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Weighted Banach spaces of hclomorphic functions on
the upper half-plane:

Simone Agethen

Abstract

In 2001 Bierstedt [1] asked if the weighted space of holomorphic functions
Hug(G) on the upper half-plane must have the approximation property under
the conditions of Holtmanns [5]. Under these conditions she had shown that
Huvo(G)" and Hv(G) are isometrically isomorphic. The problem remains open
in general, but in the present paper we give a positive answer for weights with
two additional conditions. Actually we can even show the existence of a basis.

1. Introduction

In 1993 Bierstedt, Bonet und Galbis [2] investigated weighted spaces Huo(G) of
holomorphic functions for radial weights on balanced domains G € C¥, N > 1. They
showed that Hvo(G) has the bounded approximation property and that the polyno-
mials are dense whenever they are contained in Hvy(G). For starshaped domains and
admissible weights Kaballo and Vogt [6] had already proved the approximation property
by a different method. More recently Stanev [11] studied weighted spaces of holomor-
phic functions on the upper half-plane. He gave a characterization when the spaces
are not trivial, and with one of his examples one can construct a weighted space of
holomorphic functions with an unbounded weight which has the bounded approxima-
tion property; see Example 23 below. In her thesis Holtmanns [5] investigated biduals
of weighted spaces of holomorphic functions on the upper half-plane. She presented
conditions on the weight v such that Huo(G)” and Hv(G) are isometrically isomorphic.
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2. Notation, main result

Throughout this article, we use the following notation. Let G be the upper half-plane,
G = {z € C;Imz > 0} and, v : G — R, a weight on G, i.e. a continuous function
which satisfies the following conditions:

(i) v >0 on G,

(ii) limime—ov(2) =0,

(ili) there exists 0 < 79 < 1 with v(2) <wv(z+ir) forall z € G and 0 <7 < 7,
)

(iv) for each € > 0 there exists b = b(e) > 0 such that v(z) > b for all z € G with
Imz > ¢,

(v) v is bounded.

The first three conditions were introduced by Holtmanns [5]. She did not require
conditions (iv) and (v) for her work, but these conditions seem to be neceassary for
the result given below. Define

Ho(G) := {f € H(G); [[f|l. = supv(2)|f(2)] < oo},

Huo(G) := {f € H(G); vf vanishes at infinity on G}.
Huvo(@) is a closed subspace of Hu(G), and both spaces are complete, hence Banach
spaces, where Hug(G) carries the induced norm.

The following is the main result of this article.

Theorem 1. Let G be the upper half-plane and v a weight on G which satisfies condi-
tions (i)-(v). Then Huo(G) has a basis.

Section 3 below is devoted to some preparations. The proof of Theorem 1 follows in
section 4 and uses a result of Lusky [9].

3. Preparations

First we have to define some properties of sequences of linear operators.

Definitions 2. Let X be a given Banach space. For a fixed p with 1 < p < oo we say
that a sequence of continuous linear operators V,, : X — X factors uniformly through
[;'’s with respect to A if there are suitable integers m, € N and continuous linear
operators

Tn:X—él;"", Sp il = X,

with
Vi = SpTn, sup ||Tu|| < A and sup|[Sa]] < A.

A sequence of bounded linear operators V,, : X — X of finite rank is called commuting
approzimating sequence (c.a.s.) if lim, o Voz = z for all z € X and VoV = Viinnm)
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whenever n # m. If there exists such a sequence (V,)nen, then X is said to have
the commuting bounded approzimation property (CBAP). If VoV, = Viin(nim) holds,
in addition, even for n = m then X is said to have a finite dimensional Schauder
decomposition (FDD). It is known that there are Banach spaces with CBAP which do
not have FDD.

In 1996 Lusky [9] presented the following result which we will use in the case p = oo
to show that Hug(G) has a basis.

Theorem 3. (Lusky) Let X have a commuting approzimating sequence (Vylnen such
that V, — Va1 factors uniformly through I7'’s for some 1 < p < oo. Then X has a
basis. .

With the theorem above our problem is reduced to showing that Hue(G) has a com-
muting approximating sequence {V,}22, such that V,, —V,,_y factors uniformly through
[Z’s. In the sequel some technical tools are given which are needed for the proof. In
her thesis [5] Holtmanns defined linear operators 6, as follows:

Definition 4. (Holtmanns) For f € Huo(G) let

O, : Huo(G) = Huo(G), n€ N, O,f = f,

. i..] 1
with fn(z) := f(z+ﬁ) po for z € G.
The main branch of the n-th root is well-defined since z — -= maps G into the set

T+
{z € C; Imz < 0 and |z| < 1}. The functions f, are holomorphic on G since z+1 # 0

for all z € G.

Lemma 5. (Holtmanns) ©, is well-defined and continuous as an operator from Hug(G)
into Huo(G). ©nf converges to f in the compact-open topology, f € Hug(G).

Lemma 6. Let f € Huo(G) and ©, be as defined before. For each € > 0 there exist
no € N and a compact set K C G with v(2)|O,f(2) — f(2)| < e for all 2 € G\ K and
for any fized n € N,n > ny.

Proof: Let € > 0 be given. Set &€ = je. f € Huo(G) means that there exist L > 0 and
0<1l<}with
v(2)|f(2)| €EV z€ G\ [-L, L] x i[l, L].

Set K :=[—-L,L) x i}, L]. For all z € G\ K the following inequality holds for n € N
large enough such that condition (iii) can be applied:

W20 f(2) = ()] < W) (fale) = flzt D)l +1f(z+ 1) = f(2))
w(@)If (2 + 4§/ - fle+ 1)
+o(2)|f (2 + 3+ v(2)|f(2)]

v+ DIfE+ D1

+o(z+ 8)If (2 + )+ v()|£(2)].

INIA

(AN
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Let us now show that v(z + £)|f(z + £)| < & for n € N large enough. Two cases are
possible:

Case 1: [Rez| > LorImz>L. Thenz¢ K = 2+ * ¢ K = v(z + 2)| f(
Case 2: Imz < £ and |Rez| < L. Then there exxsts ny € N with 1
neNn>ny z+i=g+ily+ L) withy+  <i+,<i+1=1

= Im(z+ % )<l=>v(z+ )lf(z+ L) <E.

On the other hand, sup,eq|{/7! = sup,cq ,/‘zﬂ = 1Vn € N since |z + i >

Imz| +1>1Vz € G, and hence |1 — ¢/~ <2

i)| < éE.
%— for all

Using these two estimates in the right hand side of the above inequality yields
0(2)|@nf(2) — f2)| S U +E+E<e
for each 2 € G\ K.

Corollary 7. With Lemmas 5 and 6 it follows that for f € Hug(G) and for eache > 0
there ezists ng € N such that ||©nf — fllo < € for any fited n € Nyn > ng.

Definition 8. Define
Ao(G) = {f € C(G); fic € H(G), Yn > 03N € R, : [f(2)| <nVz € G,[2| > N},
endowed with the sup-norm.

Now we extend O f continuously to G by taking (€,f)(z) = f(z+ 1) t/;; forz e R

Lemma 9. For each f € Huy(G) and each n € N we have ©,f € Ay(G), i.e. there
exists o linear maopping

Ryt Hug(G) — Ao(G), Raf = fa¥VneN

Proof: Let f € Hvg(G) and n € N be fixed. Set ¢ = 1. With condition (iv) for the
weight v there exists b = b(%) > 0 with v(2) > b for all z € G with Imz > ¢. Then
for each z € G, also v(z + %) > b holds. Now fix > 0. f € Huo(G) means that for
7} := 1 - b there exists N > 0 such that

Fe+ D+ D <

for all z € G with |z] > N. Then for f, and such a z € G the following estimate holds:

fa(2)] = e+ DI/ =
= [f(z+2)v(z + 2 S brersiRvioe]
< foi=n,

hence f, € Aq(G).
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Lemma 10. The restriction mapping
R: AO(G) - HUO(G)v f -~ f!Gv
1s well-defined and continuous.

Proof: Fix f € Ap(G). By condition (v), v is bounded, i.e. there exists M > 0
with v(2) < M for all z € G. Let n > 0 be arbitrary, but fixed. Set 7' := L.
For 7' there exists N > 0 such that |f(2)| < % for all z € G with |z| > N. Then
v(2)|f(2)| < ML = nfor all z € G with |2] > N. Define L := N + 1. By (ii) we
can extend v continuously to G by putting 9(z) := v(2) for z € G and ¥(z) = 0
elsewhere. ¥ is uniformly continuous on K := [—L, L] x ¢[§, L] for each § > 0. f is
bounded on K which means that there exists S > 0 such that [f(2){ < Sforall z € K.
For £ := T > 0 there exists § > 0: 2,2 € K, |z — 2| < § = [i(2) — 9(2')| <e. We
would like to show that v(2)|f(z)] < n for all z ¢ K. The desired inequality holds
if |2l > N+ 1. Let 2 = z+4y ¢ K and consider 0 < y < 6 and 2| £ N+ 1.
We get |z — 2| = [z ~z —dy| = |y| < d and ¥(z) = ¥(2) — ¥(x) < € = %, hence
v(2)|f(z)] < ZS =nforall z ¢ K.

Lemma 11. The sequence (R,), of linear mappings R, : Hug(G) — Ao(G) is uni-
formly bounded.

Proof: For n > ny large enough so that condition (iil) can be applied, we get

|Befile = Ilfnl|u=suplfn(2)[v( )—Supif(2+ ) |v(2)

z+1

IA

suplf(z+ )lv(2+ )[
< Hf“'u-

Definition 12. Let D be the open urit disc, D := {z € C;|z| < 1}. Define the disc
algebra

z+1

A(D) := {f € C(D); fip is holomorphic},
and the space
Ao(D) :={f € A(D); f(1)=0}.
Because the polynomials are dense in the disc algebra one can write Ag(D) as
Ao(D) =span{z’ — 1; j=1,2,..}.
Bockarev (3] showed in 1974:

Proposition 13. (Bockarev) The disc algebra A(D) has a Schauder basis and therefore
the bounded approzimation property.

Proposition 14. Aq(D) has the bounded approzimation property.
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Proof: By proposition 13, A(D) has the bounded approximation property. p: A(D) —
Ao(D),p(f) = f— f(1), f € A(D), is a bounded projection onto Ag(D). Because of
this, Ag(D) is complemented in the disc algebra and inherits the bounded approxima-
tion property from A(D).

Proposition 15. There ezists an isometric isomorphism T between Ao(G) and Ag(D).

Proof: Compare [10}, p. 81. Define o : G — D, a(z) = j—;: for z € G. « is a linear

fractional transformation of the upper half-plane G onto the unit disc D. The inverse
mapping of v is 8 : D — G, B(w) := z}*’—’” w € D. For each ¢ > 0, a maps the half
plane Imz > ¢ onto the disc {w; |w — ;%] < 137}, and @ maps the line Imz = ¢
onto the circle {w; |w - 1&| = 7} with the point 1 deleted also 8(1) = oo and
a(o0) = 1. Now we can define

T Ao(G) - Ao(D) as Tf = foa,f€ AQ(G),

which is an isometric isomorphism from A¢(G) onto Ag(D).

From now on we are following a method of Lusky (see [8]) to construct a suitable
commuting approximating sequence (Vp)nen, Vi @ Hug(G) — Huo(G) such that V,, —
Va—1 factors uniformly through IZ's.

Definition 16. Let #(D) := {f : D — C; f continuous, f;p harmonic} endowed with
the sup-norm and let f € H(D) have the Fourier series f(re®) = Y po _ apritlet*e,
Define V,, : H(D) — H(D) as

2n+1 — |k )
(Vuf) (re® Z ar® et 4 Z Q_nllakr‘ﬂeikgo,
lk|<2n n<|k{<ontHl
and V,, : A4o(D) — Ao(D) as
Vaf :=Vof = (Vaf)(1) - 2%, f € Ag(D).

Lemma 17. For the Fourier series f = Y aur¥le?*® we define the Cesiro means
n i H(D) = H(D) by on(f) = Y jycon 2gnzaxr®e*?, of. [4]. Then

20n+1(f) - Jn(f) = f/‘n(f)
holds for each n € N.

Proof: By calculating we obtain

20n+1(f) - Un(f)

2”+ k ; 2" — ;
= 9 Z I ! le\eiktp _ Z . |k{akr|k(ezktp
[kj<2nt! [kj<on
2n+1 n+1 no__ .
— Z |k n— L T]kiezkw+ Z <2 |k| 2 2n‘k!) akr““e‘k“’
9n <[k <n+! kj<an
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o +1_
Z T -k Ik'akr’kieik“’+ Z <———2n Qn) ayr !kl etk
2n on

2n <ik|<ont! k| <2n
2n+1 _ k . .
= E o | ‘akrik'e’k“’—i— E ayrHlgtke
omg|k{<an+ ik|<2n
= Val(f).

Lemma 18. For f € Aq(D) and V, defined as before, the following holds:
(1) limy, 400 Vi f = f for each f € Aq(D),
(%) dim V, Ag(D) < oo,

(i) VoV = Vain(n,my, if n # m.

Proof: (i) and (ii) follow immediately from the definition of V;,, respectively of V, and
Lemma 17 because the Cesiro means are convergent to f in A(D). To show (iii), we
first prove V,V,, = me (n;m)> for n # m. For m > n, V,.Vin = Vi, follows directly from
the definition. Vz"‘—-(]lflczT‘+1 and V2% = V,2F = 28 if k < 2" < 2™,

For n > m one can use the same arguments to get ViV = Vin. To show the desired
equation for V, Vi, set W, (f) = —(Vaf)(1)z*". For m > n we obtain:

VaViu(f) = (Va+ W) (Vim + W) ()
= (VaVin + VWi + Wi Vi + W W) (f)
= Valf) - ?« Vn ) (O") = Vol Vo) (1) = Wa( (V) (1)2)
= Valf) = G WVa(z") = (V)W) + (V /) (D) (Va(e)(1)27
= Valf) + Walf)
= Walf)

In the case m < n one uses the same arguments and obtains V,,V,,, = V,,..

Lemma 19. For trigonometric polynoms 3., oyxri*le®? define P(3", ayr'Flett?) .=
ks 7 ¥le® e, with generally unbounded P. Then P(Vo—Vo1)(f) = e’2 2o, (e7 0 f)—

26’2" o, 1(e72"'f). Hence P(V, — V,_1) is a continuous linear operator and the
same then holds for P(V, — Vo_4).
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Proof: By some calculations we get

P(V ~ Vao1)(f)
2n—1 on 2 k 2n+1
= E aprret? — E aprketty — E T o7 keiky 4 E akr"e’k“’
k=0 k=2n-141 k=27+1
2" ontl
2" —k 2'”‘1 -k :
= g ke — g onmT T ketke o E L ket
=on-141 k=27-141 =97 41
on ont!
m — k 2"+1 .
= E (1 ~ ot | T ketke 4 g akrke”“"
p=on—141 k=2741 -
on k. n-1 2n+1
= T ket + akrke”‘“’
on— 1
k=2n-141 k=2n 41
and
2" —i2"p 1 21y —ign-1
e on<e 5= 56700, (e y)
e . __on—1
— E : k 2" |a Tkeikxp 1 Ik 2 |a ,rkedc(p
2n 2 271—1
1k-2"1£2“ k—2n-11<2
n— lk—2" 1 2”1—10—2"l
— § : I2n Ia r e1k<p _ _2_ § : 2|n_1 Ia ,,,A:ezkcp
0<k<n+1 0<k<on
Zlon_on 4k I L
= E T kethe 4 E o agrret?
k=0 k=241
2"’ 1 2".
211 1 _ 271. 1 + /C ) .211—1 _ k + 271—1 )
— § : kaeakAp - § : akrkeikw
2‘"
k=2n—"141
271
k 2n+1
= E ﬁak’l‘ eik‘p -+ E a rke’k“’
k=0 =2n+1
gn— 1 on
2" —k
- E —Ol r e’k“’— E Q—nakrke"‘“’
k=2n"141
2" n AP PR
= E k¥ -k arFe*? 4 E 2 akrke“““’
2n Con
k=2n=141 k=27 41
an 2n+l
k—2"+k ik AR B
= E — ket g — oy
PAC 2"
k=2n-141 k=2741
on _ 2n+1 n
— +1 _
— k 2" iky 2 k iko
= —2‘;—1'—“0( 7‘ [ + akr € .
g=2n-141 k=2n 41
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Proposition 20. V,, — V,,_; factors uniformly through 17 ’s on Ag(D).

Proof: By the definition of the Cesaro means, {|o,|| = 1 holds for all n € N; again cf. [4].
With Lemma 17 we obtain ||V,]| < 3 for all n € N. Hence (V,), is uniformly bounded.
C(8D) is a L-space, and it is well-known that H(D) is isometrically isomorphic to
C(8D). Hence H(D) is a Ly-space. There exists A > 0 such that for each n € N
there is ' ¢ H(D) with V,,1H(D) C F and there is an isomorphism & : F — [¥
with M = dim F < oo and ||®|| - ||®7!|| < A. Note that A¢(D) C H(D). Define
T, : Ao(D) — 1M by
T.f = (D(Vn+1 ~- Vn—?)f:

and S, : 1M — Ao(D) by _‘
Sng = P(Vo = Vo1)® 1g — (P(Vn = Va1) @71 g)(1).
We have sup, ||Sa|| < 00, sup, [[Ty]| < oo and
SaTo(f) = Sn®(Vayr — Va-2)f
= P(Va=Vao)(Vasr = Va2)f = (P(Va = Va1) (Vasr = Vae2) )(1)

P(Vy = Vo) f = (P(Va = Va1) £)(1)
= (Vn - Vn—l)f

where the last but one equality holds because of

(Vn - Vn—l)(v‘n+1 - Vn—?) = VnVn+1 ~VaVao — Vn—lv‘n+l + Va1Vaoa
Vn - Vn—? - Vn—l + Vn—2
= Vo—V,_1.

4, Proof of Theorem 1

Collecting the results of Section 3 we can now prove Theorem 1. First we give an
overview of the operators defined before:

Huo(G) 22 40(G) 5 Ao(D) Y25 40(D) 75 40(G) &5 Huo(G).
For a suitable sequence (m,)nen of indices we can assume without loss of generality:
(%) Ry, RT7 ! (r¥lete 1) = T (rlkleike — 1) v |k| < 2nF1,
If (x) is not true, replace Ry, by

R, = Rmn(id—Pﬂ)-%R_an
= (R_l_ann)Pn+R4nﬂa

with E, := span{RT!(r¥le**¥ — 1); |k| < 2"*'}, E, C Huwo(G) and P, : Hue(G) —
E, a bounded projection. Then

Ry RT'=(R'~ Ry )RT' + R RT ' =T""
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holds on E,, but we have to show that ém., is uniformly bounded. By Corollary 7, one
can choose my < my < ... with
1

—1/..1k| ikcp_l __T—l k| itk _ &
[| R, RT ™ (r''e ) (r*e 1>H_712"+2||Pn|lw

for all k| < 2"*!, where w := ||R™}z,||- By the definition of R, we obtain
HRmn - R’m-nH = H(R_l - R'fnn)P"H‘

Let z € F, with ||z]|, = 1. One can write z as
z = Z a RT 71 (rFletv — 1),
Ikj<an+l

With U := (R™! — R,,, )P, one gets

el < 3 lawl - [URTH(rieke — 1)),

|k|<an+t
Define F, := span{(r/¥le?*¥ —1); |k| < 2"*1}. Then F, C A¢(D), RT'F, = E, and
I(RT!5,) "Ml < w ||T|| holds. Set W = (RT™"|r,)! and note and
Wr= > |ogl(rFle* —1).
jkj<on+t

Here the Fourier coefficients can be estimated as follows:

|| < [Wal| < W - [[zlly = W] < w [|T]|.

Putting the estimates together we obtain

| B = B, = sup{|[Uz]]3|l2llo = 1}
< Y el [IWRT (et — 1)),
|k|<2nt!
<2 2y||T|| - T (r*e? — 1) — Ry, RT 7 (rl¥lefke — 1))
_ i
= Bl

Now define V;, : Huo(G) — Huo(G) by
V, := RT"'V,TRp,.

We claim thaAt V. is a commuting approximating sequence with Van = Am;n(n,m) for
n # m, dim V, Hyg(G) < oo and lim, e Vi, f = f for f € Hus(G). Let n > m; then
we have:
ViVin = RTW,TRn,RT 'V\TR,,.

= RT W, TT7'V,,TR.

= RT 'V, V,TR,..

= RT'V,,TRn,

= V..
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This holds because of (*) and because 77" is the identity on Aq(D). If n < m we
obtain Van = Vn by the same arguments. In Proposition 20 we showed that there exist
kn, Tn : Ag(D) — k2 and S, : Ik» — Ag(D) with sup,, [|Sa|| < 0o, sup, ||Tn|| < oo
and S, T, = V, — Va_1. Set

Ty : Hu(G) = U2, T:= T.TRp,,
Sp ik - Hug(G), S,:= RT'S,.
With (%) and the definition of V;, it follows that
(x*) ViT Ry, = VoT Ry,

holds for all j > nsince V,T Ry, RT ! (r¥le¢—1) = V,TT ! (r'Hle?v —1) = V, (rlklethe —
1) for each |k| < 27*1. Note that sup,, |{Sa|| < 00, sup, ||Tn|l < co and by (**)

$Tn = Sa(TuTRm,)

= RT'S,T, TR,

= RT 'V, —Vu-1)T R,

= (RT"'V, — RT"'V,_ )T R,

= RT'V,TR,, — RT'V,1TR,,, _,

= Vo—Vor
We have constructed a commuting approximating sequence V,, such that V, — V,_;
factors uniformly through I7's. With Theorem 3 it follows that Huve(G) has a basis.

5. Examples

Example 21. Let G be the upper half-plane and v : G — R be defined by v(z) :=
(Imz)" for Imz < 1 and v(z) := 1 elsewhere, r > 0. v satisfies the conditions (i) - (v).
Hence Hug(G) has a basis.

Example 22. Let G be the upper half-plane and v : G = R be defined by v(z) :=
exp(—1/(Imz)?). It is easy to see that v satisfies conditions (i)-(v). Hence Huy(G) has
a basis.

Example 23. Let G be the upper half-plane and v : G — R be defined by v(z) := Imz.
v satisfies conditions (i)-(iv), but v is not bounded. But Hug(G) has the bounded
approximation property.

Proof: The idea of this construction goes back to Stanev [11]. Let the weight w on the
unit disc D be defined by w(d) := (1 — |§|?). w is radial and limys; w(6) = 0. Hence
Huwy(D) has the bounded approximation property [2]. For f € Hwg(D) we define the
operator T : Hwo(D) — Huo(G), Tf(2) = (f o B)(2) - (=), 2 € G with B(2) = {2

1-iz

for z € G. § maps the upper half-plane G onto the unit disc D. The operator T is a
topological isomorphism from Hwge(D) onto Hue(G) [11].
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under the direction of K.D. Bierstedt. The author thanks him, J. Bonet and W. Lusky
for many helpful discussions.
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