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RESUME

Nous &tudions les formalismes hamlltonlen et lagrangien décrivant des mésons .
scalaires (et vectoriels) plongés dans un champ &lectromagndtique extérieur. L'en-
semble complet des constantes du mouvement est obtenu en utilisant la description
relativiste de Sakata-Taketani.

1. INTRODUCTION

We recently discussed (Beckers and Hussin, 1984) the full set of conmstants of
motion characterizing relativistic or nonrelativistic electrons interacting with
(external) classical electromagnetic fields. Based on Hamiltonian and Lagrangian
formalisms, such a study deals with recent gauge théoretiqal developments (Jackiw
and Manton, 1980) and symmetries of potentials (Beckers and Hussin, 1983). Through
group extensions (Bargmann, 1954) aﬁd associated extended Lie algebras; we complet-
ed the fundamental and standard approach of Johnson and Lippmann (1949); Inbparti—
cular, such developments expldited the U(1)-gauge theory as‘well as the minimal .
electromagnetic coupllng principle.

Relativistic or nonxelat1v1st1c electrons are respectively described by the
Dirac or Schrodlnger equations. These are time first order descriptions whose asso-
ciafed Hamiltonians and Lagrangians are very well known., If the considered charged
particles are (scalar. or:vector) mesons, the corresponding elements are not so sim-
ple : from Bhabba's equations (Bhabba, 1939) or Kemmer's formulation (Kemmer, 1939)
Hamiltonian formalisms have been obtained but with extra conditions (eliminating
the redundant components). The only net formalism for such mesons is the one pre~-
sented by Sakatg and,Iaketani (1940) (see also Baym, 1969) : in particular, for.
scalarvmesons, it corresponds to a Hamiltonian version of the time second order
description associated with the Klein-Gordon equation.

Here we apply our recent developments (Beckers and Hu551n, 1984) to the case
of scalar mesons by using the Sakata-Taketani formulation with electromagnetic in~

teractions. We get the full set of constants of motion and manage all the difficul-
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ties inherent to this spin-0 formalism. First we just recall the sufficient elements
of Sakata-Taketani's formulation (§ 2). Then the constants of motion are pointed
out and discussed through the Hamiltonian (§ 3) and Lagrangian (§ 4) formalisms.

The case of vector mesons is briefly considered (§ 5).

2. RELATIVISTIC SCALAR MESONS AND SAKATA-TAKETANI'S FORMULATION

The motion of free relativistic scalar mesons is described by the Klein-Gordon
equation :

@+nhy =0 , O=-p' , p*=id @.1

where Y(x) 1is a scalar wave function. This equation can also be written as a

time "first order" equation :

. 1 2.3 42 . 3 : o
1et¢ =5 P (6”7 + 107)¢ + mo™¢ ’ (2.2)
in terms of the wave function ¢ given by
1 [™ "V . SRS
¢ = E ) 1110 = 13t . (2.3)
, mp - ’\[’O )

This: corresponds to the well known Sakata-Taketani equation (Sakata-Taketani,1940)
and its Hamiltonian operator :
0 _.1 22,3 ,2 3 ' , PR
HS.T. =5=p (67 + i0%) + mo ’ : (2.4)
where the o-matrices refer to the usual (2%2) Pauli matrices. »
Such an equation (2.2) can be obtained from the Lagrangian density :
1l = 3 L2002 i - T -3 .
LO,S.T. ™ Vo(o™ + i07)eVe + 5{(3t¢)¢ ¢3t¢] + méo ¢ (2.5)
where ¢ is the "adjoint" wave function ¢ = ¢+03 . This Lagrangian density is
strictly invariant under infinitesimal Poincaré transformations :

v, LB U s o (2.6)

- = xH 4 M H u_gu

X > X ) xv +a =X
v
if the wave functions ¢ .and ¢ admit the following transformation laws :
> >

§' ") = 0 - TR (0% 4 i0D)40

¢(X) + ME)Y,
(2.7)

> >

70 + TR I (00 + i) = 5 + B

' (x")
> PR :
where v corresponds as usual to the three infinitesimal parameters of the Lorentz

boosts.
When the scalar mesons interact with an arbitrary electromagnetic field F ,

the Klein~Gordon equation takes the form
a'n - n?)y = 0 (2.8)
with

0 0

'y = 9%, 1%=p% 4 ev= i3, + eV, T=3+ek , (2.9)

when A = {a%} = {AO,K} is a fourpotential associated with the field F . From
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Sakata-Taketani's developménts applied to the interacting case, we get (Baym,1969)
9,¢ = Hg p ¢ , ‘ . (@ao

where the wave function ¢ is given by (2.3) but with

by = (18, + eN)V (2.11)

and where the Hamiltonian takes the form :
b 22,3 0,2 3 _ : SRR Py
HS.T. =5 "™ + ic”) + mo eVl . (2.12)

In this context, the total Lagrangian density reads

L= LS.T.'+ LM ' ; @y
with
Lo o = @5 0> + 16DFe + 20, Do - 75,01 + miods - eVis (2.14)
S.T. 2m 2 t t
and
L, = - 2‘; YL : | (2.15)

The invariance of the theory under Poincaréd transformatlons is realized if ¢ ,

$ and A transform according to :

1D = 900 - 5 VE? + ieDe@) ., ‘
(2.16)
CFED = Fw 4 DI 1D | o
. o -
Vit =‘ Y ’ ’ i » ‘ .
Au(x ) Au(x) g aVAU(X) . ) (2.1

3. CONSTANTS OF MOTION FROM THE HAMILTONTAN FORMALISM

Through the Hamiltonian formalism and within the free and interacting cases
we search for complete sets of constants of motion, i.e. for operators C satis-
fying the equation

. 4 . sc . . _
E=pc=g+ilcl=o0 . v 3.1

In the free case i.e. with the Hamitonian (2.4), such.a set is easily obtained.

. -> > -> . P
It contains the momentum p , the angular momentum T=7 A p and the quantities

> .
K given by
. .
K= ¢f - Fug .+ 2207 + 10D . 3.2)
Then, the operators PO = Hg T, * B = 3 s T=%n ; and K = (3.2) are evident-

ly the ten generators of the Poincaré Lie algebra: It is a consequence of the inva-
riance of the Klein-Gordon equation under the Poincaré group. The realization of

R . - ‘ )
the generators is the expected one but we notice.that in K = (3.2) , we have an

additional term due to the Sakata-Taketani formulation. This extra term comes in

189



due to the fact that although the Klein~Gordon wave function (x) has to be-sca-
lar, the function ¢(x) given by (2.3) is not (see (2.7)).

Let us presently discuss the case of charged scalar mesons interacting with
a particular constant electromagnetic field ¥ = (E,ﬁ) chosen as the parallel

field (Bacry, Combe and Richard,1970) :
L {£ = (0,0,E), § = (0,0,8)} (3.3)

and where the four potential included -in H

S.T. (2.12) is the associated gauge

symmetrical potential

Ve-gE , k=21 Byx-E0) . (3.4)
From the following identities
3= - 501°0° + 107 ,- B (0P + 10D ,E1) , ¥ = 1H(o% 4 16k (3.5)
and

. __eE 3.3 .2 ‘

HS.T. = -5 n7(c” + 1UY) s (3.6)
we obtain the constants of motion

f=3-e&k , = By o -V,

o (3.7)

.3
3_ .2 1 3_..3 . in” .3, .2
J” = xp yp , K7 = tp- ZHS.T. o (67 + i07) .

These constants are thus associated with the generators of an extension by R of

the F” ~kinematical algebra B, = {J3,K3,Pu} (Bacry, Combe and Richard,l970);

As a last comment, let us notice that the expressions of the constants (3.7) expli-
citly depend on the form of the potential A associated with the field F” . It

can be easily shown that the generators of GF which are symmetries of a poten-
I . ’
tial give rise to constants of motion unchanged with respect to the free case

(Beckers and Hussin,1983,1984).

4. CONSTANTS OF MOTION FROM THE LAGRANGIAN FORMALISM

Let us briefly consider the Lagrangian formalism in order to find the cons-
tants of motion through Noether's theorem (Noether,1918; Hill,1951). This theorem
essentially says that the invariance (strict or up to a fourdivergence) of a La-
grangian density under infinitesimal transformations implies the existence of a

conserved current J (auJ“ = 0) .and of a constant of the motion
c= Jd?JO . (4.1)

In our particular case, the Poincaré invariance of the free Lagrangian density
(2.5) is a consequence of the transformation laws (2.7) on ¢ and ¢ . Then, the

associated constant of motion can be written in the form

,s.1. = [ df [3(a66 = $49) - Lo,s.T.EO]
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or, with suitable limit conditions,

il a3 '
CO,S.T. =% [ dr ¢A¢ + h.c. . (4.2)

These results are the expected ones if we remember that in the Sakata-Taketani for-

mulation the scalar product reads
454> = j at ¢'o% = j & 3o . 4.3).
In the interacting case (with an arbitrary electromagnetic field), the total

Lagrangian density (2.13) is evidently invariant under Poincar@ transformations

(2.16) and (2.17) on ¢ , ¢ and A and, moreover, under usual local gauge trans-

formations on the corresponding wave functions and potential.

In order to obtain the equivalence between such elements and the precedlng
results, we have to combine coordinate and gauge transformations (Jackiw-Mantonm,
1980) in such a way that the electromagnetic potential will be an invariant quan-
tity (A'(x) = A (x)) , so that the Noether theorem still applies if we have the

following transformation laws :

e,
o' (x") = ¢(x) - e (¢” + ic )¢(x) - 1eWF¢(x) R 4
_ _ . 3%-ﬁ (4.4)
oM (x") = ¢(x) + ¢(x)(0 + ig ) + 1eWF¢(x)
and
A x') = A x) + (3 EF)A x) - BUWF(X) s 4.5)
where refers to’ the Poincaré transformations (2.6) leaving the field F -inva-

tr

riant and WF(x) to compensating gauge transformations for A <(Janner and Janssen,

1971). The associated constant of motion is given by

Cp = - —;— { ar ¢(A - ieW )¢ + hoc. 4.6)

which can be compared with C0 g.7 = (4.2) when the Poincaréd transformations
»S.T.
associated with the symmetries of the field F are considered.

Finally, the identification with the results obtained in the Hamiltonian
approach is easily realized if we consider the particular F” field and the po-
tential A(O) =z (3.4). We effectively obtain the constants of motion

<i¥s> = J dr $nu¢ s <J3> = I dr $J3¢ ;
_ 4.7)
3 = f a% 3K

5. RELATIVISTIC VECTOR MESONS IN THE SAKATA-TAKETANI FORMULATION

In the Sakata-Taketani formulation, the description of free vector mesons is

given by the equation
10,0 = B¥ 5.

with the Hamiltonian operator
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B =L 2263 + i6d) - 1o

2 @2 3
o . + mo (5.2)

vhere & = (Sl,Sz,SB) are the 3x3 spin-one matrices commuting with the o's.
In this case and with the Hamiltonian (5.2), the constants of motion are asso-
ciated with the usual momentum operator ; , the total angular momentum F=7+%

and the operator i given by
2
E=p-m0+ 22 (o +io%) + LLEDT + $EHT . C(5.3)

The result (5 3) differs from (3.2) by a supplementary contxlbutlon due to the
spin term in the Hamiltonian (5.2). This explicit calculatlon has to take 1nto

account the S-matrix properties of Kemmex algebras such as

S;8:5) + §;8:8; = 8;:8, + 8,.5; (5.4)

and
> >2 >, : ‘ ’
&P =323 . ; (5.5)

Finally, if we consider the interaction of such vector mesoms with a specific
external electromagnetic field, the constants of motion are still associated with
the geherators of an extended algebra T by R of the symmetry algebra GF of
the field under consideration. They can be easily obtained using the interacting
Hamiltonian :

3

>2
1 '02 Sg%gl— - eVl + mo . (5.6)

22,3 . 20

H = >m 17 (o~ + i6™) i

For example, if the case (3.3)-(3.4) is considered, we can get the six constants .
of motion corresponding to Eqs.(3.7). We leave the search for these constants as

an exercise for the reader.
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