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Abstract: The high luminosities of massive stars drive strong stellar winds, through line scattering of the star’s
continuum radiation. This paper reviews the dynamics of such line driving, building first upon the standard
CAK model for steady winds, and deriving the associated analytic scalings for the mass loss rate and wind
velocity law. It next summarizes the origin and nature of the strong Line-Deshadowing Instability (LDI) intrin-
sic to such line-driving, including also the role of a diffuse-line-drag effect that stabilizes the wind base, and
then decribes how both instability and drag are incorporated in the Smooth Source Function (SSF) method for
time-dependent simulations of the nonlinear evolution of the resulting wind structure. The review concludes
with a discussion of the effect of the resulting extensive structure in temperature, density and velocity for inter-
preting observational diagnostics. In addition to the usual clumping effect on density-squared diagnostics, the
spatial porosity of optically thick clumps can reduce single-density continuum absorption, and a kind of veloc-
ity porosity, or vorocity, can reduce the absorption strength of spectral lines. An overall goal is to illuminate
the rich physics of radiative driving and the challenges that lie ahead in developing dynamical models for the
often complex structure and variability of hot-star winds.

1 Introduction
The strong stellar winds from hot, massive, luminous stars are driven by the scattering of the star’s
continuum radiation flux by line-transitions of metal ions (Lucy & Solomon 1970; Castor, Abbott &
Klein 1975, hereafter CAK). The effectiveness of such line-driving depends crucially on the Doppler-
shifted line-desaturation arising from the wind outflow; this gives the dynamics of such winds an
intricate feedback character, in which the radiative driving force that accelerates the outflow depends
itself on that acceleration. This leads to a strong, instrinsic Line-Deshadowing Instability (LDI) that
is thought make such winds highly structured and variable. The review here summarizes the basic
dynamics of such line-driven winds, with an emphasis on simulations of the nonlinear evolution of
instability-generated wind structure, and its implications for interpreting wind diagnostics.

2 The CAK/Sobolev Model for Steady Winds
Consider a steady-state stellar wind outflow in which radiative acceleration grad overcomes the local
gravity GM∗/r

2 at radius r to drive a net acceleration v(dv/dr) in the radial flow speed v(r). Since
overcoming gravity is key, it is convenient to define a dimensionless equation of motion that scales
all accelerations by gravity,

(1− ws/w) w′ = −1 + Γrad , (1)
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Figure 1: Two perspectives for the Doppler-shifted line-resonance in an accelerating flow. Right:
Photons with a wavelength just shortward of a line propagate freely from the stellar surface up to a
layer where the wind outflow Doppler shifts the line into a resonance over a narrow width (represented
here by the shading) equal to the Sobolev length, set by the ratio of thermal speed to velocity gradient,
lSob ≡ vth/(dv/dr). Left: Seen from successively larger radii within the accelerating wind, the
Doppler-shift sweeps out an increasingly broadened line absorption trough in the stellar spectrum.

where Γrad ≡ grad r2/GM∗, w ≡ v2/v2
esc, and w′ ≡ dw/dx, with x ≡ 1 − R∗/r and vesc ≡√

2GM∗/R∗ the escape speed from the stellar surface radius R∗. Eqn. (1) neglects gas pressure terms
on the right side, since for isothermal sound speed a these are of order ws ≡ (a/vesc)

2 ≈ 0.001
compared to competing terms needed to drive the wind.

For pure electron scattering opacity κe, the scaled radiative acceleration is just the usual Eddington
parameter

Γe ≡
κeL∗

4πGM∗c
= 2× 10−5 L∗/L�

M∗/M�
. (2)

Because typically L∗ ∼ M3
∗ , stars with M∗ > 10M� have Γe > 10−3, with the Eddington limit

Γe → 1 perhaps even being central to setting a stellar upper mass limit of M∗ ∼ 200M�. Eruptive
mass loss from luminous blue variable (LBV) stars like η Carinae might in fact be continuum-driven
during episodes of super-Eddington luminosity (Davidson & Humphreys 1997, Owocki, Gayley &
Shaviv 2004).

But the resonant nature of line (bound-bound) scattering from metal ions leads to an opacity that is
inherently much stronger than from free electrons, by a factor set by the “Quality” Q of the resonance,
and fraction fb of bound electrons in such metal lines (Gayley 1995). For allowed transitions in the
UV, Q ∼ 2 × 107, and for solar metallicity, the total bound-electron fraction from all metal lines
is fb ∼ 10−4. Thus, in the, somewhat idealized, optically thin limit that all the line opacity could
be illuminated with a flat, unattenuated continuum from the full stellar luminosity, the total line-
force would exceed the free-electron force by a factor of order Q ∼ Qfb ∼ 2000. This implies
line-driven winds can be initiated in even moderately massive stars with Γe > 5 × 10−4, while for
more massive stars with Γe ≈ 1/2, the net outward line acceleration in principle could be as high as
Γthin ≈ QΓe ≈ 1000 times the acceleration of gravity!

In practice, self-absorption within strong lines limits the acceleration, with the mass loss rate Ṁ
set at the level for which the line driving is just sufficient to overcome gravity. Indeed line-saturation
keeps the dense, nearly static layers of the atmosphere gravitationally bound. But as illustrated by
figure 1, within the accelerating wind, the Doppler shift of the line-resonance out of the absorption
shadow of underlying material exposes the line opacity to a less attenuated flux. This effectively
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desaturates the lines by limiting the resonance to a layer with width set by the Sobolev length, lSob =
vth/(dv/dr), and with optical depth proportional to t ≡ κeρc/(dv/dr) = ΓeṀc2/L∗w

′.
For the CAK line-ensemble with a power-law number distribution in line-strength, the cumulative

force is reduced by a factor 1/(Qt)α from the optically thin value,

ΓCAK =
QΓe

(1− α)(Qt)α
= Γekt−α = C(w′)α , (3)

where the second equality defines the CAK “force muliplier” kt−α, with1 k ≡ Q
1−α

/(1 − α). The
last equality relates the line-force to the flow acceleration, with

C ≡ 1

1− α

[
L∗

Ṁc2

]α [
QΓe

]1−α
. (4)

Note that, for fixed sets of parameters for the star (L∗, M∗, Γe) and line-opacity (α, Q), this constant
scales with the mass loss rate as C ∝ 1/Ṁα.

Neglecting the small sound-speed term ws ≈ 0.001 � 1, application of eqn. (3) into (1) gives the
CAK equation of motion,

F = w′ + 1− Γe − C(w′)α = 0 . (5)

For small Ṁ (large C), there are two solutions, while for large Ṁ (small C), there are no solutions.
The CAK critical solution corresponds to a maximal mass loss rate, defined by ∂F/∂w′ = 0, for
which the C(w′)α is tangent to the line 1−Γe + w′ at a critical acceleration w′

c = (1−Γe)α/(1−α).
Since the scaled equation of motion (5) has no explicit spatial dependence, this critical acceleration
applies throughout the wind, and so can be trivially integrated to yield w(x) = w′

c x. In terms of
dimensional quantities, this represents a specific case of the general “beta”-velocity-law,

v(r) = v∞

(
1− R∗

r

)β

, (6)

where here β = 1/2, and the wind terminal speed v∞ = vesc

√
α(1− Γe)/(1− α). Similarly, the

critical value Cc yields, through eqn. (4), the standard CAK scaling for the mass loss rate

ṀCAK =
L∗
c2

α

1− α

[
QΓe

1− Γe

](1−α)/α

. (7)

These CAK results strictly apply only under the idealized assumption that the stellar radiation is
radially streaming from a point-source. If one takes into account the finite angular extent of the stellar
disk, then near the stellar surface the radiative force is reduced by a factor fd∗ ≈ 1/(1 + α), leading
to a reduced mass loss rate (Friend & Abbott 1986, Pauldrach, Puls & Kudritzki 1986).

Ṁfd = f
1/α
d∗ ṀCAK =

ṀCAK

(1 + α)1/α
≈ ṀCAK/2 . (8)

Away from the star, the correction factor increases back toward unity, which for the reduced base
mass flux implies a stronger, more extended acceleration, giving a somewhat higher terminal speed,
v∞ ≈ 3vesc, and a flatter velocity law, approximated by replacing the exponent in eqn. (6) by β ≈ 0.8.

1Here we use a slight variation of the standard CAK notation in which the artificial dependence on a fiducial ion thermal
speed is avoided by simply setting vth = c, where c is the speed of light. Backconversion to CAK notation is achieved
by multiplying t by vth/c and k by (vth/c)α. The line normalization Q offers the advantages of being a dimensionless
measure of line-opacity that is independent of the assumed ion thermal speed, with a nearly constant characteristic value
of order Q ∼ 103 for a wide range of ionization conditions (Gayley 1995).
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The effect of a radial change in ionization can be approximately taken into account by correcting
the CAK force (3) by a factor of the form (ne/W )δ , where ne is the electron density, W ≡ 0.5(1 −√

1−R∗/r) is the radiation “dilution factor”, and the exponent has a typical value δ ≈ 0.1 (Abbott
1982). This factor introduces an additional density dependence to that already implied by the optical
depth factor 1/tα given in eqn. (3). Its overall effect can be roughly accounted with the simple
substition α → α′ ≡ α− δ in the power exponents of the CAK mass loss scaling law (7). The general
tendency is to moderately increase Ṁ , and accordingly to somewhat decrease the wind speed.

The above scalings also ignore the finite gas pressure associated with a small but non-zero sound-
speed parameter ws. Through a perturbation expansion of the equation of motion (1) in this small
parameter, it possible to derive simple scalings for the fractional corrections to the mass loss rate and
terminal speed (Owocki & ud-Doula 2004),

δms ≈
4
√

1− α

α

a

vesc

; δv∞,s ≈
−αδms

2(1− α)
≈ −2√

1− α

a

vesc

. (9)

For a typical case with α ≈ 2/3 and ws = 0.001, the net effect is to increase the mass loss rate and
decrease the wind terminal speed, both by about 10%.

An important success of these CAK scaling laws is the theoretical rationale they provide for
an empirically observed “Wind-Momentum-Luminosity” (WML) relation for OB supergiants (Ku-
dritzki, Lennon & Pauldrach 1995). Combining the CAK mass-loss law (7) together with the scaling
of the terminal speed with the effective escape, we obtain a WML relation of the form,

Ṁv∞
√

R∗ ∼ L1/α′
Q

1/α′−1
(10)

wherein we have neglected a residual dependence on M(1 − Γe) that is generally very weak for the
usual case that α′ is near 2/3. Note that the direct dependence Q ∼ Z provides the scaling of the
WML with metalicity Z. Much current research aims also to understand deviations from this relation
for the weak winds of cooler OB dwarfs, and for the strong winds of Wolf-Rayet stars (Puls et al.
2008).

3 Non-Sobolev Models of Wind Instability
The above CAK steady-state model depends crucially on the use of the Sobolev approximation to
compute the local CAK line force (3). Analyses that relax this approximation show that the flow is
subject to a strong, “line-deshadowing instability” (LDI) for velocity perturbations on a scale near
and below the Sobolev length lSob = vth/(dv/dr) (MacGregor, Harmann & Raymond 1979, Owocki
& Rybicki 1984, 1985). Moreover, the diffuse, scattered component of the line force, which in the
Sobolev limit is nullified by the fore-aft symmetry of the Sobolev escape probability (see figure 2),
turns out to have important dynamics effects on the instability through a “diffuse line-drag” (Lucy
1984).

3.1 Linear Analysis of Line-Deshadowing Instability
For sinusoidal perturbations (∼ ei(kr−wt)) with wavenumber k and frequency ω, the linearized mo-
mentum equation (ignoring the small gas pressure) relating the perturbations in velocity and ra-
diative acceleration implies ω = i δg

δv
, which shows that unstable growth, with =ω > 0, requires

<(δg/δv) > 0. For a purely Sobolev model (Abbott 1980), the CAK scaling of the line-force (3)
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Figure 2: (a) The line profile φ and direct intensity plotted vs. comoving frame frequency x − u =
x− v/vth, with the light shaded overlap area proportional to the net direct line-force gdir. The dashed
profile shows the effect of the Doppler shift from a perturbed velocity δv, with the resulting extra area
in the overlap with the blue-edge intensity giving a perturbed line-force δg that scales in proportion
to this perturbed velocity δu = δv/vth. (b) The comoving-frequency variation of the forward (+) and
backward (-) streaming parts of the diffuse, scattered radiation. Because of the Doppler shift from the
perturbed velocity, the dashed profile has a stronger interaction with the backward streaming diffuse
radiation, resulting in a diffuse-line-drag force that scales with the negative of the perturbed velocity,
and so tends to counter the instability of the direct line-force in part a.

with velocity gradient v′ implies δg ∼ δv′ ∼ ikδv, giving a purely real ω, and thus a stable wave that
propagates inward at phase speed,

ω

k
= − ∂g

∂v′
≡ −U , (11)

which is now known as the “Abbott speed”. Abbott (1980) showed this is comparable to the outward
wind flow speed, and in fact exactly equals it at the CAK critical point.

As illustrated in figure 2a, instability arises from the deshadowing of the line by the extra Doppler
shift from the velocity perturbation, giving δg ∼ δv and thus =ω > 0. A general analysis (Owocki &
Rybicki 1984) yields a “bridging law” encompassing both effects,

δg

δv
≈ Ω

ikΛ

1 + ikΛ
, (12)

where Ω ≈ gcak/vth sets the instability growth rate, and the “bridging length” Λ is found to be of order
the Sobolev length lsob. In the long-wavelength limit kΛ � 1, we recover the stable, Abbott-wave
scalings of the Sobolev approximation, δg/δv ≈ ikΩΛ = ikU ; while in the short-wavelength limit
kΛ � 1, we obtain the instability scaling δg ≈ Ωδv. The instability growth rate is very large, about
the flow rate through the Sobolev length, Ω ≈ v/lSob. Since this is a large factor v/vth bigger than the
typical wind expansion rate dv/dr ≈ v/R∗, a small perturbation at the wind base would, within this
lineary theory, be amplified by an enormous factor, of order ev/vth ≈ e100!

3.2 Numerical Simulations of Instability-Generated Wind Structure
Numerical simulations of the nonlinear evolution require a non-Sobolev line-force computation on
a spatial grid that spans the full wind expansion over several R∗, yet resolves the unstable structure
at small scales near and below the Sobolev length. The first tractable approach (Owocki, Castor &
Rybicki 1988) focussed on the absorption of the direct radiation from the stellar core, accounting now
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for the attenuation from intervening material by carrying out a nonlocal integral for the frequency-
dependent radial optical depth,

t(x, r) ≡
∫ r

R∗

dr′κeρ(r′)φ [x− v(r′)/vth] , (13)

where φ is the line-profile function, and x is the observer-frame frequency from line-center in units of
the line thermal width. The corresponding nonlocal form for the CAK line-ensemble force from this
direct stellar radiation is

Γdir(r) = ΓeQ
1−α

∫ ∞

−∞
dx

φ (x− v(r)/vth)

t(x, r)α
. (14)

In the Sobolev approximation, t(x, r) ≈ Φ(x−v/vth)t (where Φ(x) ≡
∫∞

x
φ(x′) dx′), this recovers the

CAK form (3). But for perturbations on a spatial scale near and below the Sobolev length, its variation
also scales in proportion to the perturbed velocity, leading to unstable amplification. Simulations show
that because of the inward nature of wave propagation implies an anti-correlation between velocity
and density variation, the nonlinear growth leads to high-speed rarefactions that steepen into strong
reverse shocks and compress material into dense clumps (or shells in these 1D models) (Owocki et
al. 1988).

The assumption of pure-absorption was criticized by Lucy (1984), who pointed out that the inter-
action of a velocity perturbation with the background, diffuse radiation from line-scattering results in
a line-drag effect that reduces, and potentially could even eliminate, the instability associated with the
direct radiation from the underlying star. The basic effect is illustrated in figure 2. The fore-aft (±)
symmetry of the diffuse radiation leads to cancellation of the g+ and g− force components from the
forward and backward streams, as computed from a line-profile with frequency centered on the local
comoving mean flow. Panel b shows that the Doppler shift associated with the velocity perturbation
δv breaks this symmetry, and leads to stronger forces from the component opposing the perturbation.

Full linear stability analyses accounting for scattering effects (Owocki & Rybicki 1985) show the
fraction of the direct instability that is canceled by the line-drag of the perturbed diffuse force depends
on the ratio of the scattering source function S to core intensity Ic,

s =
r2

R2
∗

2S

Ic

≈ 1

1 + µ∗
; µ∗ ≡

√
1−R2

∗/r
2 , (15)

where the latter approximation applies for the optically thin form 2S/Ic = 1− µ∗. The net instability
growth rate thus becomes

Ω(r) ≈ gcak

vth

µ∗(r)

1 + µ∗(r)
. (16)

This vanishes near the stellar surface, where µ∗ = 0, but it approaches half the pure-absorption rate far
from the star, where µ∗ → 1. This implies that the outer wind is still very unstable, with cumulative
growth of ca. v∞/2vth ≈ 50 e-folds.

Most efforts to account for scattering line-drag in simulations of the nonlinear evolution of the
instability have centered on a Smooth Source Function (SSF) approach (Owocki 1991; Feldmeier
1995; Owocki & Puls 1996, 1999). This assumes that averaging over frequency and angle makes
the scattering source function relatively insensitive to flow structure, implying it can be pulled out
of the integral in the formal solution for the diffuse intensity. Within a simple two-stream treatment
of the line-transport, the net diffuse line-force then depends on the difference in the nonlocal escape
probabilities b± associated with forward (+) vs. backward (-) integrals of the frequency-dependent
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Figure 3: Left: Results of 1D Smooth-Source-Function (SSF) simulation of the line-deshadowing
instability. The line plots show the spatial variation of velocity (upper) and density (lower) at a fixed,
arbitrary time snapshot. The corresponding grey scales show both the time (vertical axis) and height
(horizontal axis) evolution. The dashed curve shows the corresponding smooth, steady CAK model.
Right: 2DH+1DR SSF simulation, greyscale representation for the density variations rendered as a
time sequence of 2-D wedges of the simulation model azimuthal range ∆φ = 12o stacked clockwise
from the vertical in intervals of 4000 sec from the CAK initial condition.

line-optical-depth (13). For a CAK line-ensemble, the net diffuse force can be written in a form quite
analogous to the direct component (14),

Γdiff (r) =
ΓeQ

1−α

2(1 + µ∗)
[b−(r)− b+(r)] , (17)

with

b±(r) ≡
∫ ∞

−∞
dx

φ(x− v(r)/vth)

[t±(±x, r)]α
(18)

where for t− the integral bounds in (13) are now from r to the outer radius Rmax (Owocki & Puls
1996) and the overall normalization for Γdiff assumes the optically thin source function from eqn.
(15). In the Sobolev approximation, both the forward and backward integrals give the same form, viz.
t±(±x, r) ≈ Φ[±(x − v/vth)]t, leading to the net cancellation of the Sobolev diffuse force. But for
perturbations on a spatial scale near and below the Sobolev length, the perturbed velocity breaks the
forward/back symmetry (figure 2b), leading to perturbed diffuse force that now scales in proportion
to the negative of the perturbed velocity, and thus giving the diffuse line-drag that reduces the net
instability by the factors given in (15) and (16).

The left panel of figure 3 illustrates the results of a 1D SSF simulation, starting from an initial
condition set by smooth, steady-state CAK/Sobolev model (dashed curves). Because of the line-drag
stabilization of the driving near the star (eqn. 16), the wind base remains smooth and steady. But
away from the stellar surface, the net strong instability leads to extensive structure in both velocity
and density, roughly straddling the CAK steady-state. Because the backstreaming component of the
diffuse line-force causes any outer wind structure to induce small-amplitude fluctuations near the
wind base, the wind structure, once initiated, is “self-excited”, arising spontaneously without any
explict perturbation from the stellar boundary.

In the outer wind, the velocity variations become highly nonlinear and nonmonotonic, with am-
plitudes approaching 1000 km/s, leading to the formation of strong shocks. However, these high-
velocity regions have very low density, and thus represent only very little material. As noted for the
pure-absorption models, this anti-correlation between velocity and density arises because the unstable
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Figure 4: Greyscale rendition of the evolution of wind density and temperature, for time-dependent
wind-instability models with structure formation triggered by photospheric perturbations. The boxed
crosses identify localized regions of clump-clump collision that lead to the hot, dense gas needed for
a substantial level of soft X-rays emission.

linear waves that lead to the structure have an inward propagation relative to the mean flow. For most
of the wind mass, the dominant overall effect of the instability is to concentrate material into dense
clumps. As discussed below, this can lead to overestimates in the mass loss rate from diagnostics that
scale with the square of the density.

The presence of multiple, embedded strong shocks suggests a potential source for the soft X-ray
emission observed from massive star winds; but the rarefied nature of the high-speed gas implies that
this self-excited structure actually feeds very little material through the strong shocks needed to heat
gas to X-ray emitting temperatures. To increase the level of X-ray emission, Feldmeier, Pauldrach
& Puls (1997) introduced intrinsic perturbations at the wind base, assuming the underlying stellar
photosphere has a turbulent spectrum of compressible sound waves characterized by abrupt phase
shifts in velocity and density. These abrupt shifts seed wind variations that, when amplified by the
line-deshadowing instabilty, now include substantial velocity variations among the dense clumps. As
illustrated in figure 4, when these dense clumps collide, they induce regions of relatively dense, hot
gas which produce localized bursts of X-ray emission. Averaged over time, these localized regions
can collectively yield X-ray emission with a brightness and spectrum that is comparable to what is
typically observed from such hot stars.

Because of the computational expense of carrying out nonlocal optical depth integrations at each
time step, such SSF instability simulations have generally been limited to just 1D. More realistically,
various kinds of thin-shell instabilites (Vishniac 1994) can be expected to break up the structure into
a complex, multidimensional form. A first step to modelling both radial and lateral structure (Dessart
& Owocki 2003) is to use a restricted “2D-H+1D-R” approach, extending the hydrodynamical model
to 2D in radius and azimuth, but still keeping the 1D-SSF radial integration for the inward/outward
optical depth within each azimuthal zone. The right panel of figure 3 shows the resulting 2D density
structure within a narrow (12o) wedge, with the time evolution rendered clockwise at fixed time inter-
vals of 4000 sec starting from the CAK initial condition at the top. The line-deshadowing instability
is first manifest as strong radial velocity variations and associated density compressions that initially
extend nearly coherently across the full azimuthal range of the computational wedge.

But as these initial “shell” structures are accelerated outward, they become progressively disrupted
by Rayleigh-Taylor or thin-shell instabilities that operate in azimuth down to the grid scale dφ = 0.2o.
Such a 2DR+1DH approach may well exaggerate the level of variation on small lateral scales. The
lack of lateral integration needed to compute an azimuthal component of the diffuse line-force means
that the model ignores a potentially strong net lateral line-drag that should strongly damp azimuthal
velocity perturbations on scales below the lateral Sobolev length l0 ≡ rvth/vr (Rybicki, Owocki &
Castor 1990). Presuming that this would inhibit development of lateral instability at such scales, then
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any lateral breakup would be limited to a minimum lateral angular scale of ∆φmin ≈ l0/r = vth/vr ≈
0.01 rad ≈ 0.5o. Further work is needed to address this issue through explicit incorporation of the
lateral line-force and the associated line-drag effect.

3.3 Clumping, Porosity and Vorosity: Implications for Mass Loss Rates
Both the 1D and 2D SSF simulations thus predict a wind with extensive structure in both velocity and
density. A key question then is how such structure might affect the various wind diagnostics that are
used to infer the mass loss rate. Historically such wind clumping has been primarily considered for
its effect on diagnostics that scale with the square of the density, The strength of such diagnostics is
enhanced in a clumped wind, leading to an overestimate of the wind mass loss rate that scales with√

fcl, where the clumping factor fcl ≡ 〈ρ2〉 / 〈ρ〉2, with angle brackets denoting a local averaging
over many times the clump scale. For strong density contrast between the clump and interclump
medium, this is just inverse of the clump volume filling factor, i.e. fcl ≈ 1/fvol. 1D SSF simulations
by Runacres & Owocki (2002) generally find fcl increasing from unity at the structure onset radius
∼ 1.5R∗, peaking at a value fcl & 10 at r ≈ 10R∗, with then a slow outward decline to ∼ 5
for r ∼ 100R∗. These thus imply that thermal IR and radio emission formed in the outer wind
r ≈ 10 − 100R∗ may overestimate mass loss rates by a factor 2-3. The 2D models of Dessart &
Owocki (2003) find a similar variation, but somewhat lower peak value, and thus a lower clumping
factor than in 1D models, with a peak value of about fcl ≈ 6, apparently from the reduced collisional
compression from clumps with different radial speeds now being able to pass by each other. But in
both 1D and 2D models, the line-drag near the base means that self-excited, intrinsic structure does
not appear till r & 1.5, implying little or no clumping effect on Hα line emission formed in this
region. It should be stressed, however, that this is not necessarily a very robust result, since turbulent
perturbations at the wind base, and/or a modestly reduced diffuse line-drag, might lead to onset of
clumping much closer to the wind base.

If clumps remain optically thin, then they have no effect on single-density diagnostics, like the
bound-free absorption of X-rays. The recent analysis by Cohen et al. (2010) of the X-ray line-profiles
observed by Chandra from ζ-Pup indicates matching the relatively modest skewing of the profile
requires mass loss reduction of about a factor 3 from typical density-squared diagnostic value. How-
ever, as discussed in the review by L. Oskinova et al. (2011) in these proceeedings, a key issue here
is whether the individual clumps might become optically thick to X-ray absorption. In this case, the
self-shadowing of material within the clump can lead to an overall reduction in the effective opacity
of the clumped medium (Owocki, Gayley & Shaviv 2004; Oskinova, Feldmeier & Hamann 2006),

κeff = κ
1− e−τcl

τcl

, (19)

where κ is the microscopic opacity, and the optical thickness for clumps of size ` is τcl = κρ`fcl.
The product `fcl ≡ h is known as the porosity length, which also represents the mean-free-path
between clumps. A medium with optically thick clumps is thus porous, with an opacity reduction
factor κeff/κ = 1/τcl = 1/κρh.

However, it is important to emphasize that getting a significant porosity decrease in the continuum
absorption of a wind can be quite difficult, since clumps must become optically thick near the radius
of the smoothed-wind photosphere, implying a collection of a substantial volume of material into each
clump, and so a porosity length on order the local radius. Owocki & Cohen (2006) showed in fact
that a substantial reduction of the absorption-induced asymmetry of X-ray line profiles required large
porosity lengths h ∼ r. Since the LDI operates on perturbations at the scale of the Sobolev length
lsob ≡ vth/(dv/dr) ≈ (vth/v∞)R∗ ≈ R∗/300, the resulting structure is likewise very small scale, as
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Figure 5: Left: Self-excited velocity structure arising in a 1D SSF simulation of the line-driven
instability, plotted versus a mass coordinate, M(r) =

∫ r

R
4πρr′2 dr′. Note the formation of velocity

plateaus in the outer regions of the wind. Right: Velocity vs. mass in a wind seqment with structure
described by a simplified velocity staircase model with multiple large steps ∆v between plateaus of
width δv. Here the associated velocity clumping factor fvel ≡ δv/∆v = 1/10. The straight line
represents the corresponding smooth CAK/Sobolev model.

illustrated in the 2D SSF simulations in figure 3. Given the modest clumping factor fcl . 10, it seems
clear that the porosity length is quite small, h < 0.1r, and thus that porosity from LDI structure is not
likely to be an important factor 2 for continuum processes like bound-free absorption of X-rays.

The situation is however quite different for line absorption, which can readily be optically thick
in even a smooth wind, with Sobolev optical depth τsob = κlρvth/(dv/dr) = κlρlsob > 1. In a
simple model with a smooth velocity law but material collected into clumps with volume filling factor
fvol = 1/fcl, this clump optical depth would be even larger by a factor fcl. As noted by Oskinova,
Hamman & Feldmeier (2007), the escape of radiation in the gaps between the thick clumps might
then substantially reduce the effective line strength, and so help explain the unexpected weakness
of P V lines observed by FUSE (Fullerton et al. 2006), which otherwise might require a substantial,
factor-ten or more reduction in wind mass loss rate.

But instead of spatial porosity, the effect on lines is better characterized as a kind of velocity
porosity , or “vorosity”, which is now relatively insensitive to the spatial scale of wind structure
(Owocki 2008). The left panel of figure 5 illustrates the typical result of 1D dynamical simulation
of the wind instability, plotted here as a time-snapshot of velocity vs. a mass coordinate, instead of
radius. The intrinsic instability of line-driving leads to a substantial velocity structure, with narrow
peaks corresponding to spatially extended, but tenuous regions of high-speed flow; these bracket
dense, spatially narrow clumps/shells that appear here as nearly flat, extended velocity plateaus in
mass. The right panel of figure 5 illustrates a simplified, heuristic model of such wind structure
for a representative wind section, with the velocity clumping now represented by a simple “staircase”
structure, compressing the wind mass into discrete sections of the wind velocity law, while evacuating
the regions in between; the structure is characterized by a “velocity clumping factor” fvel, set by the
ratio between the internal velocity width δv to the velocity separation ∆v of the clumps. The straight
line through the steps represents the corresponding smooth wind flow.

The effect of the velocity structure on the line-absorption profile depends on the local Sobolev
optical depth, which scales with the inverse of the mass derivative of velocity, τy ∼ 1/(dv/dm),
evaluated at a resonance location rs, where the velocity-scaled, observer-frame wavelength y =
−v(rs)/v∞. In a smooth wind with Sobolev optical depth τy, the absorption profile is given sim-

2Okinova et al. (2004) argue that assuming clumps have a flattened ‘pancake’ shape with normal along the radial
direction can allow greater transparency for X-rays passing near the star. But the above 2D SSF simulations suggest that
Rayleigh-Taylor and thin-shell instabilities should break up such flattened pancakes into smaller, nearly spherical clumps.
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Figure 6: Lower panels: Absorption trough of time-averaged P-Cygni line profile plotted versus
velocity-scaled observer wavelength x = −v/v∞ from line-center, for a weak, medium, and strong
line. The smooth curves correspond to the smooth, CAK initial condition, while the jagged curves
represent results for 1D dynamical instability simulations using the Smooth Source Function (SSF)
method. Upper panels: Color-scale plots of the associated dynamical spectra, with time increasing
vertically from the CAK initial condition.

ply by (Owocki 2008), Ay = 1 − e−τy . In the structured model, the optical thickness of individual
clumps is increased by the inverse of the clumping factor 1/fvel, but they now only cover a fraction
fvel of the velocity/wavelength interval. The net effect on the averaged line profile is to reduce the net
aborption by a factor (Owocki 2008),

RA(τy, fvel) = fvel
1− e−τy/fvel

1− e−τy
. (20)

Note that for optically thick lines, τy � 1, the reduction approaches a fixed value, given in fact by the
clumping factor, RA ≈ fvel. If the smooth-wind line is optically thin, τy � 1, then RA(τy, fvel) ≈
(1−e−τy/f )/(τy/fvel), which is quite analogous to the opacity reduction for continuum porosity (eqn.
19), if we just substitute for the clump optical depth, τc → τy/fvel.

But a key point here is that, unlike for the continuum case, the net reduction in line absorption no
longer depends on the spatial scale of the clumps. Instead one might think of this velocity clumping
model as a kind of velocity form of the standard venetian blind, with fvel representing the fractional
projected covering factor of the blinds relative to their separation. The fvel = 1 case represents closed
blinds that effectively block the background light, while small fvel represent cases when the blinds
are broadly open, letting through much more light.

3.4 Line-absorption profile from instability simulations
Figure 6 shows results for line-absorption spectra from a typical 1D-SSF instability simulation,
wherein the intrinsic instabilty leads to extensive wind structure above a radius of about r ≈ 1.5R∗.
The upper panels of figure 6 show the corresponding effect on the dynamic spectra for a weak,
medium, and strong line. The lower panels compare the associated time-average profile with that
of the smooth CAK initial condition. The high level of velocity clumping leads to many tracks of
enhanced, even saturated absorption, while at the same time exposing channels between the clumps
that allow for increased transmission of the stellar surface flux. The time-averaged profiles in the
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lower panels thus show a general reduction in the absorption compared to the smooth, CAK model,
most notably at middle wavelengths (−y = v/v∞ ≈ 0.3 − 0.8) relative to the blue edge for the
CAK terminal speed v∞. On the other hand, the unstable flow faster than the CAK v∞ extends the
absorption beyond y = −1, leading to notable softening of the blue edge.

But a key result here is that even the strong, saturated line has a residual flux of 10-20%. This is
qualitatively just the kind of absorption reduction needed to explain the observed moderate strength
of the P V line reported by Fullerton et al. (2006). The contribution by Sundqvist et al. (2011) in these
proceedings describes recent further efforts to account for unstable wind velocity structure in quanti-
tative modeling of both UV resonance lines like P V, as well as recombination lines like Hα. While
demonstrating again the importance of accounting for velocity and density structure for interpreting
both diagnostics, the results suggest a need for further development in radiation hydrodynamical sim-
ulations to properly resolve the velocity structure of clumps, and to induce their onset closer to the
wind base, where Hα is formed.
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Discussion
G. Meynet: Is there any evidence for magnetic braking (spin down of rotation rate) of massive mag-
netic stars?
S Owocki: Yes, magnetic braking has been simulated recently by ud-Doula et al. (2008), who give a
simple scaling law for the associated spindown time in terms of the inferred magnetic strength, mass
loss rate, and stellar parameters, when applied to e.g. the B2 Vp star σ Orionis E, this predicts a
spindown time of 1.2 Myr, in very good agreement with recent direct measurement from the timing
of photospheric eclipse of magnetically trapped clouds (Townsend et al. 2010).
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