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ON THE JAYNES-CUMMINGS HAMILTONIAN
SUPERSYMMETRIC CHARACTERISTICS

C. GERON

Abstract

We study some degeneracies of the Jaynes-Cummings Hamiltonian eigen-
states. More precisely, we underscore operators connecting the degenerated
eigenstates or explaining their non-degeneracy. These operators actually are
supercharges and the supersymmetry underlying the Jaynes-Cummings model
is thus exhibited. We also consider two extensions of the Hamiltonian to show
the unicity of their supercharges.
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1 Introduction

The Jaynes-Cummings Hamiltonian (H;¢) [1] is associated with a model describing
the interaction between a spin—% particle and a one-mode magnetic field having an
oscillating component along one axis and a constant component along another axis [2]
This model, extensively used in quantum optics [3], is one of the simplest examples of
quantum systems combining bosons and fermions, a typical feature of supersymmetry
[4].

Nuwerous studies of this model have already been realized. For example, we know
that, under some hypotheses, it may be seen as an extension of the supersymmetric
harmonic oscillator system [2]. Moreover, the diagonalisation of Hjc [2] allows to
construct the creation and annihilation operators of Hjc, and then, to underscore
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the coherent states in the stationary or evolution contexts [2]. Another approach
consists in the understanding of Hjc as an element of the u(1/1) superalgebra [5].
The coherent states of this superalgebra can then be obtained [5]. Two extensions of
H o can also be considered [6]. We will come back on that point later.

The supersymmetric characteristics of H jc have only been viewed through the two
above-mentioned extensions [6]. We will show here that H ¢ has also supersyrnetric
characteristics by its own.

The main purpose of this paper is to prove that the H ;c-eigenstates are degener-
ated only for one value of the energv and then to explain this degeneracy

The contents of this paper are the following. Section 2 is devoted to the energy
spectrum and the eigenstates of H;¢. Section 3 is divided into two parts : in the first
one, we prove the existence of only one supercharge when there is no degeneracy for
the H c-eigenstates (3.1); then, we prove the existence of two operators connecting
the degenerated eigenstates associated with a particular value of the energy (32).
Finally, we present, in section 4, a few remarks about two extensions of H J0-

Our units are taken with the constant /i equal to unity.

2 Energy spectrum and eigenstates of H;o

The Jaynes-Cummings model can be described by the Hamiltonian [1]
Hc = w(ala + ) 420 03 + g(a’o_ +aay), (2.1)

where ¢* and « are 1espectively the creation and annihilation operators of the bosonic
harmonic oscillator and where o = 0, =+ 03, 03 refer to the Pauli matrices.
In order to find the energy spectrum and the eigenstates of H ¢, we have to solve

the equation
g >=Elv > (2.2)

in the basis of the vectors

(l n()>> =|n,— > and <, %>) ={n.+>. (2.3)

If we note A the difference between the two angular frequencies w and wg, we obtain
results which can be summarized as follows :
a)for all the values of . we have to distinguish two cases

(i) either E = and the corresponding eigenstate is

| By >=|0,- > . (2.4)
(i) or E=wk+ % 51r{k) .k € IN,, and the corresponding eigenstates are

}Ei*>—§(k—qf|k—1+>+ (k) + 1) | k.= >). (2.5)
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1 A
| Ef >= ij(5(,‘(k) +D) k=1 4+>-gVk|k—>) (2.6)
where 2
1= (14 5 @7
and
AZ \
R(k) = (—2—l(k)(l + (k)2 (2.8)

b)if there exists & € IN, such as % =wh+ %—: (k). A has to be negative and g has to
take the values

g=xywlwk-A) (2.9)

Then the corresponding eigenstates are

e

wh

w

ok
VEF >= \’ bh.o—>). (2.10)

oAtk LA Fy

¢)if there exists k € IN, such as —é— = k- é,/( k). A has to be positive and. also here,

g has to take the values

Then the corresponding eigenstates are also (2.10)
In the particular case where A = 0 and g = (. the 1esults aze the sawe as those
of the supersvimetric haimonic oscillator [4].

3 Explanation of degeneracy

There is degeneracy of the H ;o -eigenstates when E = & only. This fact can be
) y =3 3 .

explained through supersvmmetrv or more precisely through the existence of super-
charges.

Let us assume A = 0. A similar wav of thinking in the case A # 0 would lead us
to the same conclusions.

First of all. let us search for the supercharges of H¢

3.1 Supercharges of Hj¢

Let us recall that supersymmetric quantum mechanics needs the positive nature
of the energies. So we translate [6] H;c by adding a positive constant ¢ to it. Thus,
in order to find the supercharges of H ¢, we have to solve the equation

Q=Hjc+c (3.1)
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whose solution is

lg
- ot bl
Q= \/L:ao-‘F + \/u—)(I o_ + 5 \/L—JI (3”2)

fixing the constant ¢, without loss of generality, as the value

2

c=2 (3.3)

T 4w
Moreover, the operators oy, o_ and I generating the Clifford algebra [7] Cly (char-
acterized here by its fundamental irreductible representation ). we deduce that Q =
(3.2) is the only supercharge of H;- + c.
Furthermore, the effect of Q on the Hjc-eigenstates explain the non-degeneracy
of these states in the general case. as the H jc-eigenstates are also eigenstates with

respect to Q.
In order to understand the eigenstates degeneracy in the case E = ¢, we have to
find operators connecting these states. That is the purpose of the next section.

3.2 [Existence of operators connecting the H;, degenerated
eigenstates

In the case & = 1 and y = «. the two operators connecting the degenerated
eigenstates for E = ¢ are

. FN Yt . f(N) . « | af(N) —(129(‘;\") )
i ( —g(N)a" —g(N)a > and P "< FON) —ag(N) (34)

where f and g are real functions of V. These operators satisfy the tvpical relations
of supersvmmetric quantum mechanics [4] ie.

PP=P" =0 {PPY=H;+c (3.5)

characterizing the Lie superalgebra sqm(2). but onlv on the space generated bv | E, >
and | EY >=| 0.+ > — | 1.— > with the condition f(0) = g(1). On the whole
Fockspace, the relations of sqm(2) are not ascertained.

A similar wav of thinking for other values of k leads us to the same conclusion
Because the two operators connecting degenerated eigenstates onlv act on the above-
mentioned space of these eigenstates, the unicity of Q = (3.2) is not in the balance
again.

4 Two generalizations of H ;- in the case A =0

The first one consists in superposing on Hj¢ a second Hamiltonian H, defined by
this expression [6]

Hy =w(a'a + 5+ 503) +ig(a’o_ —acy ). (4.1)
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It is unitarily equivalent to H ;. The resulting Hamiltonian is thus [6]

_{ Hic 0 9
H= ( 0 H ) : (4.2)
One supercharge of H + ¢ is given by this expression
Q = veuty + Vaa'E + 5 gf/ (4.3)
where
000 —: 0000 001 O
000 O 0010 000 -
&=lo10 0 |"“T|oo000|"" 100 0 (44)
0060 O i 000 0:0 0

The odd parity of these operators and all their anticommutation 1elations lead us
to consider five more operators generating with &, - and 7 the Lie superalgebra
0sp(2/2). As there exists only one representation of this superalgebra 8] with 4 by 4
matrices, we can conclude that Q = (4.3) is the only supercharge of H +c connecting
the degenerated eigenstates.

The second extension of Hj¢ consists in adding a positive constant A’ to H + ¢,
whete H = (4.2). Also here, there is only one supercharge for # + ¢+ A’ which is

Q¥ =Q+ VAR (4.5)
where @ = (4.3) and
0 0 ¢ 0
0 001
E= - 000 (4.6)
0 100
Indeed, another supercharge should have the form
Q¥ =Q+ VAR (4.7)
and should satisfy the relations
{QY, Q4 =0 (4.8)
and ,
Q¥ =H+c+ A (4.9)
In other words, the operator R’ should have the form
d 0 i 0
;1 0 4 0 I ‘
E=\|_10 - o (4.10)
60 { 0 -—d
with
P+d=1 (4.11)
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Taking the expressions (4.6) and (4.10) for R and R’, we have
{R,R'} =21 (4.12)

and then
{Q¥, Q¥ =2(H +c+21)#0. (4.13)

That is in contradiction with (4.8) and allows us to conclude that Q2" = (4.5) is the
only supercharge of H + ¢+ A’ connecting the degenerated eigenstates.
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