FACTORIZATION OF FINITE-RANK OPERATORS IN BANACH OPERATOR IDEALS

Klaus FLORET

Abstract

A condition is given which implies that every finite-rank operator between arbitrary Banach spaces factors through an operator between Banach spaces of finite dimension under control of its norm in a given Banach operator ideal \mathcal{A} . This property of \mathcal{A} is an operator-theoretic version of Grothendieck's notion of total accessibility of tensor norms.

1 The result

1.1. Given a quasi-normed operator ideal $(\mathcal{A}, \mathbf{A})$ (see [7] and [2] for the definitions and notation) it is interesting to know under which circumstances every $T \in \mathcal{F}(E; F)$ (where E, F are Banach spaces, \mathcal{F} the ideal of finite-rank operators) and $\varepsilon > 0$ there are a closed finite-codimensional subspace $L \subset E$ (notation: $L \in \operatorname{COFIN}(E)$), a finite-dimensional subspace $N \subset F$ (notation: $N \in \operatorname{FIN}(F)$) and an operator $T_0 \in \mathcal{L}(E/L; N)$ such that

$$E \xrightarrow{T} F$$

$$Q_{L}^{E} \downarrow / \int_{I_{M}}^{I_{E}} \text{ and } \boldsymbol{A}(T_{0}) \leq (1 + \varepsilon)\boldsymbol{A}(T) \quad (*)$$

$$E/L \xrightarrow{T_{0}} N$$

If E' and F have the metric approximation property (m.a.p. for short) this is possible: for a proof use that if F (resp. E') has m.a.p., then for every $T \in \mathcal{F}(E;F)$ and $\varepsilon > 0$ there is an $R \in \mathcal{F}(F;F)$ (resp. $\in \mathcal{F}(E;E)$) with $||R|| \leq 1 + \varepsilon$ and $R \circ T = T$ (resp. $T \circ R = T$); this lemma (see [2, 16.9.] for a proof) will be used various times in this note.

1.2. A quasi-normed operator ideal $(\mathcal{A}, \mathcal{A})$ is called *totally accessible*, if (*) holds for all Banach spaces E, F; it is called *right-accessible* if (*) holds for all

présenté par J. Schmets accepté le 14 mai 1998