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Abstract

This work is devoted to the study of the consistency of Robbins-
Monro’s algorithm under strong mixing assumption.
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1 Introduction

The methodologies known under the term of stochastic approximations traces
its origin from the work of Robbins and Monro [11] which studied the fol-
lowing problem. Let R be a function of real values and θ to be the single
solution of the equation

R (x) = α (1)

where α is a known constant. The problem is to estimate θ. When R is
a known function, we can found various numerical methods to approximate
θ. A part from some general properties, Robbins and Monro considered the
case where R is unknown but, for each point x, we have a random variable
R̃(x, ξ) such as

R (x) = E
(
R̃ (x, ξ)

)
(2)

where ξ is a random variable with zero mean. These authors argued that a
recursive sequence of random variables (Xn)n which estimate θ in a consistent
way, can be constructed. They show the mean square convergence of Xn to
θ. Considering a weaker assumptions and within the usual framework of
independent and identically distributed random errors, Blum has shown the
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almost sure convergence [1]. Whenever R is linear and checking the classical
assumptions, Lai and Robbins argued that all least squares estimator of
θ properties remain true even when the estimator of θ is obtained by the
Robbins-Monro method [7]. For the nonlinear general case, a procedure of
type Robbins-Monro was introduced by Venter [12] and it has been discussed
in [8], and the obtained results were extended to the multivariate case by
Wei [14]. In [5], Duflo has shown the almost sure convergence if the Robbins-
Monro’s algorithm is evaluated in Rd.

Some theoretical results on stochastic approximation can be found in
various literatures, e. g. see [13], [9] and [6].

Let us note that the independent observations are often unable to explain
some phenomena, indeed, the slightly dependent observations are the most
adapted to a real situation [4]. In this case and concerning different models
building for the dependence of the stochastic algorithm noise, we can refer
to the Brandière and Doukhan note [2].

The principal contribution of this work is to consider the least restrictive
mixing sequence called also α-mixing sequence, (see [3] for more details)
and to provide the almost complete (a.co) convergence rate of the Robbins-
Monro’s algorithm.

2 Algorithm and asymptotic study

Let (Ω,F , P ) be the probability space and R : R→ R to be a function known

just under a measure R̃ (x, ξ) with a spot of a measure error ξ. To estimate
the θ root of the equation (1), Robbins and Monro [11] built their algorithm
in a recursive manner using an initial value X1 and defining by recurrence:

Xn+1 = Xn − an

(
R̃ (Xn, ξn)− α

)
(3)

where (ξn)n is a sequence of a real random variables with zero mean and
(an)n is a decreasing deterministic sequence to 0 such as

+∞∑
n=1

an = +∞ and
+∞∑
n=1

a2
n < +∞ (4)

and

R̃ (Xn, ξn) = R (Xn) + ξn.
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Without loss of generality, let us suppose α = 0.
Removing θ from both members of the equality (3) and using successive

iterations, we obtain

|Xn+1 − θ| =
∣∣∣∣∣

n∏

k=1

(
1− ak

R (Xk)

Xk − θ

)∣∣∣∣∣

∣∣∣∣∣(X1 − θ)−
n∑

i=1

Zi

∣∣∣∣∣ (5)

where

Zi = ai

i∏

k=1

(
1− ak

R (Xk)

Xk − θ

)−1

ξi.

Let us introduce now the following assumptions:
H1 : The parameter θ checks a priory

|X1 − θ| ≤ H < +∞. (6)

H2 : R is a function satisfying

∀x ∈ R, 0 < m ≤ R (x)

x− θ
≤ M < +∞. (7)

H3 : We suppose that, for any ε > 0,

ϕn (ε) = nam exp(amγ)ε−H > 0 (8)

where γ is the Euler constant.
H4 : The distributed variables queues ξi check the condition of uniform

decrease, that is, for any p > 2,

∀t > 0 , P [|ξi| > t] ≤ t−p. (9)

H5 : We assume that the coefficients of the α-mixing sequence (ξn)n

satisfy the following arithmetic decay condition :

∃d ≥ 1,∃b > 0, α (n) ≤ dn−b. (10)

H6 : The condition of arithmetically decrease (10) is satisfied for any b
value such as

∃δ > 0,
4b + p(3− b)

(b + 1) p
+ δ ≤ am− 1. (11)
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At last, we notice that if the ξi random errors are α-mixing then the Zi

random variables are also strongly mixing with mixing coefficients lower or
equal than those of the sequence (ξi)i.

We can know state the following result :

Theorem 1. Under the assumptions (H1)–(H6) and if 0 < aM < 1
2

then for
any real b positive such as

b >
(2− am)q

ν0

with ν0 ∈ ]0, 1[ and q is such as
2

p
+

1

q
= 1, (12)

we have:

Xn+1 − θ = O(

√
log n

nam
) a.co. (13)

Proof. We have

log
n∏

k=1

(
1− ak

R (Xk)

Xk − θ

)
≤

n∑

k=1

−am

k
= −am (log n + γn) (14)

where γn is defined by the relation γn =
∑n

i=1
1
i
−log n = γ+(ψ (n + 1)− log n)

where ψ (.) is the digamma function.
It is obvious to show that γn−γn−1 = log

(
1− 1

n

)
+ 1

n
< 0, for any n > 1.

This leads to the well known result where the sequence γn decrease to the
Euler constant γ, let

γn > γ = lim
n→+∞

{
n∑

i=1

1

i
− log n

}
= 0.577215... (15)

From this relation, we obtain

log
n∏

k=1

(
1− ak

R (Xk)

Xk − θ

)
≤ −am (log n + γ) (16)

This makes it possible to conclude

n∏

k=1

(
1− ak

R (Xk)

Xk − θ

)
≤ n−am exp (−amγ) (17)
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and then, using (5) and the assumptions (H1) and (H4), we deduce that

P [|Xn+1 − θ| > ε] ≤ P

[∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > ϕn (ε)

]
. (18)

On the other hand, for a rather large natural integer n we have

H

nam exp(amγ)
<

ε

2

which gives

ϕn (ε) = nam exp(amγ)

(
ε− H

nam exp(amγ)

)
>

ε

2
nam, (19)

so, taking λ = ε
8
,

P [|Xn+1 − θ| > ε] ≤ P

[∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > 4λnam

]
. (20)

Using (9), we show that, we can found positive constant M1 such as, for
a given p > 2,

∃p > 2, ∀t > 0 , P [|Zi| > t] ≤ M1t
−p. (21)

Thus, applying directly the Fuk-Nagaev exponential inequality given by Rio
([10], formula (6.19a)), to strongly mixing variables Zi we have,

P [|Xn+1 − θ| > ε] ≤ 4

(
1 +

(λnam)2

rs2
n

)−r
2

+ 4Cnr−1
( r

λnam

) (b+1)p
b+p

(22)

for any ε > 0 and r ≥ 1
with

C = 2pM1 (2p− 1)−1 (
2bd

) p−1
b+p

and

s2
n =

n∑
i=1

n∑
j=1

|cov(Zi, Zj)| =
n∑

i=1

var (Zi) +
n∑

i=1

∑

j 6=i

|cov(Zi, Zj)| . (23)

On the one hand, under the assumptions (H2) and by virtue of the inequality

log (1− x) ≥ −x− x2
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we have

i∏

k=1

(
1− ak

R (Xk)

Xk − θ

)
≥

i∏

k=1

(
1− aM

k

)

≥ (1− aM) i−aMe−(aM)2 . (24)

From this relation and according to (21), we obtain

∃M2 < +∞ : EZ2
i ≤ M2 and var (Zi) ≤ C1i

2(aM−1) (25)

with C1 =
(

a
1−aM

)2
M2 exp(2a2M2). As a < 1

2M
, we deduce that

n∑
i=1

var (Zi) ≤
n∑

i=1

C1

i2(1−aM)
≤ DC1 (26)

since it is a partial sum of a convergent sequence with positive terms.
On the other hand, for i 6= j,

|cov(Zi, Zj)| ≤ C2i
aM−1jaM−1 |E(ξiξj)| (27)

with C2 =
(

a
1−aM

)2
exp(2a2M2)). From the relation (9), we can use the

Davydov-Rio inequality given by Rio (2000, formula (1.12c)) to obtain:

|E(ξiξj)| ≤ 2q (α (|i− j|)) 1
q (28)

and, then

|cov(Zi, Zj)| ≤ 2qC2i
aM−1jaM−1 (α (|i− j|)) 1

q . (29)

Applying a second time the Davydov-Rio inequality to Zi variables and using
(21), we obtain

∀i 6= j, |cov(Zi, Zj)| ≤ 2qM
2/p
1 (α (|i− j|)) 1

q (30)

since the mixing coefficients of the sequence (Zi)i are lower or equal than
those of the sequence (ξi)i. Making together (29) and (30), we have
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n∑
i=1

∑

i6=j

|cov(Zi, Zj)| ≤
n∑

i=1

∑

|i−j|≤un

2qC2i
aM−1jaM−1 (α (|i− j|)) 1

q

+
n∑

i=1

n∑

|i−j|>un

2qM
2/p
1 (α (|i− j|)) 1

q (31)

≤
n∑

i=1

1

i2(1−aM)

n∑

k=1

2qC2 (α (k))
1
q + 2n2qM

2/p
1 (α (un))

1
q

or also

n∑
i=1

∑

j 6=i

|cov(Zi, Zj)| ≤ 2DC2D1 + 2n2qM
2/p
1 (α (un))

1
q (32)

with D1 =
n∑

k=1

q (α (k))
1
q . So, taking un = [nν0 ], the hooks indicating the

whole part, and using (10), (12), (26) and (32) we obtain, for n rather large:

s2
n = o(nam) (33)

since
2n2q (α (un))

1
q M

2/p
1

nam
≤ 2qd

1
q M

2/p
1

nam−2+ν0
b
q

−→ 0. (34)

So, taking into account (33), we have the inequality

P [|Xn+1 − θ| > ε] ≤ K1 + K2 (35)

with K1 = 4
(
1 + λ2nam

r

)−r
2

and K2 = 4Cnr−1
(

r
λnam

) (b+1)p
b+p .

Taking λ = ρ
4

√
n−am log n, ρ > 0, we obtain the convergence rate.

For a suitably chosen r such as r = K (log n)2 , we obtain

K1 = 4

(
1 +

ρ2 log n

16r

)−r
2

≤ K exp(−ρ2 log n

32
) = Kn−

ρ2

32 (36)

where K indicates a generic positive constant. With regard to K2, we have
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K2 = 4Cnr−1r
p(b+1)

b+p λ−
p(b+1)

b+p n−
amp(b+1)

b+p

= 4Cnr−1+
p(b+1)

b+p

(ρ

4

)− p(b+1)
b+p

nam
p(b+1)
2(b+p) (log n)

−p(b+1)
2(b+p) n−

amp(b+1)
b+p

= 4Cnr−1+
p(b+1)

b+p

(ρ

4

)− p(b+1)
b+p

(log n)
−p(b+1)
2(b+p) n−

amp(b+1)
2(b+p) (37)

= 4Cnr−1+
p(b+1)

b+p

(ρ

4

)− p(b+1)
b+p

(log n)
−p(b+1)
2(b+p)

(
nnam−1

)− p(b+1)
2(b+p)

= 4Cnr−1+
p(b+1)

b+p

(ρ

4

)− p(b+1)
b+p

(log n)
−p(b+1)
2(b+p) n−

p(b+1)
2(b+p) n−(am−1)

p(b+1)
2(b+p) .

since r = K (log n)2 , we have

K2 = 4C
(ρ

4

)− p(b+1)
b+p

(log n)
b(3p−4)−p

2(b+p) n
(b(2−p)+p)

2(b+p) n−(am−1)
p(b+1)
2(b+p) . (38)

By virtue of the condition (11), we obtain

K2 ≤ 4C
(ρ

4

)− p(b+1)
b+p

(log n)
b(3p−4)−p

2(b+p) n−1− δp(b+1)
2(b+p) . (39)

Consequently, it exists d̃ > 0 such as

K2 ≤ Kn−1−ed, (40)

so, for ε = 2ρ
√

n−am log n and for ρ sufficiently large, we have

P
[
|Xn+1 − θ| > 2ρ

√
n−am log n

]
≤ Kn

−ρ2

32 + Kn−1−ed ≤ Kn−1−ed. (41)

The right-hand side of the latter inequality is a convergent series. So, (41)
leads to the result.

Application. Finding a root of a regression function.
A typical example is R̃ (X, ξ) = R (X) + ξ. By conditioning with respect

to X and moving to the expectation, we can write:

E(R̃ (X, ξ) | X) = E (R (X) | X) + E(ξ | X).
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Assuming that E(ξ | X) = 0, we have

E(R̃ (X, ξ) | X) = E (R (X) | X) . (42)

Thus, the search for the root function

R(x) = E(R̃ (X, ξ) | X = x) = E (R (X) | X = x)

reduces to that of the regression function R (X) on X. It is therefore pos-
sible to use the stochastic algorithm of Robbins-Monro to find the root of a
unimodal regression function. To characterize the strong mixing (α-mixing)
random errors ξi, it suffices to consider an autoregressive model of order 1

ξi = φξi−1 + vi

where vi is a Gaussian white noise process and |φ| < 1. This situation mainly
occurs in time series models.
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