RELATIVE PARACOMPACTNESS
AS TAUTNESS CONDITION IN SHEAF THEORY

Jean-Pierre SCHNEIDERS
Research Assistant F.N.R.S.

RESUME: Nous introduisons la paracompacité relative. Cette notion nous permet d’obtenir un critère de faîteur qui unifie et généralise les résultats classiques de [2].

INTRODUCTION

Let X be a topological space, S a subset of X, \mathcal{F} a family of supports in X and Γ_S the set of the open neighborhoods of S in X, ordered by the relation \supset. In this paper, we consider only sheaves of abelian groups. We say that S is \mathcal{F}-taut in X if the canonical morphism

$$
(\tau_S : \lim_{\mathcal{V} \in \mathcal{F}} H^*_\mathcal{F}(\mathcal{V}, F|_\mathcal{V}) \longrightarrow H^*_\mathcal{F}(S, F|_S))
$$

is an isomorphism whenever F is a sheaf on X. In [2] G.E. Bredon proves that it is equivalent to say that the canonical morphism

$$
(\tau_{SX} : \Gamma_\mathcal{F}(X, F) \longrightarrow \Gamma_\mathcal{F}(S, F|_S))
$$

is onto and that $F|_S$ is $\mathcal{F}\cap S$-acyclic whenever F is a flabby sheaf on X. The tautness appears in the hypothesis of many important theorems of sheaf theory. So, for practical use, we need criteria stating that S is \mathcal{F}-taut in X under more explicit topological assumptions on S and \mathcal{F}. For example, it is trivial to see that an open subset of X is \mathcal{F}-taut. In [2] it is proved that S is \mathcal{F}-taut in X if one of the following conditions is satisfied:

a) \mathcal{F} is paracompactifying for the pair (X, S)

b) Φ is paracompactifying, X is completely paracompact, S is arbitrary.

c) Φ is paracompactifying, S is closed in X.

d) Φ is maximum, S is compact and relatively Hausdorff in X.

The purpose of this paper is to prove a tautness criterion which unifies and generalizes the preceding ones. For this reason, we introduce in definition 1 the notion of relative paracompactness of S in X. We say that Φ is S-paracompactifying if every element of Φ has a neighborhood belonging to Φ and if $S \cap F$ is relatively paracompact in F whenever F belongs to Φ. Our main result states that S is Φ-taut in X if Φ is S-paracompactifying.

RELATIVE PARACOMPACTNESS

In order to avoid confusions, let us recall the following definitions.

An open covering of S in X is a set U of open subsets of X, such that $U \supseteq S$. For a set U of subsets of X we write $U(S) = \{ U : U \in U, U \cap S \neq \emptyset \}$. We say then that:

a) U is punctually finite on S if $U(\{s\})$ is finite for every element s of S.

b) U is locally finite on S if each element of S has a neighborhood V such that $U(V)$ is finite.

c) A S-refinement of an open covering U of S in X is an open covering V of S in X such that every element of V is contained in some element of U.

Now let us introduce the following

DEFINITION 1. The subset S of X is

a) relatively Hausdorff in X if two distinct points of S have disjoint neighborhoods in X.

b) relatively normal in X if two disjoint closed subsets of S have disjoint neighborhoods in X.

c) relatively paracompact in X if every covering of S in X has a S-refinement which is locally finite on S and if moreover S is relatively Hausdorff in X.

180
REMARK 2. It is clear that X is relatively Hausdorff (resp. normal; paracompact) in X if and only if X is Hausdorff (resp. normal; paracompact).

Slight modifications of classical proofs give the following three results.

PROPOSITION 3. If S is relatively normal in X and if U is an open covering of S in X which is punctually finite on S then there exists a family $(V_U)_{U \in S}$ of open subsets of X, covering S and such that V_U is contained in U for every U belonging to U.

PROPOSITION 4. If F is a closed subset of S and if S is relatively paracompact in X then every open covering of F in X has a T-refinement which is locally finite on S. In particular F is relatively paracompact in X.

PROPOSITION 5. If S is relatively paracompact in X then S is relatively normal in X.

The following easy results are also useful.

PROPOSITION 6. If S is relatively paracompact in X and if Y is a subset of X containing S then S is relatively paracompact in Y. In particular S is paracompact.

Proof: Let U be an open covering of S in Y. It is clear that there exists an open covering V of S in X such that $V \cap Y = U$. Thus there exists a S-refinement W of V which is locally finite on S. We see directly that $W \cap Y$ is a S-refinement of U in Y which is locally finite on S. To conclude, we just have to note that S is relatively Hausdorff in Y. //

PROPOSITION 7. If S has a fundamental system of paracompact neighborhoods in X then S is relatively paracompact in X.

Proof: Let U be an open covering of S in X. Let us choose a paracompact neighborhood V of S in X contained in U. Since $U \cup V$ is an open covering of V in V, there exists a V-refinement V' of $U \cup V$ in V which is locally finite on V. Thus $V \cap V$ is a S-refinement of U in X which is locally finite on S. To conclude, it remains to prove that S is relatively Hausdorff in X. Let x, y be two distincts elements of S and W a paracompact neighborhood of S in X. Since W is a Hausdorff space, there exist neighborhoods V_x, V_y of x and y. //
and y in W, such that $\forall x. y \neq y$. But W is a neighborhood of x (resp. y) in X. Then x and y have disjoint neighborhoods in X.

COROLLARY 8.

a) A subset S of a completely paracompact space (e.g. a metric space) X is relatively paracompact in X.

b) A closed subset S of a paracompact space is relatively paracompact in X.

Proof: a) Since X is completely paracompact, every open subset of X is paracompact and we may apply proposition 7.

b) Since X is paracompact we know that X is normal and the closed neighborhoods of S in X form a fundamental system of paracompact neighborhoods of S in X. So we may apply proposition 7.

PROPOSITION 9. If S is compact and relatively Hausdorff in X then S is relatively paracompact in X.

Proof: Let U be an open covering of S in X. Since $U \cap S$ is an open covering of S, there exists a finite subset V of $U \cap S$ which covers S. Let us choose a finite subset W of U such that $W \cap S = V$. Clearly W is a S-refinement of U which is locally finite on S. Since S is relatively Hausdorff in X, the proof is complete.

A TAUTNESS CRITERION

PROPOSITION 10. If S is relatively paracompact in X then the canonical morphism

$$
(r_S : \lim_{U \in V_S} \Gamma(U, F | U) \to \Gamma(S, F | S))
$$

is an isomorphism for every sheaf F on X.

Proof: It is clear that r_S is injective, thus we just have to prove that it is onto. Let s be a section of F over S. For every $x \in S$, let us choose a neighborhood U_x of x in X and a section s_x of F over U_x such that $s_x | U_x \cap S = s | U_x \cap S$.

182
We know that S is relatively paracompact in X and that $U = \{U_x : x \in S\}$ is an open covering of S in X, thus there exists a S-refinement V of U which is locally finite on S. For every V belonging to V, let us choose a an element x_V of S, such that $V \subseteq U_{x_V}$. Let s^V_U denote the section $s^V_U | V$. Since S is relatively normal in X, the proposition 3 gives us a family $(V_U)^{-1} \subseteq V$ of open subsets of X covering S and such that $\overline{V_U} \subseteq V$ whenever $V \subseteq V$. For every V belonging to V we denote by $s^{V_U}_V$ the section $s^V_U | \overline{V_U}$. Let us set

$$B = \bigcap_{U, V \in V} \{y : (y \in \overline{U_U} \cap \overline{V_U}) \Rightarrow (s^V_U(y) = s^U_V(y))\}.$$

We shall establish that B is a neighborhood of S. Let x be an element of S. Since V is locally finite on S there exists an open neighborhood ω of x in X such that $V(\omega)$ is finite. Let us set

$$\omega = \omega \setminus \left(\bigcup_{V \in V(\omega)} \overline{U_U} \right)_{x \in \overline{V_U}}.$$

Clearly ω is still a neighborhood of x in X and $x \in \overline{V_U}$ if $\overline{V_U} \cap \omega \neq \emptyset$. Let us set

$$\omega'' = \omega \cap \bigcap_{\overline{V_U} \cap \omega \neq \emptyset} \{y : y \in V \cap U, s^V_U(y) = s^V_U(y)\}.$$

We see immediately that ω'' is an open neighborhood of x in X and that

$$(y \in \omega'' \cap \overline{V_U} \cap \overline{V_U}) \Rightarrow (s^V_U(y) = s^V_U(y))$$

if U, V belong to V. Thus ω'' is contained in B and B is a neighborhood of x in X. Since x is an arbitrary point of S, this proves that S is contained in B. Now, since V is locally finite on S, we know that $(\overline{V_U} : V \subseteq V)$ is locally finite on an open neighborhood Ω of S in X. Let Ω' be the set $\Omega \cap (\bigcup \overline{V_U}) \cap B$. Clearly, Ω' is an open neighborhood of S in X. For every $V \subseteq V$ let F_V be the set $\overline{V_U} \cap \Omega'$ and let s''_V be the section $s^V_U | F_V$. The family $(F_V)^{-1} \subseteq V$ defines
nes a closed locally finite covering of \(\Omega' \) and \(s''_{V}|_{F'' \cap F'} \) equals
\(s''_{U}|_{F'' \cap F'} \) if \(U, V \in V \). Thus there exists a section \(s \) of \(F \) over \(\Omega' \)
such that \(s|_{F'} = s''_{V} \) if \(V \in V \). This shows that \(s|_{S} = 0 \). Since \(\sigma \) is
an arbitrary section of \(F \) over \(S \), we have proved that \(r_{S} \) is onto.///

DEFINITION 11. The family of supports \(\Phi \) is \(A \)-paracompactifying
if every element of \(\Phi \) has a neighborhood which belongs to \(\Phi \) and if
\(F \cap \Omega \) is relatively paracompact in \(F \) for every \(F \) belonging to \(\Phi \).

PROPOSITION 12. If \(\Phi \) is \(S \)-paracompactifying and if \(F \) is a clo-
csed subset of \(S \) then \(\Phi \) is \(F \)-paracompactifying.

Proof: Let \(F' \) be an element of \(\Phi \). We know that \(F' \cap S \) is rel-
atively paracompact in \(F' \) and that \(F \cap F' \) is closed in \(F' \cap S \),
thus, by proposition 4, \(F \cap F' \) is relatively paracompact in \(F' \).///

PROPOSITION 13. If \(\Phi \) is \(S \)-paracompactifying, then
a) \(\Phi \cap S \) is paracompactifying in \(S \),
b) the canonical morphism,

\[
(r_{S} : \lim_{U \in V} \Gamma_{\Phi \cap U}(U, F|_{U}) \longrightarrow \Gamma_{\Phi \cap S}(S, F|_{S}))
\]

is an isomorphism for every sheaf \(F \) on \(X \),
c) \(F|_{S} \) is \(\Phi \cap S \)-soft for every flabby sheaf \(F \) on \(X \).

Proof: a) If \(F \in \Phi \), \(F \cap S \) relatively paracompact in \(F \) and
proposition 6 shows that \(F \cap S \) is paracompact.

b) Let \(F \) be a sheaf on \(X \). It is clear that \(r_{S} \) is injective, so we
just have to prove that it is onto. Let \(\sigma \) be a section of \(F \) over \(S \)
with support belonging to \(\Phi \cap S \). Let us choose an element \(F' \) of \(\Phi \)
such that \(\text{supp}(\sigma) = F \cap S \) and a neighborhood \(F' \) of \(F \) belonging to
\(\Phi \). Since \(F' \cap S \) is relatively paracompact in \(F' \), proposition 10
shows that the section \(\sigma \) extends to a section \(\sigma' \) of \(F \) over a neigh-
borhood \(V \) of \(S \cap F' \) in \(F' \). Let \(G \) be the set \(\text{supp}(\sigma') \). By construction,
we know that \(G \cap S \subset F' \cap S \) and that \(F' \cap S \subset V \). Thus \(S \setminus \\text{supp}(\sigma') \)
is contained in \(S \setminus G \). This proves that \(S \) is contained in the open set
\((X \setminus G) \cup \setminus V \). Let us denote by \(\Omega \) this open set and by \(\sigma'' \) the
section of \(F \) over \(\Omega \) which is equal to \(0 \) on \(X \setminus G \) and to \(\sigma'|_{S} \) on \(V \). We see immediately that \(\sigma|_{S} = \sigma \) and that \(\text{supp}(\sigma'') \subset G \). Since \(G \subset F' \),

184
σ" is an element of $\Gamma_{\mathfrak{S}_2}(\mathbb{C}, F|_S)$, such that $\tau_{\mathbb{S}_S}(\sigma") = \sigma$. Since σ is an arbitrary element of $\Gamma_{\mathfrak{S}_2}(\mathbb{C}, F|_S)$ we have proved that $\tau_{\mathbb{S}_S}$ is onto.

c) Let F be a flabby sheaf on X, B, B' two elements of $\mathfrak{F} \cap S$ such that $B \subseteq B'$ and σ a section of F over B. Since B is closed in S, we know, by proposition 12, that σ is \mathfrak{F}-paracompactifying and what is proved above shows that there exists an open neighborhood \mathcal{U} of B in X and an element σ' of $\Gamma_{\mathfrak{S}_2}(\mathbb{C}, F|_{\mathcal{U}})$ such that $\sigma'|_{B} = \sigma$. Since F is flabby, there exists a section σ'' of F over X, such that $\sigma''|_{\mathcal{U}} = \sigma'$. Let us denote by σ'' the section $\sigma'|_{B'}$. It is clear that $\sigma''|_{B} = \sigma$. Since σ is an arbitrary section of F over B, we have proved that $F|_S$ is $\mathfrak{F} \cap S$ - soft.///

CRITERION 14. If ϕ is \mathfrak{F}-paracompactifying then S is ϕ-taut.

Proof: It is an easy consequence of the preceding proposition if we remember that an open subset of X is ϕ-taut and that a \mathfrak{F}-soft sheaf is ϕ - acyclic if ϕ is paracompactifying.///

REMARK 15. If S satisfies the condition a) (resp. b); c); d) then proposition 7 (resp. 7; 7; 9) shows that ϕ is \mathfrak{F}-paracompactifying and the preceding result shows that S is ϕ-taut.///

I would like to thank Professor J. SCHMETS for his valuable service.

REFERENCES

Université de Liège
Institut de Mathématique
Avenue des Tilleuls, 15
B-4000 Liège, Belgique.