .... S . 390
72 Thefunctor L . . . . . . . . . . . .. . ... ... 394
7.3 Derivationof L . . ... .. .. .. ... .. .. ... 39

0 Introduction

It is well-known that the projective limit of a short exact sequence of projective systems
of abelian groups is not always an exact sequence. This phenomenon often explains
the problems one meets in the globalization of local results in algebra or analysis. To
understand this loss of exactness, it is natural to study the derived functors of the
projective limit functor. This was done in the sixties by various authors ([3, 4, 6, 8],
ete.) and led to a rather good understanding of the homological algebra of projective
limits in abelian categories. However, for various applications to algebraic analysis,
it would be very useful to extend these results to non-abelian categories such as the
category of topological abelian groups or the category of locally convex topological

336



vector spaces. This is what we do in this paper in the more general framework of
quasi-abelian categories.

We start with a summary of the facts about the homological algebra of quasi-abelian
categories which are needed in the other sections (see [9] and [7] for more detailed
expositions). This should help the reader which has a good knowledge of the language
of homological algebra and derived categories in the abelian case (as exposed e.g. in [5])
to understand the rest of the paper. First, we recall the conditions a category £ has
to satisfy to be quasi-abelian. Next, we explain briefly the construction of the derived
category D(€) and we give the main 1esults about the two canonical t-structures on
D(€) and their corresponding hearts LH(E) and RH(E). We end this section by
recalling how to derive an additive functor between two quasi-abelian categories.

Section 2 is devoted to the study of the category of projective systems in a quasi-
abelian category £. We show first that they form a quasi-abelian category. Then, using
projective systems of product type, we prove that this category has enough injective
objects when £ itself has enough injective objects. We conclude by defining the index
restriction and extension functors.

In Section 3, we explain how to derive the projective limit functor

lim: & ™ e

i€l
where £ is a quasi-abelian category and 7 a small category. First, we consider the easy
case where & has enough injective objects. Next, we treat the case where £ has exact
products. In this case, we show that the derived projective limit of a projective system
of £ is isomorphic to its Roos complex. Moreover, if J: J — T is a functor between
two small categories and E is a projective system of £ indexed by 7, we show how to
compute the canonical morphism

Rl}L;IE(i) — RLLEE(J(J'))

by means of Roos complexes. By duality, we get corresponding results for the inductive
limits. At the end of this section, we establish commutation formulas for derived limits
and the derived Hom functor.

In Section 4, we recall a few properties of symbolic-Hom functors and show how
to derive them. Then, we prove that derived projective limits may be computed using
suitable derived symbolic-Hom functors. This allows us to give a condition for the
canonical morphism

Rim £() — R;'iL?E(J(‘j))

to be an isomorphism.
In the first part of Section 5, using the preceding result, we show that if a functor
J 1 J — T between small filtering categories is cofinal, then

R ;;%IE@') ~R ;%1 E(J())

in D*(£). In the second part, we establish that, if the cofinality of the small filtering
category 7 is strictly lower than the A-th infinite cardinal number,

LH"RImE(@)=0 VYn>k

i€l
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for any projective system E of £ indexed by 7.

Section 6 is devoted to a review of the results about pro-objects we need in Section 7.
We refer the reader to [2] for details. In the first three parts of this section, we recall
basic results about pro-objects, representable functors and representation of diagrams
of pro-objects. In the last part, we show that the category of pro-objects of an arbitrary
category has filtering projective limits and we establish some properties of these limits.

In Section 7, we prove that the category of pro-objects of a quasi-abelian category
is also quasi-abelian and has exact products. Next, we introduce the functor

L:Pro(&) — &

and we establish that if the category £ is quasi-abelian and has exact products, then
the functor L is right derivable and

RLo “lim” E(i) ~ R lim E(7)
ieT €T
for any filtering projective system E indexed by . This shows in particular that the
derived projective limit of a filtering projective system depends only on the associated
pro-object.

Note that the theory developed in this paper may be applied to the category of
topological abelian groups or the category of locally convex topological vector spaces
since these categories are quasi-abelian and have exact products. In these cases, more
specific results may be obtained. Work in this direction is in progress and will appear
elsewhere.

To conclude this introduction, I want to thank J.-P. Schneiders for the useful dis-
cussions we had during the preparation of this paper.

1 Quasi-abelian homological algebra

1.1 Quasi-abelian categories
To avoid confusions, let us first recall a few basic definitions.

Definition 1.1.1. Let A be an additive category and let f : A — B be a morphism
of A

(i) A kernel of f is the data of a pair (ker f,i) where ker f € Ob(A) and i €
Hom 4 (ker f, A) are such that foi = 0 and for any g € Hom A(C, A) verifying fog =0,
there is a unique ¢’ € Hom ,(C, ker f) making the diagram

ker f — A 1B

WA

C

commutative.
(ii) A cokernel of f is the data of a pair (coker f,q) where coker f € Ob(A) and
g € Hom ,(B, coker f) are such that go f = 0 and for any g € Hom 4(B, C) verifying
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go f =0, there is a unique ¢’ € Hom ,(coker f, C') making the diagram

A B coker f

g

\N l %
C

commutative.

One can check that i : ker f — A is monomorphic and that ¢ : B — coker f is epi-
morphic. Moreover, two kernels (resp. two cokernels) of f are canonically isomorphic.
(iii) If the morphism ¢ : ker f — A has a cokernel, it is called the coimage of f and

denoted by coim f
(iv) If the morphism ¢ : B — coker f has a kernel, it is called the image of f and

denoted by im f.
Remark 1.1.2. There is a canonical morphism
coim f — im f.
As a matter of fact, since coim f is the cokernel of ¢ : ker f — A, there is a unique

morphism f’: coim f — B making the diagram

kerf—iﬁAL)coimf
\jf/
0 ¥
B

commutative. We have go f' oq’ = go f = 0. The morphism ¢’ being epimorphic, it
follows that g o f/ = 0. Since im f is the kernel of g : B — coker f, there is a unique
morphism coim f — im f making the diagram

im f —* s B—2 5 coker f
=
~ 1
~

RN o0
coim f
commutative.
Definition 1.1.3. A category & is quasi-abelian if
(i) it is additive,
(ii) any morphism has a kernel and a cokernel,

(iil) in a cartesian square

f is a strict epimorphism, then f’ is a strict epimorphism,
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(iv) in a cocartesian square
x Ly
X —7—‘) Y

f is a strict monomorphism, then f’ is a strict monomorphism.

1.2 Derivation of a quasi-abelian category

In this section, £ will be a quasi-abelian category. We denote by C(E) the category of
complexes of £ and by K(£) the category defined by

Ob(K(£)) = Ob(C(£))

and
Hom () (X',Y") = Hom gy (X, Y')/HH(X,Y')

where
Ht(X,Y)={f : X — Y : f is homotopic to zero}.

Recall that K(£) has a canonical structure of triangulated category.
Definition 1.2.1. A sequence :
ALBSC
of £ such that v o u = 0 is strictly ezact if u is strict and if the canonical morphism
imwy — kerv
is isomorphic.
Remark 1.2.2. Note that a sequence E — F — G of £ such that
Hom (X, E) — Hom (X, F) — Hom (X, G)
is exact for any X € Ob(€) is strictly exact.
Definition 1.2.3. (i) A complez X of £ is strictly exact in degree k if the sequence
xh-1 #T wk & vkt
is strictly exact.
(ii) A complex of € is strictly ezact if it is strictly exact in every degree.

(iii) We denote by N(€) the full subcategory of K(£) whose objects are the strictly
exact complexes of £.

(iv) A morphism f : X — Y of K(&) is called a strict quasi-isomorphism if there
is a distinguished triangle

X =Y —Z — Xl
of K (&) such that Z € Ob(N(£)).
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Proposition 1.2.4. The subcategory N() of K(€) is a null system, i.e. it verifies
the following conditions:

(i) 0e N(E),
(i) X € N(€) if and only if X [1] € N(E),
(ifi) if in a distinguished triangle
X =Y =2 — X
of K(£) both X, Y € Ob(N'(£)), then Z € Ob(N(E)).

Definition 1.2.5. The derived category of & denoted by D(€) is the localization of
the triangulated category K (&) by N(£). Then,

D(&) = K(&)IN(E).
Remark 1.2.6. Note that as in the abelian case, a strictly exact sequence
0—-X =Y —-Z2 —0
of C(€) gives rise to a distinguished triangle
X =Y =7 — X[l
of D(E).
1.3 t-structure and heart of the derived category

First, let us recall some usual results about t-structures on a triangulated category.

Definition 1.3.1. Let 7 be a triangulated category and let 7<0 and 72° be two
strictly full subcategories of 7. We set

T =T%—n] and T2 =T2%-n]

Then, the pairs (75°,72°) forms a t-structure on T if it verifies the following condi-
tions:

(i) 751 Cc 70 and 721 C T2°,
(i) Hom(X,Y) =0if X € Ob(7T=%) and Y € Ob(7T>"),
(iii) for any X € Ob(7), there is a distinguished triangle
Xo — X — X1 — Xo[1]
such that Xp € Ob(72°) and X; € Ob(7T21).

The heart of the t-structure (T<°, TZ2°), denoted by H, is the full subcategory of 7

defined by
H=TnT20
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Theorem 1.3.2. The heart of any t-structure is an abelian category.

Proposition 1.3.3. Let (7<°,72%) be a t-structure on a triangulated category 7.

(i) There is a functor
TSP T — TS

such that
Hom ;. (X, 75"(Y)) ~ Hom (X, Y)

for any X € Ob(T=") and any Y € Ob(T). In the same way, there is a functor
2T -T2

such that
Hom 5. (72"(X),Y) =~ Hom (X, Y)

for any X € Ob(T) and Y € Ob(72"). These functors T<" and 72" are the truncation
functors associated to the t-structure (T<0,720).
(ii) For any n € Z, the functor

H . T —-H

defined b,
- H'(X) = (1" 0 2"(X))lr]

is a cohomological functor, i.e. any distinguished triangle
X—-Y—-Z-X[]

of T gives rise to the long exact sequence

HM(X) » H™(Y) » H™(Z) —

L Hrr! (X) — [t (Y) PRSI Hn-H (Z)

Definition 1.3.4. Let £ be & quasi-abelian category. We denote by

D=U(€)  (resp. D*°(£))
the full subcategory of D(£) whose objects are the complexes which are strictly exact
in degree k > 0 (resp. k£ < 0).

Proposition 1.3.5. Let £ be a quasi-abelian category. The pair (D=°, D>°) forms a
t-structure on D(E). We call it the left t-structure of D(£).

Remark 1.3.6. The heart of the left t-structure is denoted by
LH(E) = DY(E) N D°(€).

We call it the left heart of D(E). Of course, the objects of LH(E) are the complexes
which are strictly exact in every degree but zero.
The cohomological functors are denoted by

LH* : D(€) — LH(E).
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Proposition 1.3.7. Let £ be a quasi-abelian category. Let X' be an object of D(E).
The truncation functors are given by

TSYX )i — X > kerd” — 0
where ker d” is in degree n and
27X ): 0 — coimd™t — X® — X — ...
where X" is in degree n. Hence, the cohomological functors are given by
LH™(X):0 — coimd®™! — kerd” — 0

where kerd® is in degree 0.
Proposition 1.3.8. Let £ be a quasi-abelian category. The functor

I:&— LH(E)
which associates to any object E of £ the complex

0—E—0

where E is in degree 0 is fully faithful.

Remark 1.3.9. Let X be an object of LH(E). By an abuse of notations, we will
write X' € £ if X' is isomorphic to I{E) for some object E of £.

Proposition 1.3.10. Let £ be a quasi-abelian category.
(a) Any object of LH(E) is isomorphic to a complex

0—- AL B—0

where B is in degree 0 and u is a monomorphism. Moreover, such an object is in the
essential image of I if and only if u is strict.

(b) A sequence
E—F—=(G

of & is strictly exact if and only if the sequence
I(E) = I(F) — I(G)
of LH(E) is exact.

Corollary 1.3.11. Let £ be a quasi-abelian category and let X be an object of D(E).
Then,

(i) LH*(X') =0 <= X Is strictly exact in degree k,
(ii) LH*(X ) € £ < di! is strict.

Remark 1.3.12. Replacing the notion of strictly exact sequence by the notion of
costrictly exact sequence, we may define a second t-structure on D(€). We call it the
right t-structure and its associated heart (the right heart) is denoted by RH(E).
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1.4 Derivation of functors between quasi-abelian categories
In this section, F' : £ — & will denote a functor between quasi-abelian categories.
Definition 1.4.1. Let

Q:K*(€) - D) and Q:K¥E)— D)

be the canonical functors. A right derived functor of F is the data of a pair (T, s)

where
T: DY) — D€

is a functor of triangulated categories and
s:QoKHF)—ToQ
is a morphism of functors such that for any pair (T",t) where
T :D*(E) = D) and t:QoK¥(F)—T0Q,
there is a unique morphism « : T — T” of functors making the diagram
Q o K*(F)
s

ToQ——T'0Q

oidg
commutative.
Definition 1.4.2. A full subcategory Z of £ is F-injective if
(i) for any E € Ob(£), there is a strict monomorphism E — I where I € Ob(Z),

(ii) 0 — E' — E — E" — 0 is a strictly exact sequence of £ such that F,
E € Ob(Z), then
(a) E” € Ob(T),
(b) 0 — F(E') — F(E) — F(E") — 0 is strictly exact.
Proposition 1.4.3. IfT is an F-injective subcategory of £, then for any object X of
C*(£), there is a strict quasi-isomorphism
u:X —1T
such that, for any k, I* € Ob(Z) and u* : X* — I* is a strict monomorphism.
We call I' an F-injective resolution of X'.

Proposition 1.4.4. If€ has an F-injective subcategory I, the functor F : £ — &' is
right derivable and its derived functor

RF: D*(€) — D*(&)

is given by
RF(X)=F(I)

where I is an F-injective resolution of X.
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Definition 1.4.5. (i) An object I of & is injective if for any strict monomorphism
u: E — F and any morphism v : E — I, there is a morphism ¢’ : F' — I making the
diagram

ECENY A

E
v
|7
I
commutative.

(ii) The category & has enough injective objects if for any object E of £, there is a
strict monomorphism E — [ with [ injective.

Proposition 1.4.6. If £ has enough injective objects, then the full subcategory Z of
& formed by the injective objects is F-injective for any functor F : € — &'.
In particular, any functor F : € — &' is right derivable.

Now, let us explain how to derive a bifunctor

Proposition 1.4.7. Let
F(,): ExE =&

be a bifunctor between quasi-abelian categories. Assume that there are full subcate-
gories T and J of £ and &' respectively such that

(i) for any J € Ob(J), T is F(-, J)-injective,
(ii) for any I € Ob(Z), J Is F(I,-)-injective
Then, the functor F(-,-) is right derivable and its derived functor
RF : D*(€) x D*(&') — D*(&")
is given by
RF(X,Y)=sF(I,J)

where I' (resp. J ) is an injective resolution of X (resp.Y ) and sF(I',J) is the simple
complex associated to the double complex F(I,J").

Remark 1.4.8. Dually, it is possible to derive functors on the left by considering
F-projective subcategories.

2 Projective systems in quasi-abelian categories

2.1 Categories of projective systems

Definition 2.1.1. Let C be a category and let Z be a small category. We denote by
CT® the category of functors from 7 to'C. The objects of CT* will be called projective
systems of C indezed by T.

Proposition 2.1.2. Let T be a small category. Assume & is a quasi-abelian category.
Then, EX* is a quasi-abelian category.
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Proof, We know that the category £ is additive.

Consider a morphism f : E — F of EX7. The kernel of f is given by an object K
of £2” and a morphism u : K — E of 7 such that for any i € Z, the object K (i)
of € and the morphism (i) : K(i) — E(3) form a kernel of f(i). The cokernel of f is
defined similarly. It follows that a morphism f : E — F of EX™ is strict if and only if
f() : E(i) — F(3) is strict in & for any 4 € Z.

Consider a cartesian square

E—Li-F

[

El _7_) Fl

of ET* where f is a strict epimorphism. Since for any ¢ € Z, the square

E() L% Fi)

I

(i) 5 F'(0)

of € is cartesian and since f(i) is a strict epimorphism, f'(:) is a strict epimorphism.
It follows that f' is a strict epimorphism of 7.
Using the same kind of arguments, in a cocartesian square

gl

1

E—f—)F

of ET, if f is a strict monomorphism, then f is also a strict monomorphism. O

2.2 Projective systems of product and coproduct type

Remark 2.2.1. Hereafter, by an abuse of notations, we will denote by the same sym-
bol a set and its associated discrete category.

Definition 2.2.2. Let Z be a small category and let £ be an additive category with
products. We define the functor

I: £9°0) — 7%

in the following way. At the level of objects, for any functor S : Ob(Z) — & we define
the functor II(S) : Z°° — & by setting

n(s)e) = I s

for any i € Z. Let i be an object of Z. For any morphism o : j — i of I, we denote by

.., TI(S)(0) — S()

P,
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the canonical projection. Then, if f : ' — ¢ is a morphism of Z, we define
I(S)(f) : T(S) (1) — H(S)(#')

by setting
P OH(S)(J) D joer
jr—i

i

for any morphism o’ : j' — .
At the level of morphisms, for any morphism s : S — ' of £9°@), we define

I{s) : TI(S) — II(S")
by setting
P20 I(s)(#) = s() 0 p, =,
for any object i of Z and any morphism ¢ : j — ¢ of 7.

Definition 2.2.8. Let 7 be a small category and let £ be an additive category with
coproducts. Applying the preceding definition to Z°° and £°P, we get a functor

(gop)Ob(I”) N (gop)(I"P)”h
Through the canonical isomorphism (CP)P*) ~ (CP)P, this gives us a functor
II: 92D — g2,

Note that

1(s)i@) = [ sG).

Definition 2.2.4. Let Z be a small category and let £ be an additive category with
products (vesp. with coproducts). A projective system E : I°° — & is of product type
(resp. of coproduct type) if there is an object S of £°® such that

E ~11(S) (resp. E ~1I(5))
in £2°%,

Definition 2.2.5. Let Z be a small category and let £ be an arbitrary category. We

define the functor
0: &5 — £

by
O(E)@)=E() VYiel

for any object E of EZ”. If f : E — E' is a morphism of £¥7, we define O(f) :
O(E) — O(E’) by setting

One checks easily that we have:
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Proposition 2.2.6. Let T be a small category and let € be an additive category with
products (resp. with coproducts). For any object S of €% and any object E of EX7,
we have

Homgob(z)(O(E), S) >~ Homgzop (E, H(S))

(resp. Hom gou) (S, O(E)) ~ Hom zzer (LI(S), E)).

Proposition 2.2.7. Let T be a small category and let £ be an additive category with =
products (resp. with coproducts). For any object S of €%, we have the isomorphism

LmII(S) () =~ []SG)  (resp. LmII(S)(3) ~ [ SG))-

€T i€ €T i€l
Proof. This follows directly from the definition of the projective and the inductive
limits. |
2.3 Injective and projective objects

Proposition 2.3.1. Let T be a small category and let £ be a quasi-abelian category
with products. If S is an injective object of £%°®), then II(S) is an injective object of
&,

Proof Let S be an injective object of EO°®, Consider a strict monomorphism
f:E—FE

of EX. Since for any i € T, f(i) : E(i) — E'(3) is a strict monomorphism and since
S(i) is injective in £, the sequence

. ., Hom (£(:),5(2)) . )
Hom (E' (i), S(i)) ——— Hom(E(:), S(i)) — 0

is exact. It follows that the sequence

, Hom (O(f),8)
Homgob(z)(O(E ),8) ———— Homgob(z)(O(E), S)—0

is exact. By Proposition 2.2.6, the sequence

Hom (f,YI(S))
——— Hom ze0 (E, II{S)) — 0

Hom zze0 (E', TI(S))
is also exact and the conclusion follows. 0

Proposition 2.3.2. Let I be a small category and let £ be a quasi-abelian category
with products (resp. with coproducts). For any object E of ET* | there is a strict
monomorphism (resp. strict epimorphism)

f:E—T(O(E)  (tesp g:I(O(E)) — E)

of EFF.
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Proof Let E be an object of £ We define the morphism f : E — II{(O(E)) by

setting
p,2,; 0 f(i) = E(a)

for any object i of 7 and any morphism « : § — ¢ of Z. Since for any object 1 of 7, we
have
P e © f(i) is a strict monomorphism. Consequently, for any ¢ € Z, f(i) is a strict

2 2
monomorphism of £ and f is a strict monomorphism of £ O
Proposition 2.3.3. Let T be a small category and let £ be a quasi-abelian category

with products. If £ has enough injective objects then the category E¥ has enough
injective objects

Proof. Let E be an object of €. We know that there is & strict monomorphism
f:E—-TI(0O(F))

of 7. Moreover, since £ has enough injective objects, for any 7 € Z, there is a strict
monomorphism s(i) : E(i) — I(i) of £, where I(i) is an injective object of £. These
morphisms define & morphism
s:0(E)—1I
of £9°() where I is an injective object of £°°0). Now, consider the morphism
H(s)o f: E — II(I)

of ¥, Since the product of strict monomorphisms is a strict monomorphism, for
any 1 € 7, II(s)(i) is a strict monomorphism of £. Consequently, I(s) is a strict
monomorphism of 77 and II(s) o f is a strict monomorphism of EX7.

Finally, by Proposition 2.3.1, the object II(I) is injective in 2. And the conclusion
follows. (|

Dually, we have:

Proposition 2.3.4. Let T be a small category and let £ be a quasi-abelian category
with coproducts. If€ has enough projective objects, then the category EX has enough
projective objects.

2.4 Index restriction and extension
To fix the notations, let us recall a few definitions of the theory of categories.

Definition 2.4.1. Let F: A — C and G : B — C be two functors between arbitrary

categories. We denote by
FlG

the category whose objects are the triples (a, f,b) where a is an object of A, b is an
object of B and f: F(a) — G(b) is a morphism of C. If (a, f,b) and (o', f',¥') are two
objects of F' | G, a morphism

(u,v) : (a, f,0) — (d, f',¥)
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of F | G is the data of a morphism u : a — a’ of A and a morphism v : b — Vof B
such that the diagram
Flo)—=60)
F(u)l lG(v)

F(a) — G(Y)

is commutative.
Remark 2.4.2. Let 1 denote the category with one object.
(i) If the functor F : 1 — C associates to the object of 1, the object i of C, the
category F | G will simply be denoted i | G
If, moreover, G = idc, then the category i | G will be denoted i | C.
(ii) Similarly, if the functor G : 1 — C associates to the object of 1, the object 4 of
C, the category F' | G will be denoted F | 1.
Moreover, if F = ide, then the category F' | ¢ will be denoted C | 3.

Proposition 2.4.3. Let T be an arbitrary category. For any object i of I,
(ldh 1) (resp” (”7 ld’t))

is an initial object (resp. a terminal object) of i | T (resp. T | i).

Definition 2.4.4. Let J : J — I be a functor between two arbitrary categories and
let 7 be an object of Z.
(i) We define the functor

JiilJ—J
by setting _
J(f3) =17
for any object (f, ) of i | J and by setting
JH(B) =8

for any morphism B: (f,j) — (f',j") of i | J.
(ii) We may define the functor

J:Jli—=J

in the same way.

Proposition 2.4.5. Let J : J — I be a functor between arbitrary categories and let
o : 4 — i be a morphism of .
(1) There is a functor
JeiilJ—i | J

such that . .
J o g =J.
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(i) There is a functor
Jo:J i —J )4

such that
Jiody=Jp.

Proof. The functor J*:4 | J — ¢’ | J defined by
JHf:5) = (foe,])
for any object (f,7) of i | J and by
Ju)=u
for any morphism u : (f1,71) — (f2,j2) of i | J, solves the problem.
The functor J, is defined similarly. O

Remark 2.4.6. If J = idz then the functors J¢, J;, J* and J,, will be denoted respec-
tively by
T )T —1T, Zi:T li—1I,

I%:4]T—4|ZT and I,:T|¢—T]4.

Definition 2.4.7. Let C be an arbitrary category and let J : J — T be a functor
between two small categories. We define the functor

J* . CFF = cI”
by setting .
JHC)=CoJ®

for any object C of CT®, If f : C — (' is a morphism of CZ*, we define J*(f) :
JT(C) — JT(C') by setting
JH(HE) = FIG)

forany j € J.

Definition 2.4.8. Let C be a cocomplete category and let J: J — Z be a functor
between two small categories. We define the functor

Jp:CIT =T

in the following way. At the level of objects, for any functor G : J°P — C, we define
the functor J.(G) : I°% — C by setting

Je(G)@) = lig (GoJ"®)(f,5)= lim G())
(F)EiLd (et

for any 4 € Z. Let i be an object of Z. For any object (f, ) of ¢ | J, denote by

g 1 GU) = J+(G)(E)
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the canonical morphism. Then, if @ : ¢ — i is a morphism of 7, we define

Jo(G)(@): lim G(G)— lm G()

=
(fheild (fi)ei'ld

by setting
J+(G)(@) © 11y = T{oa)

for any object (f,4) of i | J.
At the level of morphisms, for any morphism g : G — G’ of C7%, we define
J+(g) : J+(G) — J4+(G') by setting

J+(9)(8) o7z g = 7is © 9(9)
for any object ¢ of Z and any object (f,7) of i | J.
One can check easily that we have:

Proposition 2.4.9. Let C be a cocomplete category and let J : J — I be a functor
between small categories. For any object C' of C** and any object G of C7, we have

Hom ;700 (J4+(G), C) & Hom o0 (G, J*(C)).

3 Derivation of the projective limit functor

3.1 The case where £ has enough injective objects

Proposition 3.1.1. Let T be a small category and let £ be a quasi-abelian category
with products. If £ has enough injective objects, then the functor

lim : ET — &
i€
is right derivable.
Proof. This follows directly from Proposition 2.3.3. 0

Dually, we have:

Proposition 3.1.2. Let Z be a small category and let £ be a quasi-abelian category
with coproducts. If £ has enough projective objects, then the functor

li_n}:é‘z—u‘)

i€l

is left derivable.
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3.2 Roos complexes

In this section, 7 will denote a small category and & a quasi-abelian category with
products.

Definition 3.2.1. We define the functor
R(Z,): ETP C*(€)

in the following way. At the level of objects, for any functor E : T° — &, we define
R(Z,E) € CH(€) by setting

RMZ,E)=0 VYn<0

and
RMZ,E)= J] EG) Vo0,
iOi> i\"in
where ig =% ... 2% ¢, is a chain of morphisms of Z. Denoting by

D e« ﬂ)in : Rn(I, E) -— E(’Lo)

io—
the canonical projection, we define the differential

d”}z (T,E) : Rn(z, E) hancd Rn+1(I, E)

by setting
an41 [¢] dn = E Q1) 0 o Gn4l
Pgea, om0 OREE) (01) P o2 oy
+ E C4+1°9] On4l
10“’ -1 Yepl In+1
_1\n+1
+( 1) p i) —M .

At the level of morphisms, for any morphism f : E — E’ of £T7, we define
R(I,f): R(T,E)— R(T,E)
by setting
P, o1, emy o RMZ, f) = flio) °p, a1, em,, -

Notation 3.2.2. Let F be an object of £ For any i € 7, we denote by

g lim E(5) — E(i

i€T

the canonical morphism.
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Proposition 3.2.3. For any object E of €, there is a canonical isomorphism

&(T,E) : ;g_nE(l) = ker d% (Z,B)

ieT
which induces a canonical morphism

): imE(i) — R (Z,E).
i€l

Proof. We define the morphism
&(T,E) : lim E(i) — R°(Z,E) = [[ E()

€T ieT

by setting
pioe’(Z,E) =g

for any i € I. Since d% (7 g 0 €°(Z, E) =0, €°(Z, E) induces a morphism

) : lim E(3) — R (T, E)
iel

of C+(€). It follows directly from the definitions that (lim E(:),¢°(Z, E)) is a kernel of
€T
d%: (Z.E)" 0

Definition 3.2.4. Let J : J — T be a functor between small categories. We define
the morphism of functors

R(J,):R(Z,)— R(J,J*())
by setting

. OoRYJE)= - Yn >0
pio—ﬂlﬁ N (J, E) pJ(]_o) KoY, In) s

for any object E of £X7.
Definition 3.2.5. We define the functor

R():EF" — CH(ETT)

in the following way. At the level of objects, for any functor E : I°° — &, we define
R(E) € C*(ET*) by setting

R(E)G) = R(Z L4,7}(E))
for any i € 7. If o : ¢’ — i is a morphism of Z, we define
R(E)e): R(Z 14T} (E) — R(Z i, T} (E))
by setting
R(E)(a) = R (I, I;"(E))
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and using the fact that Z} o I}t = (Z; 0 Zo)* = I}. For any n > 0, we define the

differential
dr (g) R*(E) — R™(E)

by setting
dg () (i) = d, @, (E))

for any object ¢ of 7.
At the level of morphisms, if f : E — E’ is a morphism of functors, we define

R(f): R(E) — R(F') by setting
R(f)(i)=R(Z i, (f))
for any object ¢ of Z.

Remark 3.2.6. Let us notice that to give a chain of morphisms

(iO,fO) 2 2 (im fn)

of 7 | i is equivalent to give a chain of morphisms of 7 of the form

a1 f

« Qn . .
fg— +0r —Dip 4
It follows that for any n > 0 and any i € T
RYE)(i) = II E(4o)
NERRN
and that for any morphism o :4' — i of 7
R"(E)(a): H E(ip) — H E({ip)
o2 2y Ly PN R v
is defined by
P oo e s OREND=D o e

ig— - — = io— - o1

For any n > 0, the differential dj (g, : R*(E) — R**}(E) is given by

a ody i} = E{ay) o ang1
pio_"a L in+1—f'>‘i R (E)( ) ( 1) pi1—"7a2 = in41 L
n
l
+ E —-1)p a 4100 Gntl 5
l—l( ) io—')1 ©dpey t141 = ing1 >0

n+1
+ (—1) p ay an foany1 .
Gg=—F o iy

for any ¢ € 7. Finally, for any morphism f : E — E' of €%, R(f) : R(E) — R (E")
is given by
w,, s, OB (F)0) = flic)op, 2, on, o,

o1 . .
pz'o — iy %

forany n>0and any i € 7.
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Lemma 3.2.7. If the category T has a terminal object i, then for any object E of
ET® | there is a canonical homotopy equivalence

E(i) — R(Z, E)
Proof. For any n > 0, define k" : R*(Z, E) — R*(Z, E) by setting h® = 0 and

n n
P an—1 oh™ = ('—1) 4 ot Xiog i1 n Z 1
fg— - ——ipy Y e o

where a;, ;,_, is the unique morphism of Hom(in—1,%c). Define the canonical mor-
phism f°: E(is) — R°(Z, E) by setting

i 0 fO = E(Qigg.4)-

Since d% 7,z © f° = 0, f° induces a canonical morphism f : E(i) — R(Z, E). We
will also consider the morphism g : R (Z, E) — E(ic) defined by setting

7Y i k1
Clearly, g o f = id. Moreover, f o g is homotopic to the identity map since we have
hodR(IE) id—fog°

and
Ay g o k" + 1" ody 15 = idrrzmy-

Proposition 3.2.8. For any object E of £X, there is an isomorphism
¢(E):E= R(E)

in D*(ETT).
Proof. Let i be an object of Z. Since (4, id;) is a terminal object of T | %, by Lemma 3.2.7

f () TH(E),idi) = EG) > R(Z L4, I (E)) = R (E)(1)
in K+(£), where

f°(): E(i) — R°(E HE@O
zo—-n

is defined by
b 2,0 1) = E(0).
So, for any 4 € Z, we define ¢°(E)(i) : E(i) — R°(E)(i) by setting
& (B)(5) = f°(3).

Since d% ) © €°(E) = 0, ¢°(E) induces a morphism ¢ (E) : E — R(E) of CHETT).
By construction, for any 1 € Z, we have the isomorphism

€ (E)(3): E() = R(E)()
in D*(&). It follows that € (E) : E = R(E) in D+ (EX"). 0
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Lemma 3.2.9. For any object E of ET™ and any n > 0, there is an object S™(E) of

E°D such that
RY(E) ~TI(S™(E))
Proof. One checks easily that the functor S*(E) : Ob(Z) — & defined by
B =[] B
i - T,
for any i, € T solves the problem. O

Proposition 3.2.10. For any object E of %", there is an isomorphism

lim R (E)(i) = R (Z, E)

i€z
of C*(€).
Proof. This follows from the chain of isomorphisms
lim R*(E)(s) ~ im I(S™(E))(5) = [ S™(E)n) = [] H E(io)

i€ i€l
in€l 1,,&1’ in

II EG)~rzB)

. &1 an, .
ig—> —>in

R

3.3 The case where £ has exact products

In this section, Z will denote a small category and £ a quasi-abelian category with
products.

Definition 3.3.1. An object E of £T% is a Roos-acyclic projective system if the co-
augmented complex
0 — lim E(i) — R%(Z,E) — R'(T,E) —
€T
is strictly exact. In other words, £ is Roos-acyclic if and only if

LH*(R(T,E))=0

for any £ > 0.

Proposition 3.3.2. For any object S of £}, there is a canonical homotopy equiv-
alence

[156G) — Rr(z,11(5)).

je€z

In particular, I1(S) is a Roos-acyclic projective system.
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Proof. For any n > 0, define A" : R*(Z, 11(S)) — R*(Z,I1(3)) by setting h® = 0 and

P s OO0 « an—1_ . oh®=p u op

-7}
j—io o= T Fip—1 i3 7—*20—> ——ip_1

for n > 1. Define the canonical morphism

«: []86) — R(Z,1($))

j€T
by setting
P s opigou’ =pj

7-—)
Since d% z sy © u° = 0, u° induces a canonical morphism
w : []SG) — R(Z,1(S)).
jeT
We will also consider the morphism
°: R(Z,1(9) — ] SG
i€z

defined by setting
. 0 qu— . .
Pjov =P, 0D

and the induced morphism

) - [150).

jeI
Clearly, v ou = id. Moreover, u o v is homotopic to the identity map since we have
1 ; 0,0
htody (ZIS) = 1‘% —uov

and
A sy © BT+ B o diy (z sy = 1drezis)

forn>1. O

Proposition 3.3.3. Assume £ has exact products. Then, the functor

ki_rr_l:é'zop — &

i€T
is right derivable.
Proof. 1t is sufficient to show that the family
F = {E € Ob(€¥*) : E is Roos-acyclic}
is lim-injective.

i€l
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(i) Let E be an object of ET* | By Proposition 2.3.2, there is a strict monomorphism
E — TI(O(E)) and by the preceding proposition, II(O(E)) belongs to F.
(i) Consider a strictly exact sequence 0 — E' — E — E” — 0 of ET* where E
and E belong to F. Since & has exact products, the sequence
00— R(,E)—R(I,E)y—R(Z,E")—0

is strictly exact and gives rise to the long exact sequence

0— LH°(R (Z, E')) — LH°(R (T, E)) — LH*(R (Z, E")) —

Q—‘LHI(R (Z,E'))— LH'(R (T, E))— LH'(R(Z, E")) ——>

L LH*(R(I,E))— LH*R(Z,E))— LH*(R (Z,E"))
Since E’ and E are objects of F,
LH*R(T,E))=LH*R(I,E))=0 Vk>0.

It follows that
LH*R(Z,E"))=0 Vk>0

and that E” belongs to F.
Moreover, by Proposition 3.2.3, for any object E of EX7,

LH(R (Z,E)) =~ lim E(i)

i€l
and the preceding long exact sequence shows that the sequence
0 — imE'(i) — im E() — imE"(i) — 0
i€l i€l i€z

is exact. O

Proposition 3.3.4. Assume £ has exact products. Then, for any object E of £¥7,

we have a canonical isomorphism

Rlim E(3) R(Z,E).
ieT
Proof. By Proposition 3.2.8 and Lemma 3.2.9, R (E) is a Roos-acyclic resolution of E.
Then,
Rlim B(4) ~ limR(E)(§) =R (I,E)

i€l €T

where the last isomorphism follows from Proposition 3.2.10. O
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3.4 Derived projective limit functor and index restriction

In this section, £ will denote a quasi-abelian category with products and J : 7 — T a
functor between small categories.

Definition 3.4.1. We define the morphism of functors
p (L) THR()) — R(I*())
by setting

P s o O (LEYG) =D s s (o)

jom - B, Ly (i) - 2 5 (5) =255 (5)
for any object E of €%, any j € J and any n > 0.

Proposition 3.4.2. The canonical morphism of functors

gs(-) : im — limoJ*

i€l jeT

characterized by the fact that
giogqs(E) = 4J3)

for any object E of E¥ and any j € J induces a canonical morphism

Rlim — RlimoJ*.

i€l jeg
Moreover, if £ has exact products, the diagram

Rlim E(}) —=~—— R (, E)
€T
R (JE)

R ll_? JHE)(§) == R(T,J*(B))

is commutative for any object E of EX.

Proof By a well-known procedure of homological algebra, the canonical morphism

as()  lim — limoJ*

i€l jeg
induces a canonical morphism

Rlim — RlimoRJ*.

i€Z jed
Since the functor J* is exact, we get the canonical morphism
Rlim — RlimoJ *.

i€l jegJ
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Assuming & has exact products, we may visualize the construction of this morphism

in the following way. Consider an object E of £Z". We know that

e(E):E- R(E)

is a lim-acyclic resolution of £. The functor J* being exact, we have the isomorphism

i€l
J*(e (E)): J*(E) = J*(R(E))

in D*(E7°"). Since

e (JH(E)) : JH(E) = R(J*(E))

is a lim-acyclic resolution of J*(E),
jed

e (JH(E)) o (J¥(e(E)) - J*(R(E)) = R(J7(E))

is a lim-acyclic resolution of J*(R'(E)). Moreover, the diagram

ieTJ
JHR(B) =222 R (J*(E))
+ (e
. (E))J /%‘?E»

J*(E)
of D*(£7°") being commutative, we have
e(JH(B) o (JHe(B)) ' = (J, ).
Hence, the canonical morphism

Rlim E(:) — Rlim J*(E)(j)

i€l jeJ

is given by the commutative diagram

R;;I_?E(z') ————————————————————— *R%J*(E)(j)

lim R (E)(0) — =y Qi_I;J+(R‘(E))(j) e i f (JH(ENG)

Since a direct computation shows that the diagram

. B o g R s
%R(E)(l)——_’%J (R(E))(J)———’%}GL?R(J (E)))
R(Z,E) — R (J,J*(E))

R'(JE)

is commutative, the conclusion follows.
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3.5 Dual results for the inductive limit functor

In this section Z will denote a small category and £ a quasi-abelian category with
coproducts.
By duality, the results and constructions in the preceding sections can be easily
adapted to derive the functor
lim : ET - &,
€T
We will not do this explicitly here. However, in the rest of this paper, we will need
to work with the derived functor of lim : ET® — £. To avoid confusions, we will fix
below the notations used in this case?ez
The functor
R(Z,): & — C7(£)

is defined by
Ru(I,E) = (R"(I°", E®))

and the differential is given by
g =B = (d?%_(lzop,Eop))oP"
If f: E — E'is a morphism of €2, then
Ro(Z, f) = (R*(Z°, f)).
As in Proposition 3.2.3, there is a canonical isomorphism

eo(T, E) : coker df T =, lim E(s).
ieZ

The functor
R(): & — C~ (&%)

is defined by
R(E) = (R (B))

and the differential is given by
d ) = (dy fpom))°P-
If f: E — E' is 3 morphism of £2°°, then
R(f) = (R(f®)>.
As in Proposition 3.2.8, there is a canonical isomorphism
¢e(E):R(E)>E
in D=(£%"). For any n > 0, there is an object S,(E) of £°°@ such that

Rn(E) =~ II(5n(E))-
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Moreover, there is a canonical isomorphism

R(Z,E) = lim R (E)(s)

i€
in C(&).
Therefore, as in Propositions 3.3.3 and 3.3.4, if £ has exact coproducts, the functor
lim : EP =€
iz

is left derivable and we have

Lliy E(i) ~ R.(T, B).
i€l

If J: J — T is a functor between small categories, then we define the morphism
of functors

p () : R(JT() = JHR())

by setting
p(J, E) = (p (JP, E®))P.

For any n > 0, we define the morphism
n(J, E) : Jo(Rn(J*(E))) — Rn(E)
of E¥* as the image of p,(J, E) by the adjunction
Homn g gep (Ra(J* (E)), J* (Ba(E))) = Hom gzos (1 (Ra(J* (E))), BalE)
The morphisms f,(J, E) induce a morphism of functors
A7)t T (R(JF()) — R ().
3.6 Relations between RHom and derived limits

Definition 3.6.1. Let T be a small category and let £ be a quasi-abelian category.
Consider an object X of £. We define the functor

Hom (X,-) : ET7 — Ab™"
in the following way: at the level of objects, if Y is an object of £, we set
Hom (X,Y)(i) = Hom (X, Y (3))
for any object ¢ of Z. If & : j — ¢ is a morphism of Z,
Hom (X,Y)(e) : Hom (X, Y (¢)) — Hom (X, Y (5))
is defined by
Hom (X, Y)(e)(f) = Hom (X, Y (e))(f) =Y(a) o f
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for any f € Hom (X, Y (i)).
At the level of morphisms, if F: Y — Y’ is a morphism of £7°,
Hom (X, F): Hom(X,Y) — Hom (X,Y")

is defined by
Hom (X, F)(i) = Hom (X, F'(3))

for any 1 € 7.
Dually, we define also the functor

Hom (-, X) : (EF7)%® - Ab".
Lemma 3.6.2. Let T be a small category and let £ be a quasi-abelian category.
(i) For any object X of £ and any object E of E¥, we have
Hom (X, R (Z,E)) ~ R (Z,Hom (X, E)).

(ii) For any object X of £ and any object E of X, we have
Hom (R (Z,E),X) =~ R (ZT°°,Hom (E, X)).

Proof. This follows directly from the definitions. O

Proposition 3.6.3. Let T be a small category and let £ be a quasi-abelian category
with enough injective objects. For any object X of £ and any object E of EX", we

have
RHom (Llim E(i), X) ~ Rlim(RHom (E, X))(4)
i€ i€l
and
RHom (X, Rlim E(i)) ~ R lim(RHom (X, E))(3).
ieT i€
Proof First, recall that since £ has enough injective objects, coproducts are exact.
Hence, the inductive limit functor is left derivable. Let

0 =11 —...
be an injective resolution of X. On one hand, RHom (Llim E(i), X) is given by the

i€l
simple complex associated to

0 — Hom (R (Z, E),I°) — Hom (R (T, E),I') — ---
This complex is isomorphic to the simple complex associated to
0 — R (Z°°,Hom (E, I°)) — R (Z°°,Hom (E,I')) — -+~
On the other hand, RHom (E, X) is given by the complex
0 — Hom (E, I°) — Hom (E,I') — - --
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Therefore, R lim(RHom (£, X))(4) is isomorphic to the simple complex associated to
i€

0 — Rlim Hom (E, I°)(¢) — R lim Hom (E, I')(s) —
i€l i€l

Since for any [ > 0

R lim Hom (E, I')(s) ~ R (T°°, Hom (E, I')),

i€l

the first isomorphism is established.
Next, we know that E has an injective resolution of the form

0 — (S — TI(S*) —
of % such that for | > 0, S* is an injective object of £2°@), On one hand, since
Hom (X, T1(S%)) =~ ITHom (X, %)

and since projective systems of product type are lim-acyclic, by composition of the

ieT
derived functors, we have
Rlim(RHom (X, E))(i) ~ R(lim Hom (X, E)(@)).

i€l €T

Hence, R lim(RHom (X, E))(i) is isomorphic to the complex
ieT

0 = lim Hom (X, I1($%))(i) — lim Hom (X, TI(S))(¢) — - -

€T i€z

Moreover, for any [ > 0, we get

Lim Hom (X, TI($")) (i) = Hom ¢(X, lim I1($")(3)) = Hom (X, [ ] §'(9)).
€T i€l €T

Hence, R lim(RHom (X, E))(i) is given by the complex
i€l

0 — Hom (X, [ $°()) — Hom (X, [[ 8'@)) — - -

i€ 1€l

On the other hand, Rlim E(i) is given by the complex
i€z

0— ;;%H(S")(z') - {i&;ﬂ(sl)(f) -

This complex is isomorphic to the complex

0— II S0(3) — HSl(i) —

el el
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Since the product of injective objects is an injective object, the last complex is an

injective resolution of Rlim E(i). Therefore, RHom (X,Rlim E()) is isomorphic to
€T €T

the complex

0 — Hom (X, [ ] $°(3)) — Hom,(X, [Is*@) — -
ieT i€
and the conclusion follows. O
Proposition 3.6.4. Let T be a small category and let £ be a quasi-abelian category
with exact products. Consider an object E of ET* . Iffor any object X of €, Hom (X, E)

is lim-acyclic, then E is lim-acyeclic.
i€ i€
Proof. Consider X € Ob(€). We know that
Rlim Hom (X, E)(i) ~ R (Z,Hom (X, E)) =~ Hom (X, R (Z,E)).
i€z
Since Hom (X, E) is lim-acyclic, we have
i€l
Hom (X, R (Z, E)) ~ lim Hom (X, E)(7) ~ Hom (X, lim E(3)).
i€ i€

Therefore, the complex Hom (X, R (Z, E)) is exact in degree k # 0 for any X € Ob(€).
Hence, Remark 1.2.2 shows that R (Z, E) is strictly exact in degree k # 0. It follows
that

R(ZI,E) ~lim E(i)

i€l

in D*(£). Since Rlim E() ~ R (Z, E), we get
i€

R lim E(i) ~ lim E(3).
i€l i€l

4 Derived limits and the symbolic-Hom functor

4.1 The symbolic-Hom functor
In this section, Z will denote a small category and & a complete additive category.

Definition 4.1.1. We denote by
[z (AFT)P x EFF — €

the symbolic-Hom functor. For any object M of AV and any object E of £X7, the
object [M, E]z of € is characterized by

Hom (X, [M, E]z) ~ Hom o0 (M, hx © E) VX eOb(E).
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If 7 is the one point category, then [, -]z will be denoted by
[,]: AbP x € — E.
In this case, for any abelian group M and any object E of £, the object [M, E|] of £ is
characterized by
Hom (X, [M, E]) ~ Hom 4, (M,Hom (X, E)) VX € Ob(&).
Let us recall the following easy formulas:
Proposition 4.1.2. (i) For any object E of £, we have
Z,E)~E.
(ii) For any object M of Ab* and any object E of £, we have
(lig M(3), E] ~ lim[M (¢}, E].
et

iz
(iii) For any abelian group M and any object E of ET7, we have
(M, lim B(5)] = (M, B3]
iez ieT

4.2 Derivation of the symbolic-Hom functor

In this section, Z will denote a small category.

Lemma 4.2.1. Let £ be a quasi-abelian category with exact products. If P is a
projective abelian group, then the functor

[P]:E—€&
is exact.

Proof. First, let us prove the result when P is a free abelian group, i.e.,
p=z¥ =Pz

i€l
Consider a strictly exact sequence 0 — E' — E — E" — 0 of £. Since for any object
E of &,
zD, B~ [z, B~ ][] E
il i€l
and since products are exact, the sequence
0— [ZY,E] — [ZD,E] — [ZV,E") — 0
is exact. Next, consider a projective abelian group P. We know that there is an exact

sequence
0—kerg—2Z0 L P 0.

Since P is projective, this sequence splits and we have
[ZD,.] ~ [(kerg) ® P, "] = [kerg, ] @ [P, ].
The functor [Z), -] being exact, the functor [P,-] is also exact. 0

367



Lemma 4.2.2. Let £ be a complete additive category.
(i) For any object S of Ab°*®D and any object E of EX* ,we have

(LI(S), Elz =[S, O(E)]obz) =~ H ), E(3)].

€T

(ii) For any object M of Ab*™ and any object S of EO°T) we have

[M,T1(8)]z = [O(M), Son) = [[IM©), ()]

i€
Proof. (i) Let X be an object of €. First, we have

Homé'(X’ [H(S)) E]I) = HomAbZOP (H(S), hX o] E) jad HOm‘Abob(z) (S, O(hX o E))
=~ HomAbOb(I) (S, hx o O(E)) o~ Homg(X, [S, O(E)]Ob(:z)),

where the second isomorphism follows from Proposition 2.2.6. Next, we get

HomS(X: [S’ O(E)]Ob(l')) = HomAbOb(I) (S hX ] O(E'))
= [ [ Hom 4,(8(:), Hom, (X, E(2)))

i€l
~ [ Hom, (X, [S(), E(@)]) = Hom, (X, []IS(), E®)).
i€T €T

(ii) Let X be an object of £. On one hand, we have successively

Hom (X, [M,TI(S))z) ~ Hom gyree (M, hx 0 I1(S)) = Hom 4700 (M, I(hx © S))
~ Hom.AbOb(I) (O(M), hX [o] S) ~ HOmS(X, [O(M), S]Ob(l’))

On the other hand, we get

Homé‘(X’ [O(M): ]Ob(l?) Hom AbOb(z)( (M) hx o S)
= [ Hom 4, (M(5), Hom (X, S(3)))

i€Z
~ H Hom (X ,S(@)])
€T
=~ Hom 4(X, H[M(i), S(3)]).
ieT

O

Lemma 4.2.3. Let £ be a quasi-abelian category with exact products. If P is a
projective object of Ab?, then the functor

P lr: €™ — €

is exact.
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Proof. First, let us prove the result when P = II(.S) where S is a projective object of
AP Consider a strictly exact sequence 0 — E' — E — E” — 0 of E¥®. Since
for any i € Z, S(3) is projective, by Lemma 4.2.1, the functor

[S(),]:&E—¢&
is exact. Moreover, since for any object E of £,
[11(S), Elz ~ [ [1S(), ()]
i€
and since products are exact, the sequence
0 — [II(S), Bz — [I(S), E]z — [L(S), E"]z — 0

is exact. Next, consider a projective object P of Ab*™. We know that there is an
epimorphism ¢ : II(S) — P where S is a projective object of AB°*®. Since P is
projective, the exact sequence

0—kerg —I(S) L P -0
splits and we have
[I(S), ]z =~ [(kerq) ® P, "]z =~ [kerq, |z ® [P, ]z.
The functor [II(S), -]z being exact, the functor [P, ]z is also exact. a

Proposition 4.2.4. Let £ be a quasi-abelian category with exact products. The func-
tor
[ ]z : (ABFTYP x 77 — &
has a right derived functor
R[]z (D™ (AVF))® x D*(E77) — D*(€).

Proof. Let us show that if P is the full subcategory of projective objects of Ab*™", then
the pair (P, ET7) is [, -]z-acyclic.
First, consider an object P of P. Since the functor

[P ]z: €7 — &

is exact, the category £ is [P, -]z-injective.

Next, consider an object E of Ob(£%") and let us show that P is [, E]z-projective,

(i) For any object M of AbT™, there is a projective object P of 4b*™ and an
epimorphism P — M.

(ii) f 0 — P’ — P -— P"” — 0 is an exact sequence of Ab*", where P and P” are
two objects of P, then we know that P’ is an object of P.

(i) f 0 — P/ — P — P" — 0 is an exact sequence of P, then it splits. It follows
that the sequence

0 — [P"Elz — [PElz — [P ,Elz — 0

of & splits and that it is exact.
Since the functor [, ]z is left exact, the conclusion follows from Proposition 1.4.7.
O
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4.3 Links with the derived projective limit functor

Lemma 4.3.1. Let T be a small category and let £ be a complete additive category.
If
Zz:I%® — Ab

is the constant functor which associates to any i € T the abelian group Z, then for any
object E of ET | we have
[ZI, E]l’ ol L&nE(z)
i€z

Proof. For any object X of £, we have

Hom ,(X, [Zz, E]z) ~ Hom 4700 (Zz, hx o E) =~ lim(hx o E)()

i€z
=~ lim Hom ,(X, E(i)) ~ Hom . (X, lim E()).
i€ i€z

O

Proposition 4.3.2. Let T be a small category and let £ be a quasi-abelian category
with exact products. For any object M of AV¥*™ and any object S of EO°D), we have

RIM,II(S)]l; = R[O(M), Slowz) -

Proof. We know that there is a projective resolution P of M in Ab*" such that for
any n 20
P, =11(S,)

where S, is a projective object of Ab°*@). Then, we have
RIM,I(S)]y = [P, T(S)]z = [O(P), Slov(a)

where the second isomorphism follows from Lemma 4.2.2. Since for any n > 0 and any
i1 € Z, we have

O(Pa)(0) = Pali) = L(Sa)(8) = [T Sa(s),

O(PR,) is projective in Ab°*@, The functor O : ET* — £°°X) being exact, O(P) is a
projective resolution of O(M). It follows that
RIO(M), Sloyz) = [O(P), Slobizy = R[M,II(S)]; .
O

Corollary 4.3.3. Let T be a small category and let £ be a quasi-abelian category with
exact products. For any object S of £2°@), we have

R [ZI> H(S)]Z =~ [ZL H(S)]T
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Proof. The object O(Zz) of Ab°*@ is projective since for any i € Z,
O(Z)(1) = Z:(i) = Z.
It follows that
R [Zz, TI(8)]z ~ R[O(Zz), Slop(z) = [0(Zz), Slonz) = [Z2,T1(9)]z
where the last isomorphism follows from Lemma 4.2.2. g

Proposition 4.3.4. Let T be a small category and let € be a quasi-abelian category
with exact products. Then, the functor

liLn:Ezw—ﬁé'

i€z
is right derivable and for any object E of T, we have

Rlim E(5) = R [Zz, El; .

€T
~ Proof. First, let us remark that, since the functor
[ ]z s (ABFTYP x T S &

is left exact, we have
R [ZI, E]I >~ [ZI, E]I

for an object E of ET, if and only if
LH*R[Z7,El;~0 Vk>0.

Next, let us show that the family
F = {E € Ob(£*") : R [Zz, E); ~ [Z1, Elz}

is lim-injective.
i€z
(i) Let E be an object of £Z. By Proposition 2.3.2, there is a strict monomorphism
E — TI(O(F)) and by Corollary 4.3.3, II(O(E)) belongs to F.
(i1) Consider a strictly exact sequence 0 — E' — E — E" — 0 of T where E’
and F belong to F. This sequence gives rise to the long exact sequence

00— 21, Bl ———— [Zz1, B}z ——— [Z1, E"]z —>

Q—+ LH'R|Zz, E'); — LH'R [Zz, B}, — LH'R [Z7, E"), )

L_. LH®R[Z;, E'|; — LHR (Zs, E]; — LH*R [Z1, E"); -
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of C*(€). Since E’ and E are objects of F,
LH*R(Zz,E'}; = LH*R[Z1,El; =0 Vk>0
and it follows that
LH*R[Z7,E"; =0 Vk>O0.
Hence, E” belongs to F.
Moreover, by Lemma 4.3.1, for any object E of £, we have

(Z1, E]z ~ lim E(i),
€T

so the preceding long exact sequence shows that the sequence
0 — lim E'(5) — lim E(i) — lim E"(i)
€T i€l €T

is exact. Consequently, F is lim-injective and the functor
€T

lim : E* ¢
i€l
is right derivable.

It follows from Proposition 2.3.2 that any obJect E of 7" has a resolution I' by
projective systems of product type. Assume that for any n, I™ is of the form

I™ =~ TI(S™).
Then, for any n > 0, we have
R {ZI) In]l’ =~ R [ZI7 H(Sn)]l' ~ [ZI) H(S'ﬂ)]z_ = {ZI7 In]I'

It follows that
R [ZI’I]Z jadg [ZI,I]I.

Therefore, we get
RMIE(Z) o~ liLn[ (§) 22z, 1)z~ R[ZI,I]I ~ R[Zg, E]I

€T ieT
where the first isomorphism follows from the first part of the proof and the second from
Lemma 4.3.1. 0O

Proposition 4.3.5. Let T be a small category and let € be a quasi-abelian category
with exact products. Then, for any object E of ET, we have a canonical isomorphism

R‘(Iv E) =~ [R (ZI)’ E]I
in C*(€) making the diagram ‘
Rlim B(ij) ————R [Zz, Bl
i€Z
k !
R(I,E)——=——[R(Z1), B)z

commutative.
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Proof. For any object E of Ab™™ and any n > 0, we have the chain of isomorphisms

Hom jyr00 (Rn(Z1), F) ~ Hom 700 (11(S,(Z7)), E)
=~ Hom,AbOb(I)(Sn(ZI)> O(E))
= [ Hom 4(8:(2z)(io), O(E) (i0))
i0€T
= [[Hom( JI  Zslin), BGio))
i€l iqrfl) fl")in
~ H H Hom ,(Z, E(i))
i°ezio—°1> LIV
~ I EG)=~rE)
o By,
A direct computation shows that these isomorphisms are compatible with the differ-

entials. Hence, we have
Hom (R (Z1), E) ~ R(Z, E).

Then, for any object E of €7 and any object X of &, we have successively

Hom (X, [Rn(Zz), E)z) =~ Hom yyz00 (Rn(Zz), hx 0 E)
~ R™(T, hy o E)

~ ]  Hom (X, E(i))

~Homg(X, ][]  E(0)
o= 2y,

~ Hom,(X, R"(Z, E)).

It follows that
[.Rm,(Zz), E]I >~ R"(I, E)

and that
[R(Z1),Elz ~ R(Z,E).

Since
Rn(Zz) = 1(S,(Zz))
and
Sa@n)(iy~ [ Z(in),
I N
it follows from the dual of Proposition 2.3.1 that R,(Zz) is a projective object of A7,
Together with the fact that R (Zz) is aresolution of Zz, this explains the second vertical

isomorphism of the diagram in our statement.
The commutativity of the diagram follows directly from the construction of the

various morphisms. O
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4.4 Index restriction

Proposition 4.4.1. Let £ be a complete additive category and let J : J — I be a
functor between small categories. For any object M of Ab7* and any object E of EX™,

we have
[J+(M), Blz = [M, J*(E)]7-

Proof This isomorphism follows from Proposition 2.4.9. As a matter of fact, for any
object X of £, we have successively

Hom (X, [J+(M), Elz) = Hom gzo0 (J1 (M), hx 0 E) = Hom 500 (M, J* (hx o E))
=~ Hom 4,700 (M, hx o J*(E)) = Hom (X, [M, J*(E)]7)-
O

Lemma 4.4.2. Let £ be a cocomplete category and let J : J — I be a functor
between two small categories. If P is a projective object of E7%, then J(P) is a
projective object of EX

Proof Consider a strictly exact sequence B’ — E — E” of 7. Since J* is exact
and since P is projective , the sequence

Hom, 700 (P, J*(E")) — Hom oo (P, J*(E)) — Hom g0 (P, JHE"))
is exact. The conclusion follows from Proposition 2.4.9. ]

Proposition 4.4.3. Let £ be a quasi-abelian category with exact products and let
J: J — T be a functor between two small categories. For any object M of Ab7* and
any object E of E¥, we have

R[LJ+ (M), El; =R [M, J"'(E)]J .
Proof. If P is a projective resolution of M, then we have successively
R [M, J+(E)]J ~[P,J*(B)y =~ [J+(P), Elz @ R[J4(P),El; 2 R[LJ.(M), E];.
O

Proposition 4.4.4. Let £ be a quasi-abelian category with exact products and let
J: J — T be a functor between two small categories. The canonical isomorphism

id:Zy; — J"(Z7) =24
induces by adjunction a canonical morphism
w: LI (Zg) — Zz
which makes the diagram
LI (Zy)————1z

{ {6 (Zz)

Je(R(I*(Z0)) — 7z B (22)

commutative in D~ (AbF”).
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Proof. Recall that w is the composition of
w: LIy (Zg) — J+(Zg),

and the morphism
v J+ (Z J) — Zz

defined as the image of id: Zy — J*(Zz) = Z7 by the adjunction
Hom oo (Z7, J*(Z1)) — Hom 200 (J4+(Z ), Zz).
Since R.(Z7) is a projective resolution of Z 7, we have
J+(R(J*(Z1))) = J+(R(Zg)) = LI+ (Zg)
in D=(Ab®*). Consider the diagram

p(JZz)

J4(R(Z7)) R (Z2)

| e

Ie@a)| LIy(Zg) ——L—— 1
JiZg)——— 1z

It follows from the construction of w that the lower square is commutative. Since a
direct computation shows that the diagram

J+(R(Z5) —2 R (27)

Je(e (ZJ))l ke‘(Zz)
Ji(Zg)————1Ls
is commutative in C~(Ab*) and the conclusion follows. O

Proposition 4.4.5. Let £ be a quasi-abelian category with exact products and let
J : J — T be a functor between two small categories. Then, for any object E of T,
the canonical diagram

R [Zz, E]; ——=——— R im E(i)
i€l
R['w,E}l

R[LJ+(Zy), Ely

k

R(Zs,J*(E)] ,—=— R»l}ﬁ; THE) ()
Jj€

is commutative.
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Proof. Consider the following diagram:

R[Zz, El; » R lim £ ()

i€z
2

®  [R(Zz), E} —— R(Z,E)

| |

R(LJ+(Z7), Bl = [J+(R (Z)), Elz ® ©

@ [R(Zg), J*(E)lg == R(J,J*(E))

s

(8)

»Rlim J*(E)(5)

R [Z7,J*(B)] i

J

Clearly, the result will be established if we prove that the subdiagrams (1)-(6) com-
mute. We know already from Proposition 3.4.2 that diagram (6) commutes. Moreover,
Proposition 4.3.5 shows that diagrams (2) and (5) are also commutative. Since the
commutativity of (1), (3) and (4) follows from the lemmas below, the proof is com-
plete. O

Lemma 4.4.6. Let £ be a quasi-abelian category with exact products and let J :

J — T be a functor between two small categories. For any object E of ET”, the
canonical diagram

R[LJ+(Zg), Bl —=——[J+(R(Zs)), E]z
R[w,Elz] {6 (422),Blz

R(Zg, By ———=—(R(Zz), Elz
is commutative in D*(£).

Proof. Since R.(Zz) is a projective resolution of Zz, we have
R [Z‘_r, E]I jad [R(ZI), E]—_r
Moreover, using Lemma 4.4.2, we see that

R[LJ(Z7), El; ~ R[J4(R(Zg)), Ely ~ [J+(R(Z7)), Elz.
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This explains the horizontal isomorphism. Now, consider the diagram
R[LJ4(Zg), Bl —=—— R [J:(R(Zg)), By —=>—[J+(R(Zs)), Elz
R[le,E]I 1 R{p (J%I),E]z (2) (p-(J II)»E]z

R([Zz, E]; —RI[R(Zs), B}y ——=——[R (Z1), Elz

By Proposition 4.4.4, the square (1) is commutative. The square (2) being clearly
commutative, the conclusion follows. [}

Lemma 4.4.7. Let £ be a quasi-abelian category with exact products and let J :
J — T be a functor between two small categories. For any object E of £, the
canonical diagram

—=——[R (Zs), J*(E)]s

|

+[J+(R(Z7)), Elz

R [Zg, J*(E)],

R[LJ+(Zs), El;

is commutative in D¥ ().

Proof. This follows directly from the construction in the proof of Proposition 4.4.3 if
one keeps in mind that R (Z7) is a projective resolution of Z . a

Lemma 4.4.8. Let £ be a quasi-abelian category with exact products and let J :
J — T be a functor between two small categories. For any object E of £, the
diagram

{R”(ZI)’ E]I ———R (I> E)

(5 (J7Z‘.r),E]l
[J+(R(Z7)), Elz R(LE)

[R(Z7), J"(E)lg —=——R(J,J*(E))
is commutative in C*(€).

Proof. Working as in the proof of Proposition 4.3.5, we reduce the problem to show
that for any object E of Ab*" and any n > 0 the diagram

Hom jyzes (Rn(Zg), E) ——=—— R"(Z, E)

Hom (pn(4,Z1),E)

Hom gzos (J4(Ba(Z2)), E) 25

k

Hom 4,500 (Ra(Z7), J*(E)) —=—— R*(J, J*(E))

is commutative. This is done by direct computation. 0O
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Lemma 4.4.9. Let J : 7 — T be a functor between two small categories and let M
be an object of Ab7*. Then, for any object i of I, we have the isomorphism

LI(M)(@)~L lm MG).
(f.)eild

Proof. We know that M has a projective resolution I such that for any n > 0,
In =11(S5n)
where S, is a projective object of Ab°*®). Then,
LI (M) ~J.(I).
It follows that for any i € 7,

LI(M)(0) = Jo(I)@) = lim (1o J*P)(f,5).
(f.7)eild

To conclude, it is sufficient to show that

L lim (MoJ"?)(f,j)= lim (IoJ"®)(f,j).
(€Il (fi€iLd

This will be the case if I o JP is a lim -acyclic resolution of M o J*°P. Since for
(fu)eilt
any n > 0, and any object (f,7) of ¢ | J;
(In o Jipp)(faj) = In(j),

I o J5°P ig a resolution of M o J#°P. Now, let us show that for any n > 0, I, o J>°P is

of coproduct type. Since ‘ .
Ino J¥P = 1I(Sp) 0 J*P,

it is sufficient to show that
I1(S,,) 0 JP = II(S,, o O(J*°P)).
Let (f,7) be an object of 4 | J. On one hand, we have
(L(Sn) 0 J*®)(£,5) = I(S2)(5) = ] Sels)-
PR

On the other hand, we have

(S, o O(Jiv°p))(f,j) — H (Spo O(Ji‘Op))(f',j') - H Sn(]/)

230 (£ 255
Consider
U H Su(i") — H Sa(s")
32 )2 (f,1)
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defined by
U8 g =8 8
j= (£ (J(B)of5")

for any morphism (3 :j — j' of J and consider

v: H Sn(f’) — H Sn(3")

S0 i
defined by
vos =8
Dy iy

for any morphism B : (f,j) — (f',5') of i | J. Of course, u and v are inverse one of

each other. It follows that
II(S,) o JHOP ~ (S, o O(J""’p))“

and that I, o J*°P is lim -acyclic. O
(fNeild

Proposition 4.4.10. Let £ be a quasi-abelian category with exact products and let
J : J — T be a functor between small categories. Consider an object E of €. Then,
the canonical morphism

Rlim E(i) — Rlim J*(E)(5)

i€Z jeTg
is an isomorphism in D*(£), if the canonical morphism
w:LJ(Zs) — Zz
is an isomorphism in D~ (Ab*™). This condition will be satisfied if and only if

L lim Zs(5) =~ Zz(i)
(Fi)eilT

foranyi €.

Proof. The first part of the result follows directly from Proposition 4.4.5.

As for the second part, it follows from the fact that w is an isomorphism of
D~ (Ab**) if and only if w(s) is an isomorphism of D~ (.Ab) for any i € Z combined
with Lemma 4.4.9. a

5 Derived projective limits and cofinality

5.1 Cofinal index restriction

Definition 5.1.1. Let & : T — J be a functor between small filtering categories. We
will call ® cofinal if it has the following properties:

(a) for any j € J, there is i € Z and a morphism « : j — (i),
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(b) ifj € J,ifi € T and if

is a pair of morphisms in J, there is a morphism v : ¢ — ¢’ of Z such that
(y)ea=2(7)ef

Remark 5.1.2. Let J : J — T be a functor between two small filtering categories.
Then, J is cofinal if and only if the category ¢ | J is non empty and filtering for any
iel.

Proposition 5.1.3. Let £ be a quasi-abelian category with exact products and let
J : J — T be a cofinal functor between two small filtering categories. For any object
E of £, we have the isomorphism of D*(€)

R lim J*(E)(j) ~ Rlim E(3).

jeg i€l

In particular,
R(J,E):R(Z,E)— R(J,JT(E))

is an isomorphism of D*(£).

Proof. Since the functor J is cofinal, the category ¢ | J is non empty and filtering. For
any ¢ € I, consider the functor

ZgoJ"P: (3| )P — Ab.
Since filtering inductive limits are exact in A4b, we have

L lim ZyoJ"(f,)~ lim ZyoJP(f,)x lim Z~Z
(f.h)eild (f)eild (f.)eild

in D~(Ab). The conclusion follows from Proposition 4.4.10 and Proposition 3.4.2. 0

5.2 Cofinality and amplitude of derived projective limits

Definition 5.2.1. Let Z be a small filtering category. By a result of Deligne (see [1,
Proposition 8.1.6]), there is a cofinal functor

&: 1 -7

where I is a small filtering ordered set. Since any non empty set of cardinal numbers
has a minimum, we may assume that I has the smallest possible cardinality. This
cardinality will be called the cofinality of Z. We denote it by ¢f(Z).

Notation 5.2.2. For any k¥ € N, we denote by wy the (k + 1)-th infinite cardinal
number. For example, wp is the cardinality of N, w; is the smallest cardinal number
which is strictly greater than wy, and so on

The following result is due to Goblot (see [4, Théoréme 3.1]).
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Proposition 5.2.3. Let I be a filtering ordered set such that #I < wy with k < wo.
Then, for any functor X : I°* — Ab, we have

H*RlmX(e) =0 VYn>k+2
ael

Theorem 5.2.4. Let £ be a quasi-abelian category with exact products. Consider a
functor X : I°° — & where T is a small filtering category. If cf(T) < wy with k < wo,
then
LH"RlimX(i))=0 Vrn2k+1
i€l
Proof. Let ® : I — T be a cofinal functor where [ is a filtering ordered set of cardinality
cf(Z). By Proposition 5.1.3, we have

R%X(i)zRgx_?xoé(z‘) ~R(I,Xo0®) *)

If k =0, cf(Z) is finite. Hence, cf(Z) = 1 and the result is obvious.
Assume that k > 0. For any object Z of £, we have

Hom(Z,R(I,X o®)) ~ R (I,Hom (Z, X o ®)) ~ Rlim Hom,(Z, X o &(¢)).
iel

Since #I = ¢f(Z) < wg-1, by the preceding proposition, we get

H*RlimHom,(Z, X 0 ®(i))) =0 Vn2k+1
i€l

Then, for any object Z of &,
H'(Hom (Z,R{I,X o ®))) =0 Yn>k+1.

Hence, the complex Hom (Z, R (I, X o ®)) is exact in degree n > k+1 for any Z €
Ob(&). Therefore, by Remark 1.2.2, the complex R (I, X o®) is strictly exact in degree
n > k+ 1. Thanks to the isomorphisms (*), the complex Rlim X (i) is strictly exact

ieT
in degreen > k4 1. i
6 Pro-objects
In this section, we recall the definitions and results about pro-objects we need later

(see [2] for more details).

6.1 Categories of pro-objects

Definition 6.1.1. Let C be an arbitrary category. Denote by Pro(C) the category of
pro-objects of C. An object of Pro(C) is a functor

X:I%® —C
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from a small filtering category T to C. If X : I — Cand Y : J® — C are two
pro-objects, then we set

Hom P1o(C)(X’ Y) = l&n[m HomC(X(Z.)’ Y(J))]

jeJ i€z
Foranyi €T and any j € J, let

75 : Hom (X (4), Y (5)) — lig Hom (X (d), Y (7)),

ez
g; : Homp, oy (X,Y) — lim Hom (X (), Y'(5))
ieT

be the canonical morphisms. We will say that a morphism
f3: € Hom (X (2), Y (7))
represents an element f € Hompm(c)(X LYY if
riifi) = ¢;(f).
Clearly, if f € Hom‘P,o(c)(X,Y) and j € J, thereisi € T and
fii € Hom (X (3), Y (4))

representing f.
Let X :T° - C,Y : J°° — C and Z : K°® — C be three pro-objects. Consider

f €Homp, ,(X,Y) and g€ Homp, (Y, 2).
We define g o f as the element
= (hi)rex € Homp, ,0y(X, Z)
with kg = ri;(gx; © fj:) where
fii € Hom,(X(3),Y(j)) and gy € Hom (Y (5), Z(k))

represent f and g respectively. This definition makes sense since for any k € K, one
can check that hy only depends of f and g.

Remark 6.1.2. Let X : 7° — Cand Y : J°%° — C be two pro-objects and let
f€Homp, o) (X,Y). If fji : X(3) — Y () represents f then

(i) for any morphism o : ¢ — i’ of Z, the morphism
fiioX(a): X&) = Y(4)

of C represents f,
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(ii) for any morphism 8 : j' — j of J, the morphism
Y(8) o fi : X(3) = Y ()
of C represents f.

Proposition 6.1.3. Let C be an arbitrary category. The functor
“7:C — Pro(C)

which associates to any object C of C the constant functor C : I% — C where 7 is
a one point category, is fully faithful. In particular, C may be identified with a full
subcategory of Pro(C).

Definition 6.1.4. Let C be an arbitrary category and let Z be a small filtering cate-
gory. We define the functor

“Hm” : C*” — Pro(C)
i€z

by setting »
“liﬁl’, F ,i = F

ieT
for any functor F' : 7° — C and by setting
“Um” £(3) = [ru(f()))iez
i€z
for any morphism f of CZ™.

Lemma 6.1.5. Let C be a small category with filtering projective limits and let T be
a small filtering category. For any object F of CT, we have the isomorphism

‘@”F(i) ~ l_ll‘_l’l “F(i)”
€T €T

of Pro(€).
In particular, if ® : J — T is a cofinal functor from a small filtering category J,

we have the isomorphism

Uim” F(2()) = ‘Yim” (i)

jed i€
in Pro(C).
Proposition 6.1.6. If T is a small filtering category and if C is a category with finite
projective limits (resp. finite inductive limits), then the functor

9im” : C** — Pro(C)

i€l

T commutes with finite projective limits (resp. finite inductive limits).
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Definition 6.1.7. Let F: C — (' be a functor between two arbitrary categories. We
define a functor

Pro(F) : Pro(C) — Pro(C’)

by Pro(F)(X) = Fo X for any X € Ob(Pro(C)).
Consider two objects X : 7° ~» C and Y : J°P — C of Pro(C) and

f € Homp, ,y(X,Y) = lim{lim Hom - (X (3), Y ())].
JE€T i€l

Then,
Pro(F)(f) € Houm(c,) (FoX,FoY)= l_l_II_l[l_lI_I} Hom ., (F(X(3)), F(Y (5)))]

jeT i€l
is characterized by the relation
g(Pro(F)(f)) =ru(F(f)) Vied

where f;; € Hom,(X (i), Y (j)) represents f.
In particular, for any functor X : 7°° — C where 7 is a small filtering category, we
have

Pro(F)(“im” X (i) ~ “im” F(X(5)).

i€l i€l

6.2 Pro-representable functors
In this section, C denotes an arbitrary category.
Proposition 6.2.1. For any pro-object X : T — C, the functor
Homp, ;¢y (X, “”) : C — Set
is isomorphic to the functor
lim hx ) : C — Set.
ieT
Proposition 6.2.2. The functor
H : Pro(C)°® —» Set®
which associates to any object X of Pro(C) the functor
Hom p, ) (X, “”) : C — Set
and to any morphism f Y — X of pro-objects the morphism of functors
H(f)= Hom p, ;c)(f, “”) : Homp, ) (X, “7) — Homp, ¢y (Y, “ )
is fu]l)g faithful. In particular, the category Pro(C)°P is isomorphic to a full subcategory
of Set‘.
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Definition 6.2.3. A functor F : C — Set is called pro-representable if it is in the
essential image of H. In other words, F is pro-representable if there is X € Pro(C)
such that

F >~ Homp, ;) (X, “7).

Proposition 6.2.4. If€ is a small category with finite projective limits, then a functor
F : & — Set is pro-representable if and only if it commutes with finite projective limits,
i e,

Fim X(5)) = lim F(X())

iel €T

where X : T — £ is a functor from a finite category.

6.3 Representation of diagrams of pro-objects
In this section, C denote an arbitrary category.

Definition 6.3.1. Let X : 7°° — C and Y : J°° — C be two pro-objects and let
f : X — Y be a morphism of pro-objects. We denote by My the category whose
objects are the morphisms which represent f. Let

¢:X@)—Y(G) and ¢ X(@)—Y()
be two objects of M. Then, a morphism ¢ — ¢’ is the data of a morphism o : 4 — 4’
of 7 and a morphism 8: 7 — j' of J such that the diagram
X(i) ==Y ()
X (a)l ly(ﬁ)
X(@)—=Y ()
commutes.

Proposition 6.3.2. Let X : I°° — C and Y : J° — C be two pro-objects and let
f: X — Y be a morphism of pro-objects.
(a) The category My is small and filtering. Moreover, the functors

pr: My —TI and pyr:Mp—J
which associate respectively to any morphism
@: X(i) —Y()
representing f the object ¢ of I and the object j of J are cofinal
(b) The morphism
fiXopr —Yopg

of CM7 defined by
flo)=¢
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for any object ¢ : X(i) — Y (§) of My, represents f, i.e. the diagram

f

X »Y
Um”(X o pr) ()~ (Y o ps)(p)
PEM; wEMy PEM;

of Pro(C) is commutative.

Proposition 6.3.3. Let X : I — C and Y : J° — C be two pro-objects and let
f: X — Y be a morphism of pro-objects. If there is a small filtering category N,

cofinal functors
gr:N—7T and g7: N —J

of CN*® and a morphism of functors
g:Xogr—Yoqy

such that the diagram

X ! »Y

‘Ig_n”(X ° qI) (n) uLiLnn g(n) “liLn”(Y ° QJ) (n)

neN neN neN

is commutative in Pro(C), then there is a cofinal functor
ri N — My
such that
gr=pror, qz=psor and g=f(r())
The basic results above have many useful variants. For example:

Proposition 6.3.4. Let X : I - C, Y : J%° — C and Z : K°® — C be three
pro-objects and let
f:X—>Y and g:Y—-Z

be two morphisms of Pro(C). Then, there is a small filtering category M, cofinal

functors
pr:M—=I, psr: M—7J and pg: M—K

and morphisms
fliXopr—Yops and ¢ :Yops — Zopk

such that f' and ¢’ represent f and g.
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Proposition 6.3.5. Let X : 7% — C and Y : J°% — C be two pro-objects and let

X LY
g

be two morphisms of pro-objects. Then, there is a small filtering category N and two
morphisms of CN**

—_—
X' —_— Y’
representing the morphisms f and g.

Proposition 6.3.6. Let X : I — C, Y : J°° — C and Z : K°® — C be three

pro-objects and let

X s

~{ g

y -7
be two morphisms of pro-objects. Then, there is a small filtering category N and two
morphisms

X _y
\‘

=7
of CN*® representing the morphisms f and g.

Proposition 6.3.7. If X : I°° — C and Y : J° — C are two pro-objects, then there
is a small filtering category M and two pro-objects X' : M® — C and Y’ : M? —C
such that )

X~X and Y=Y
Proposition 6.3.8. Let T be a small filtering category. Two morphisms f : X — Y
and g : X — Y of C* represent the same morphism of Pro(C) if and only if for any
i € I, there is a morphism o : i — ¢ of I such that

f(@) 0 X(a) = g(4) o X(a).

ZI

6.4 - Limits in categories of pro-objects

Proposition 6.4.1. If the category C has finite projective limits then the category
Pro(C) has finite projective limits .

Proof. First, let us show that the category Pro(C) has finite products. If X and Y are
two pro-objects, then by Proposition 6.3.7, there is a small filtering category M and
two pro-objects X' : M — C, Y’ : M® — C such that

X~X and Y~V
By Proposition 6.1.6, the product X’ x Y’ of CM® represents the product X x Y of
Pro(C).
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Next, let us show that the category Pro(C) has equalizers. If X and Y are two
pro-objects, and if

are two morphisms of pro-objects, then by Proposition 6.3.5, there is a small filtering
category M and two morphisms

jl
X' Y’

s

g

of CM* representing f and g. By Proposition 6.1.6, the equalizer eq(f, ¢’) of CM™
represents the equalizer eq(f, g) of Pro(C).
Hence, the category Pro(C) has finite projective limits. |

Proposition 6.4.2. IfC is an arbitrary category then Pro(C) has filtering projective
limits.

Proof. Let X : J°° — Pro(C) be a functor where J is a small filtering category.

Assume that for any j € J
X(G): I —C

where 7; is a small filtering category.
Consider the category K whose objects are

Ob(K) = {(,3):j € T, i € T;}.

A morphism (j,i) — (§',4') of K is the data of a morphism 8 : j — j' of J and a
morphism

fir + X(§") (@) — X(5)(5)
of C which represents the morphism

X(B): X(7') — X{)

of Pro(C). One sees easily that K is filtering.
We define the pro-object Y : K°P — C by setting

Y(j,3) = X(5)(@)

for any object (j,1) of K. If u: (j,i) — (j',4') is a morphism of K associated to the
morphism 3: § — §' of J and to the morphism fi : X(5'}(¢') — X (j)(¢) representing
X(5), then Y(u) is defined by setting

Y(u) = fir
For any j € J, consider the morphism

Zj € Houm(C)(Y; X(7)) = l_u_n[ hﬂ Homc(Y(y’,z’),X(y)(z))]
i€Z; (5,)ek
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defined by

¢ (25) =m0 (1dx6)e)

for any i € Z; where

¢ Homp, o (Y, X(j)) — lim Home(Y(,4), X(j)(0))
(RS

and
TGaygan * Home (Y (5, ¢), X (5)(3)) — h_r_,)n Hom (Y (5',4'), X (5)(2))
(7,4)ek

are the canonical morphisms.
One can check that the pro-object Y : K — C and the family of morphisms
z;: Y — X(j) form a projective limit of X. O

Lemma 6.4.3. Let C be an arbitrary category and consider a functor
X : J%® — Pro(C)
from a small filtering category J. Then, for any object C of C, we have

lim Homg(Y (j,4), C) = ling iy Hom (X (7)(2), C)

(j,5)ek JeT i€T;

where the categories K, I; and the functor Y : K°° — C are defined in the proof of
Proposition 6.4.2.

Proposition 6.4.4. Let C be an arbitrary category and let
X : TP — Pro(C)
be a functor from a small filtering category J. Then, for any object C of C, we have

Hom e, ({im X(7), °C”) 2 g Hom (X (7), “C7)

Proof. Assume that for any j € J, X(j) : Z;* — C where I; is a small filtering
category. If Y : K°° — (C is the pro-object deﬁned in Proposition 6.4.2, we have

Hom 5, o ¢y (lim X (5), “C”) o~ Homp, ) (Y, “C”) = lim Hom(Y'(j, i),C)
e (i)ek

o lim lim Hom (X (4)(¢), C) = lim Hom p, .y (X (4), “C”).
ieJ

€T ’iEI]'

O
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7 Derived projective limits and pro-objects

7.1 Pro-objects of a quasi-abelian category

Proposition 7.1.1. If A is an additive category then Pro(A) is canonically an addi-
tive category.

Proof. Direct. O

Proposition 7.1.2. Let A be an additive category with kernels and cokernels. If
f: X — Y is a morphism of Pro(A) represented by a morphism f' : X' — Y’ of
AM® | where M is a small filtering category, thenker f' (resp. coker f') representsker f
(resp. coker f).

Proof. This follows directly from the proof of Proposition 6.4.1. O

Remark 7.1.3. Let us recall that in an additive category with kernels and cokernels,
f is a strict epimorphism if and only if f is a cokernel and f is a strict monomorphism
if and only if f is a kernel.

Corollary 7.1.4. Let A be an additive category with kernels and cokernels. A mor-
phism f : X — Y of Pro(A) is a strict epimorphism (resp. monomorphism) if and only
if there is a small filtering category M and a strict epimorphism (resp. monomorphism)
f: X' =Y of AM™ representing f.

Proof. Consider a strict epimorphism f : X — Y of Pro(A). Let i : K — X be the
kernel of f in Pro(.A). We know that ¢ can be represented by a morphism ¢’ : K* — X'
of AM® where M is a small filtering category. If f': X’ — Y’ is the cokernel of ¢’ in
AM® then f'is a strict epimorphism. Moreover, by Proposition 7.1.2, f' represents
cokeri = f.

Conversely, assume that the morphism f : X — Y of Pro(A) is represented by a
strict epimorphism f' : X’ — Y’ of AM®, where M is a small filtering category. Let
i’ : K' — X' be the kernel of f’. Hence, f' = cokeri’. By Proposition 7.1.2,

“liﬂl” fl(m) . “liﬁln Xl(m) —_ “lH_n” Yl(m)

meM meM meM

is a cokernel of
“li_l’f_l” 2/(m) . u@n K/(m) — “@” Xl(m)
meM meM meM
It follows that “lm” f'(m) is a strict epimorphism. Moreover, since f' represents f,
meM
there is a commutative diagram in Pro(.A)

X ! 'Y

Um” X' (m) — e Y'(m)

meM meM meM

Therefore, f is a strict epimorphism in Pro(A). O

390



Proposition 7.1.5. If £ is a quasi-abelian category then Pro(£) is a quasi-abelian
category.

Proof. By Proposition 7.1.1 and Proposition 7.1.2, the category Pro(€) is additive and
has kernels and cokernels.
Let us show that if, in a cartesian square

x-<1sz

Y [s

T——Y

of Pro(€), f is a strict epimorphism then v is a strict epimorphism. Since f is a
strict epimorphism, by Corollary 7.1.4, we can represent it by a strict epimorphism f* :
X' — Z' of EM® where M is a small filtering category. Modifying M if necessary, by
Proposition 6.3.6, we may assume that g is also represented by a morphism ¢’ : Y — 2’
of EM®™ . Since the category EM™ is quasi-abelian, we can form the cartesian square
in EM®

x Lz

Q1 I

T/ = Yl

in which ¢/ is a strict epimorphism of M. By Proposition 6.1.6, the square

“%’!}: f/(m)
“}irll” XI (m) __"L____) “li_n_l” Z/(m)
memM meM
“112_1" u'(m) “li‘_“” g'(m)
meM memM
“@” T'(m) W “Liﬂln Y’ (m)
meM meEM mem

is cartesian in Pro(&). Since f and g are isomorphic to
U’ fi(m)  and i g'(m),
meM mem

“lim” T"(m) is isomorphic to T' in Pro(£). Consequently, the morphisms v and o'

memM
represent the morphisms u and v. By Corollary 7.1.4, v is a strict epimorphism.

Using the same kind of arguments, one can check that if, in a cocartesian square
72T
N
X —f'—) Y

of Pro(€), f is a strict monomorphism then v is also a strict monomorphism. O
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Lemma 7.1.6. If € is a quasi-abelian category with filtering projective limits, then £
is complete.

Proof. Since &£ has kernels and finite products, £ has finite projective limits. Since £
has also filtering projective limits, £ is complete. O

Proposition 7.1.7. If€ is a quasi-abelian category, then Pro(£) is complete.

Proof. We know that Pro(£) is quasi-abelian and has filtering projective limits. Then,
by the preceding lemma, Pro(€) is complete. O

Proposition 7.1.8. If £ is a quasi-abelian category, then in Pro(€) products and
filtering projective limits are exact.

Proof. Consider a small family (E;);er of Pro(€). We know that

[12=~ lm []E

i€l JePs (I} jeJ

where Py(I) is the set of the finite subsets of I ordered by inclusion. Since finite
products are exact, it is sufficient to prove that filtering projective limits are exact
in Pro(£). Since the filtering projective limits are kernel preserving, we only have to
check that there are cokernel preserving.

Let T be a small filtering category and let X — Y — Z — 0 be a costrictly exact
sequence of (Pro(£))*™. Hence, for any i € T and any object C of £, the sequence

0 — Hom (Z(i), “C”) — Hom (Y (i), “C") — Hom (X(i), “C”)

is exact in Ab. Since the functor lim : Ab" — Ab is exact, the sequence
i€

0 — lim Hom (Z (i), “C”) — lim Hom (Y'(i), “C”) — lim Hom (X(@),“C™)

€T i€z i€z
is exact in Ab. Then, by 6.4.4, for any object C of £, the sequence

0 — Hom (lim Z (i), “C”) — Hom (Jim Y'(i), “C”) — Hom (lim X (3), “C”)

i€l i€Z i€l

is exact in Ab.
Now, consider a pro-object E : J° — £ of £. By what precedes, for any j € J,
the sequence

0 — Hom (l}L;lZ(i), “E(7)") — Hom ({iﬂIIY(i), “E(j)") — Hom ({i%lX(i), “E(7)")

is exact in Ab. Since the functor }im is kernel preserving, the sequence

eI
0 — lim Hom (lim Z(s), “E(5)") — lim Hom (lim ¥ (2), “B(j)”) — lim Hom (lim X (3), “E(5)")
j€T 1€T j€T €T j€T €T

392



is exact in Ab. Since we have successively

Hom ‘P’ro(g)(liLnX(i)’ E) =~ Hom‘PT‘o(E)(li_n}X(iL “li_rll” E(]))
i€ i€l jeT

= Hom p, ¢, (lim X (i), lim “E(j)")
i€l ied

= lin Hom P1o(£’)(¥i—r—n X(3), “E(5)"),
=M =

the sequence

0 — Hom (lim Z(3), E) — Hom (limY (1), E) — Hom (lim X (i), E)

icT i€Z i€
is exact in Ab. It follows that the sequence

lim X (i) — lim Y (5) — lim Z(s) — 0

ieT i€ i€z
is costrictly exact in Pro(£). Hence, the functor lim is exact. O
i€z

Proposition 7.1.9. If £ is a quasi-abelian category, then for any object E of €, the
object “E” is cosmall, ie.

Hom o) ([ ] Xis “E”) = €D Hompr ) (X, “E7)

iel i€l
for any small family (X;)ier of Pro(€).

Proof. For any object E of £, we have successively

HOmP7o(£)(H X, ‘;E:’) ~ HOm‘P70(£)( Lan HX],’ “E”)
il JePi(I) jeg

~ lim Homp, (][ X5 “E”)
JePs(I) jeJ

=~ lim Hom Pra(e)(@ X;, “E”)
JePs(I) jeJ

~ Ly [[Homp (%), “B”)
JePs(I) jer

x lim @Hompm(s)(Xj’“E”)
JePs(I) jeJ

~ @) Horm p, o) (Xis “B7).
iel
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7.2 The functor L

Proposition 7.2.1. Let £ be a quasi-abelian category with products. For any object
E of £ and any pro-object X : I°° — £ we have

Hom p, ) ( “E”, X) o Hom (B, lim X (i))-
i€z

Definition 7.2.2. Let £ be a quasi-abelian category with products. We define the
functor

L:Pro(&) — &
by setting

L(X) = lim X (3)

i€z
for any pro-object X : I°° — £. By the preceding proposition, for any object E of £,
we have ;
Hom p, ) (“E”, X) ~ Hom(E, L(X))

Hence, for any morphism f : X — Y of Pro(€), the theory of representable functors
allows us to define
L(f) : L(X) — L(Y)

as the unique morphism making the diagram

wpmw Hom (“£7.f) wrmm
Hompm(s)( B X)—— ’Hompro<s)( E"Y)

| {

Hom(E,L(X)) Hom (BLUT Hom(E,L(Y))

commutative.

Proposition 7.2.3. Let £ be a quasi-abelian category with products. The functor
L:Prol€) — &

is left exact.

Proof Consider a strictly exact sequence 0 — K — X — Y of Pro(€). Since for any
object E of £, the first sequence of the commutative diagram

0 —— Hom p, ) (“E”, K) — Hom p, iz, (“E”, X) — Hom p, 5 (“E”, Y)

| J {

0 ——— Hom ;(F, L(K)) —— Hom (E, L(X)) ——— Hom(E, L(Y’))

is exact, the conclusion follows. a
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7.3 Derivation of L

Lemma 7.3.1. Let £ be a quasi-abelian category. If I is an injective object of £, then
“I” is an injective object of Pro(€).

Proof. Let I be an injective object of £ and let f : X — Y be a strict monomorphism of
Pro(E). We know that f can be represented by a strict monomorphism f’: X’ — Y’
of EM®™ where M is a small filtering category. Hence, for any object m of M, the

sequence
Hom,(Y’(m),I) — Hom (X'(m),I) — 0

is exact. Since the functor lim : AbM®™ — Ab is exact, the sequence
meEM

lim Hom,(Y'(m),I) — lim Hom,(X'(m),I) — 0
meM meM

is exact. Moreover, we have

lim Hom,(X'(m), I) = Homp, ,o(“Um” X'(m), “I") = Homp, ) (X, “I”)-
meEM mEM

It follows that the sequence
Hom«PT,o(g)(Y, “I”y — Hom pm(g)(X, “I"y — 0

is exact and that “I” is an injective object of Pro(E). O

Proposition 7.3.2. Let £ be a quasi-abelian category. If £ has enough injective
objects, then Pro(£) has enough injective objects.

Proof. Consider a pro-object X : Z°° — &. Since Pro(€) is a quasi-abelian category,
we know that there is a strictly exact sequence

Oﬁ@“X(i)”’ﬁ)H“X(i)”'ﬂ H “X(ext(f))”

(=2 i€z FEAL(T)

of Pro(£). Since
lil_n “X(l‘)” ~ “li_n-l” X(i) ~ X,

ieT i€z
we have a strict monomorphism
o X — H “X (i)
€T
of Pro(€). Moreover, since € has enough injective objects, for any i € Z, there is a strict
monomorphism X (i) — I(i) where I(4) is injective in €. It follows that for any i € T,

“X(4)” — “I(3)” is a strict monomorphism and by Lemma 7.3.1, “I(i)” is injective in
Pro(£). Since the product of strict monomorphisms is a strict monomorphism,

I «x@y — 1«6y

i€l i€l
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is a strict monomorphism and [],.; “I(:)” is injective in Pro(€). Since the composition
of strict monomorphisms is a strict monomorphism,

X — H “I(Z")”
i€T
is a strict monomorphisin. O

Corollary 7.3.3. Let £ be a quasi-abelian category with products. If £ has enough
injective objects, then the functor

L:Pro€) —&

is right derivable.

Proposition 7.3.4. Let £ be a quasi-abelian category with enough injective objects.
If the products are exact in &, then for any family (E;);er of €, the pro-object

H “Ei”
i€l
is acyclic for the functor L : Pro(€) — .
Proof. Consider a family (E;);e; of £. For any i € I, let

0—>I?-—>I,-1-—->«»»

be an injective resolution of F;. Since the functor “” is exact and since “I” is injective
if I' is injective,
0 — «IiOn . “Iil” — e

is an injective resolution of “E;” in Pro(€). By Proposition 7.1.8, the products are
exact in Pro(£). Then,

00— H “Iio” . H “Iil” — oo
iel i€l
is an injective resolution of [[,.; “E;”. It follows that RL([];c; “Ey”) is given by the
complex
0 — L(H chiOn) — L(H “Iiln) .
iel i€l
Since for I > 0, we have
L(H uIil») ~ II L(“Iil”) ~ HIzl7
il iel iel
RL(TT;c; “Ei”) is isomorphic to the complex

0——>HIZ-°—>HI,-1—>~M

iel icl
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Moreover, since the products are exact in £, this complex is an injective resolution of
[1ic; Ei. Therefore, we have the following chain of isomorphisms in D* (Pro(£)):

RL(J[“E”) =[] B: = [JL(“E”) = L([] “E")
i€l iel i€l iel
O

Definition 7.3.5. Let £ be a quasi-abelian category with exact products. Let us

define the functor
L :Pro(€) — DT ().

We set
L(X)=R(Z,X)

for any pro-object X : I°® — £. Let X : I° — £ and Y : J — & be two pro-
objects and consider a morphism f : X — Y of Pro(€). We know that there is a small
filtering category M and cofinal functors I : M — T and J : M — J such that f is

represented by a morphism
fliXol—=YolJ

of EM® . By Proposition 5.1.3, we have the canonical isomorphisms
R(I,X): R(T,X) % R (M, I*(X))

and
R(J,Y):R(J,Y) > R(M,JH(Y))
of D¥(£). So, there is a unique morphism
R(Z,X)— R(J,Y)
of D*(€) making the diagram

RMXoD)—22D  pim v o)

R (I,X){ ;[R (5Y)
R(I,X)——————R(J,Y)

commutative.
One can check that the morphism R (Z,X) — R (J,Y) defined above does not

depend on the choice of the representative of f. We denote it L {f).

Proposition 7.3.6. Let £ be a quasi-abelian category with exact products. The func-

tor
L:Prol&) — &

is right derivable and for any pro-object X : I — £ we have

in D*(£).
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Proof. Consider the family
F ={X € Ob(Pro(€)) : LH*(L (X)) =0 if k> 0}

First, let us remark that if E is an object of £EX", where Z is a small filtering
category, then
“lim” E(1) € F
ieT
if and only if E is [im-acyclic. As a matter of fact, we have successively
ieT
“im” E(i) € F <= LH*R(I,E)=0 vk >0
ieT
< LH*RImE()=0 Vk>0
ieT
<= Rlim E(i) ~ lim E(3)
i€ i€l
Next, let us prove that the family F is L-injective.
(i) Consider a pro-object X : I°° — £ We know that there is a strict monomor-
phism X — II(O(X)) of £ and that TI(O(X)) is lim-acyclic. Since the functor
ieT
“Uim” : EXF — Pro(€)

ieT
is exact, we have a strict monomorphism

X — “im” THO(X)) (i)

i€T
of Pro(€) and “lim” II(O(X))(4) belongs to F.

€L
(ii) Consider X' : T — &, X : J° — &£ and X" : K°° — & three pro-objects and
a strictly exact sequence
0—-XxLxLx" 50

of Pro(€) where X', X € F. Since f is a strict monomorphism, we know that it can
be represented by a strict monomorphism f/ : Y’ — Y of EM™, where M is a small
filtering category. If (Y, ¢') is the cokernel of f’, then the sequence

0=y Ly Ly o (%)
of EMP is strictly exact. Since coker f’ represents coker f, we have

“lim” Y"'(m) = X".
meM

Since X and X’ belong to F, for any & > 0, we have

LH*L (X') = LH*L (“}fim” Y'(m)) =0
meM
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and
LH*L (X) = LH*L (“im” Y (m)) = 0.

meM
It follows that Y’ and Y are lim-acyclic. Since the sequence (*) is strictly exact, the
i€
object Y of EM® is lim-acyclic. Therefore, “lim” Y”(m) belongs to F. Hence X" also
i€l meM
belongs to F.
Moreover, since the objects Y’, Y and Y” are lim-acyclic, the sequence
ieT
0 — lim Y'(m) — lim Y(m) — lim Y"(m) -0
meM meM meM

of £ is strictly exact. Since the diagram

0— lim Y'(m) ——— lJim Y (m) — lim Y"(m) ——0
meM meM meM

0 — L(“l_igl” Yl(m)) —_— L(“Lig_l” Y(m)) —— L(“li_I_n” Y/I(m)) _ 0

meM meM meM
! ! !
0 » L(X") » L(X) »L(X") —— 0

commutes in &£, the sequence
0— LX) - LX) —-LX")—0

is also strictly exact.
Finally, consider a pro-object X : I — £. We know that R (X) is a lim-acyclic
i€z
resolution of X. Then, for any n > 0,

“Ym” R*(X)(i) € F.

ieT
Therefore, “lim” R (X)(¢) is an L-injective resolution of X and we have successively
€T
RL(X) ~ L(“lim” R (X)(3)) ~ lim R(X)(9) ~ R (Z,X) ~ L (X).
ieT €T

O

Corollary 7.3.7. Let £ be a quasi-abelian category with exact products and let T be
a small filtering category. Then, we have

RLo ‘lx_r_r_l”zR,ll_rg

€T i€
In particular,
R}LnE(z) ~ R lim F(5)
€L jeT

if B and F are two essentially equivalent filtering projective systems (i.e. if the pro-
objects associated to E and F are isomorphic).
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Proof. For any object E of £, we have successively
L(“lim” E(3)) ~ L (“lim” E(3)) ~ R(Z, E) ~ Rlim E(3).
ieT i€ =
0
Lemma 7.3.8. Let £ be a quasi-abelian category with exact products and let E :

I°° — & be a pro-object of £. If for any object X of €, Pro(hx)(E) is L-acyclic, then
E is L-acyclic.

Proof. Consider X € Ob(£). We have successively
RL(Pro(hx)(E))  RL(Pro(hx)(“lim” E(3))) ~ RL(“;;:_:;” hx(E(i)))
< ~ Rl}anfjx(E(z))
i€l
Since Pro(hx)(E) is L-acyclic, we get
R{_ier_rflhx(E(z')) ~ L(Pro(hx)(E)) =~ %Pro(hx)(E)(i) o l_léI_;_lhx(E('l))
It follows that Hom (X, E) is lim-acyclic. By Proposition 3.6.4, E is lim-acyclic. There-
fore, we have e <

RL(E) ~ RL(“im” E(5)) ~ Rlim E(i) ~ lim E(i) ~ L(E)

i€ i€Z €T
and E is L-acyclic. O

Proposition 7.3.9. Let £ be a quasi-abelian category with exact products. For any
family (E;)icr of €, the pro-object [],c; “F:” is acyclic for

L: Pro(€) — E.
Proof. By the preceding proposition, it is sufficient to show that for any object X of
¢,
Pro(hx)([ | “E:)
iel
is L-acyclic. Consider an object X of £. We get successively
Pro(hx)(] [ “E") = Pro(hx)( lim ([]“E)) = Pro(hx)( lim (“[]E"))
iel JePs(I) jer JGPJ(I) jeJ
2 Pro(hx)( “im” (] ) = “Uim” (hx(]] B5)
JeP(I) jeJ JePs(I) jeJ
~ “im” Hom (X, [] B;) = “im” ] Hom (X, E))
TePs(I) jeJ JePs(l) jeg
~ lim “]:[Hom‘g X, E;)” ~ lim I-‘[“Hom‘€ (X, E;)”
JGPf(I) jer 767’f(1) jeJ
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o [ “Homo(X, B = [] “hx(Es).

i€l iel
Since the category Ab is abelian, has enough injective objects and has exact products,
by Proposition 7.3.4,
H “hy ( Ej)”

i€l
is L-acyclic. It follows that Pro(hx)([1,e; “Ei”) is L-acyclic. O
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