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Consistency of Robbins Monro’s algorithm
within a mixing framework
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Abstract

This work is devoted to the study of the consistency of Robbins-
Monro’s algorithm under strong mixing assumption.
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1 Introduction

The methodologies known under the term of stochastic approximations traces
its origin from the work of Robbins and Monro [11] which studied the fol-
lowing problem. Let R be a function of real values and 6 to be the single
solution of the equation

R(z) =« (1)

where « is a known constant. The problem is to estimate 8. When R is
a known function, we can found various numerical methods to approximate
0. A part from some general properties, Robbins and Monro considered the
case where R is unknown but, for each point z, we have a random variable

R(z, &) such as N
R(x) = E (R () (2)

where ¢ is a random variable with zero mean. These authors argued that a
recursive sequence of random variables (X,,), which estimate 6 in a consistent
way, can be constructed. They show the mean square convergence of X,, to
. Considering a weaker assumptions and within the usual framework of
independent and identically distributed random errors, Blum has shown the
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almost sure convergence [1]. Whenever R is linear and checking the classical
assumptions, Lai and Robbins argued that all least squares estimator of
0 properties remain true even when the estimator of 6 is obtained by the
Robbins-Monro method [7]. For the nonlinear general case, a procedure of
type Robbins-Monro was introduced by Venter [12] and it has been discussed
in [8], and the obtained results were extended to the multivariate case by
Wei [14]. In [5], Duflo has shown the almost sure convergence if the Robbins-
Monro’s algorithm is evaluated in R?.

Some theoretical results on stochastic approximation can be found in
various literatures, e. g. see [13], [9] and [6].

Let us note that the independent observations are often unable to explain
some phenomena, indeed, the slightly dependent observations are the most
adapted to a real situation [4]. In this case and concerning different models
building for the dependence of the stochastic algorithm noise, we can refer
to the Brandiere and Doukhan note [2].

The principal contribution of this work is to consider the least restrictive
mixing sequence called also a-mixing sequence, (see [3] for more details)
and to provide the almost complete (a.co) convergence rate of the Robbins-
Monro’s algorithm.

2 Algorithm and asymptotic study

Let (2, F, P) be the probability space and R : R — R to be a function known
just under a measure R (x,€&) with a spot of a measure error £. To estimate
the 6 root of the equation (1), Robbins and Monro [11] built their algorithm
in a recursive manner using an initial value X; and defining by recurrence:

X1 = X, — an (é (X, En) — a) (3)

where (&), is a sequence of a real random variables with zero mean and
(an), is a decreasing deterministic sequence to 0 such as

+00 +oo
Zan =+oo0 and Zai < 400 (4)
n=1 n=1
and
R(Xn, &) = R(X,) + &n.
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Without loss of generality, let us suppose a = 0.
Removing 6 from both members of the equality (3) and using successive
iterations, we obtain

|Xn+1 - 9| =

()

i[l (1 —aki’f)ﬁ’“g)‘ ‘(X1 —0) — EZ;Z

where

i -1
z=a ][ (1-ai2) .

k=1
Let us introduce now the following assumptions:
H1 : The parameter 6 checks a priory

| X7 — 0] < H < +o0. (6)
H2 : R is a function satisfying

VeeR,0<m<

H3 : We suppose that, for any ¢ > 0,

©on () =n"" exp(amy)e — H > 0 (8)

where 7 is the Euler constant.
H4 : The distributed variables queues &; check the condition of uniform
decrease, that is, for any p > 2,

Vi>0, P& >t <t (9)

H5 : We assume that the coefficients of the a-mixing sequence (&),
satisfy the following arithmetic decay condition :

3d>1,3 >0, a(n) <dn™". (10)

H6 : The condition of arithmetically decrease (10) is satisfied for any b

value such as
4b+p(3 = b)

346 >0
b+ 1)p

+0<am-—1. (11)
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At last, we notice that if the & random errors are a-mixing then the Z;
random variables are also strongly mixing with mixing coefficients lower or
equal than those of the sequence (¢;),.

We can know state the following result :

Theorem 1. Under the assumptions (H1)-(H6) and if 0 < aM < 5 then for
any real b positive such as

2— 2 1
b > (2= am)q with vy € 10,1] and q is such as — + — =1, (12)
%0} p q
we have:
1
Xpa1 — 0 =00/ —22)  q.co. (13)
nam

Proof. We have

logH (1 - ak.Xk — 0) Z—— = —am (logn + v,) (14)

where 7, is defined by the relation v, = > 7", ;—log n=~vy+( (n+1)—logn)
where 1 (.) is the digamma function.

It is obvious to show that ~, —v,_1 = log (1 — %) —|—% < 0, for any n > 1.
This leads to the well known result where the sequence -, decrease to the
Euler constant -, let

n—-4oo

"1
Yp >y = lim {Z - logn} = 0.577215... (15)

=1

From this relation, we obtain

log H (1 — ay, f;:f%) < —am (logn +7) (16)
k=1

This makes it possible to conclude

H (1 — ak%> < n~ " exp (—amy) (17)
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and then, using (5) and the assumptions (H1) and (H4), we deduce that

>z

=1

Pl Xy —0] > <P

> on (6)] : (18)
On the other hand, for a rather large natural integer n we have
H €
- < —_
n* exp(amy) = 2
which gives
H €
(g) = pam - | > —n™, 19
oul0) = explam) (2= D) > (19)
so, taking A = ¢,

n

>

1=1

PlXp 0] > <P

> 4Anam] . (20)

Using (9), we show that, we can found positive constant M; such as, for
a given p > 2,
dp>2,Vt >0, P||Zi] >t] < Mit™. (21)

Thus, applying directly the Fuk-Nagaev exponential inequality given by Rio
([10], formula (6.19a)), to strongly mixing variables Z; we have,

(Anem)? el N2
~6>4 < )
PlXu — 0] >c] <41+ = + A0 (o (22)
for any e > 0 and r > 1
with -
C =2pM, (2p —1)7" (2°d)**
and
so=3_ Y leov(Zi, Z))| =Y var (Zi)+ Y Y |eov(Zi, Z;)|. (23)
i=1 j=1 i=1 i=1 j#i

On the one hand, under the assumptions (H2) and by virtue of the inequality

log(l—:v)z—x—a:2
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we have

: R(Xy) : aM
[T(:- > 1 &=
( "X - 9) B ( k )
k=1 k=1
> (1 —aM)i*Me=(@M)?, (24)

From this relation and according to (21), we obtain

M, < 400 : EZ*> < M, and wvar(Z;) < Cpi*@M=b (25)

with C} = (ﬁy M, exp(2a®M?). As a < 517, we deduce that

n

n Ol
Zvar (Z:) < Z i2(1—aM) < DG, (26)
i=1 i=1

since it is a partial sum of a convergent sequence with positive terms.
On the other hand, for i # j,

lcov(Zi, Z;)| < Coi™ ="M B(68;)] (27)

with Cy = (I_ZM)2exp(2a2]\/[2)). From the relation (9), we can use the

Davydov-Rio inequality given by Rio (2000, formula (1.12¢)) to obtain:

Q=

|E(&&)] < 2q (e (i — j1)) (28)

and, then

Q=

lcov(Zi, Zy)| < 2qCoi™ 1 (o (Ji — 1))+ (20)

Applying a second time the Davydov-Rio inequality to Z; variables and using
(21), we obtain

Vi # j, |cov(Zi, Z;)| < 2qM77 (a (i — 5]))7 (30)

since the mixing coefficients of the sequence (Z;), are lower or equal than
those of the sequence (§;),. Making together (29) and (30), we have
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Z Z |cov(Z;, Z;)| < Z Z 2¢Cyi™ 1M (a (i - J|))%

i=1 i i=1 |i—j|<un

> > M (a(li— D) (31)
i=1 |i=jl>un

n

1 _ 1 1
< Z 2(—adl) Z 2qCs (a (k) + 2n2qM12/p (o (un))®
i=1 k=1
or also

> leov(Zi, Z))| < 2DCa Dy + 2% M P (o (wa)) (32)

i=1 j#i

with Dy = > q(« (k;))% So, taking wu, = [n"], the hooks indicating the
k=1

whole part, and using (10), (12), (26) and (32) we obtain, for n rather large:

s2 = o(n™™) (33)

since

2n%q (a (un))% Mlz/p - 2qd%M12/p

am < nam—2+uo§ — 0. (34)

So, taking into account (33), we have the inequality

P[|Xn+1—0| >€] SKl"‘KQ (35)
am =L (b+1)p
with K1 =4 (1 + ’\2”7) * and Ky =4Cnr—! ()\TZ;zm> btp |

Taking A = £y/n~mlogn, p > 0, we obtain the convergence rate.
For a suitably chosen r such as r = K (logn)*, we obtain

p*logn ,logn

32

=i 2
K, =4 (1 + ) < Kexp(—p )=Kn ™% (36)
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where K indicates a generic positive constant. With regard to K5, we have
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Ky = 4Cnr™ 1rp(bb++pl>)\ pgfpl)n*amff,fl)
— aom ™ (2) B B (log m) T -
- 40”7;1#5’?”1)( ) s (logn) ?Zt()%)n S Gon
— acr R (2) 5 (log ) FES. (nom-1)~H
= 4Cn7,—1+1’(z,bfp1>< ) ”Sff,,l) 1Ogn _2121(73‘-;1))71 5813”—(%—1)5&;;'

since r = K (logn)®, we have

_p(+1) b(B3p—4)—p  (b(2—p)+p) (G,?TL71)p(b+1)

Ky =4C (g) b (logn) 26tp) 1, 200+p)

By virtue of the condition (11), we obtain

—p(4D) bBp=4)—p _;_dp(b+1)

Ko <40 (B) 7 (logn) ST p

Consequently, it exists d > 0 such as

K, < Kn~\—4

Y

so, for e = 2py/n="logn and for p sufficiently large, we have

2(b+p) |

2 - -
P [|Xn+1 — 0| > 2p\/n—am logn] < Kn3z + Kn "< Knp~

The right-hand side of the latter inequality is a convergent series. So, (41)

leads to the result.

Application. Finding a root of a regression function.

(37)

(38)

(39)

(40)

(41)

]

A typical example is R (X,€&) = R(X) + £ By conditioning with respect

to X and moving to the expectation, we can write:

E(R(X.€) | X)=E(R(X)| X)+E(] X).
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Assuming that E(¢ | X) =0, we have

E(R(X,€) | X) = E(R(X)|X). (42)

Thus, the search for the root function

R(z) = E(R(X,§) | X =2) = E(R(X) | X = z)

reduces to that of the regression function R(X) on X. It is therefore pos-
sible to use the stochastic algorithm of Robbins-Monro to find the root of a
unimodal regression function. To characterize the strong mixing (a-mixing)
random errors &;, it suffices to consider an autoregressive model of order 1

§i = Qi1+ v

where v; is a Gaussian white noise process and |¢| < 1. This situation mainly
occurs in time series models.
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