THÉORIE SYMPLECTIQUE DU FLUIDE PARFAIT RELATIVISTE (*)

par P. V. GROSJEAN
Professeur à l'Université de Mons
Belgique

SUMMARY

We intend to show that:

1° The existence of an adiabatic perfect fluid, in the spacetime \(V \) of the special relativity, gives to \(V \) the structure of a four-dimensional symplectic manifold.

The equations of motion of a particle are then symplectic hamiltonian or lagrangian equations, where the descriptor parameter \(\tau \) is the Van Dantzig's and Schmid's "thermasy", i.e. a function of which the time rate of change is the relativistic temperature \(T = \frac{d\tau}{dt} \).

The specific entropy \(I \) acts as a symplectic hamiltonian, to which the thermasy \(\tau \) is canonically conjugated in the spacetime \(V \). This hamiltonian \(I \) is associated with the symplectic lagrangian \(\mathcal{L} = \theta + \phi \), where \(\theta = T^{-1} \) is the reciprocal temperature and \(\phi \) the thermodynamical potential \(I/T \) (\(I \) being the free energy of Gibbs).

2° If the fluid is barotropic, but not necessarily adiabatic, there exists another hamiltonian \(\mathcal{H} \), canonically conjugated (in \(V \)) to the proper time \(t \) of the fluid particle. And \(\mathcal{H} \) is associated with the lagrangian \(\mathcal{N} = 1 + \mathcal{H} - \mathcal{H} \), where \(\mathcal{H} \) is the enthalpy.

The symplectic formalism leads directly to covariant relativistic statements of Bernoulli's two theorems and of Kelvin's theorem on circulation. Always through the same methods, the relativistic notions of "steady flow" and of "irrotational flow" will have been very easily defined, in a covariantive way.

§ 1. — THÉORIE VARIATIONNELLE

1.1. — Dans tout ce qui suivra : 1° — Les lettres sous-pointées désigneront des densités, au sens physique et au sens tensoriel du terme; \(g \) sera la densité métrique fondamentale et \(\mu \) la densité de matière. 2° — Les majuscules cursives désigneront des grandeurs "spécifiques", c'est-à-dire ramenées à l'unité de masse; ainsi le volume spécifique sera :

\[
\mathcal{V} = \frac{g}{\mu} = \mu^{-1}
\]

A toute grandeur spécifique \(\mathcal{V} \) correspond une densité \(\varphi = \mathcal{A} \mu \).

1.2. — La seule donnée du problème est l'énergie interne \(\mathcal{E} \) fonction supposée connue de \(\mathcal{V} \) et de l'entropie \(I \). Cette énergie s'additionnera à l'énergie matérielle spécifique, — qui est \(\mathcal{E} = 1, \) — pour donner l'énergie totale \((1 + \mathcal{E}) \), de densité

\[
\varphi = \mu(1 + \mathcal{E}) = \mu + \mathcal{E}
\]

Présenté par P. Ledoux, le 20 janvier 1972.
En 1969, L. A. Schmid, étudiant le fluide parfait adiabatique relativiste (*), a proposé le principe variationnel ci-après, où l'intégrale est étendue sur un morceau \(\mathcal{L} \) de l'univers de Minkowski

\[
\delta \int \int \int_M \Lambda \, d\mathbf{x} = 0, \quad \text{où: } d\mathbf{x} = dx^1 \wedge dx^2 \wedge dx^3 \wedge dx^4
\]

et où la lagrangienne :

\[
\Lambda \overset{\text{def}}{=} \mu [(1 + \mathcal{E}) \sqrt{v^\mu v_\mu} - v^\mu (\mathcal{J} \partial_\lambda \tau + B \partial_\lambda \theta + \partial_\lambda \mathcal{J})] + \mu [\sqrt{v^\mu v_\mu} - 1]
\]

est invariante pour le groupe de Lorentz. La signature de la métrique a été choisie ici égale à \((- + + + +)\).

La vitesse \(v^\mu \) est celle de la matière, et ce sera aussi celle de l'énergie, chaque particule étant adiabatique. Les grandeurs \(\mathcal{J}, \rho, \tau, B, \alpha \), sont des multiplicateurs de Lagrange, qu'on devra varier au même titre que \(\mathcal{J}, \mathcal{E} \) et les quatre \(v^\mu \).

1.3. — Les variations des multiplicateurs donnent :

\[
\delta \mathcal{J} = 0; \quad \sqrt{v^\mu v_\mu} = 1; \quad \frac{d \mathcal{J}}{dt} = 0; \quad \frac{d \alpha}{dt} = 0; \quad \frac{d \mathcal{B}}{dt} = 0.
\]

Et celle de \(\mathcal{E} \) et de \(\mathcal{E} \) donnent :

\[
T \frac{d \mathcal{E}}{dt} = \frac{d \tau}{dt} \quad p = -\frac{\partial \mathcal{E}}{\partial \tau} \quad \frac{dt}{\partial \mathcal{E}} \overset{\text{def}}{=} p / \gamma
\]

Donc, \(p \) est la pression, multipliée par \(\gamma \). Et \(\tau \) est la thermocie de D. Van Dantzig (1939-40), les iso-thermacies (iso-\(\tau \)) étant du genre espace.

Les variations des \(v^\mu \) conduisent aux relations :

\[
\pi_\lambda = \pi_\lambda - \partial_\lambda \mathcal{J} = \mathcal{J} \partial_\lambda \tau + B \partial_\lambda \theta
\]

ou

\[
\pi_\lambda = (1 + \mathcal{H}) v^\mu_\lambda
\]

\[
\mathcal{H} \overset{\text{def}}{=} \mathcal{E} + pv^\lambda = \text{enthalpie spécifique}.
\]

1.4. — A partir d'ici, nous allons nous séparer de Schmid, et continuer l'étude par une méthode reliant de la géométrie différentielle symplectique. Ajoutons cependant que Schmid a généralisé sa théorie au cas où le fluide se compose de plusieurs phases, notées A, B, ..., en équilibre thermique.

On a alors :

\[
\partial_\lambda [\varphi_A \cdot v^\lambda_A] + \varphi_A = 0; \quad \sum_A \varphi_A = 0 \iff \sum_A \mu_A \frac{d \mathcal{J}^\lambda_A}{dt} = 0
\]

les \(\varphi_A \) étant les flux d'entropie (échanges réversibles).

Le calcul variationnel conduit alors à une conclusion remarquable : La thermocie \(\tau \) est la même pour toutes les phases : \(\tau_A = \tau_B = \ldots \tau \). Il en va pareillement pour le conducteur de température, défini par :

\[
T = \partial_\lambda \tau
\]

... Par contre, chaque phase A est caractérisée par une température T_A, définie
par (6); donc, bien qu'il y ait équilibre thermique, on aura :

$$\frac{d\tau}{dt_A} = T_A \neq T_B = \frac{d\tau}{dt_B} \quad (\neq, \text{ en général})$$

(13)

Et à chaque phase correspondra un contravecteur de température réciproque :

$$\theta_A \overset{\text{def}}{=} \theta_A \cdot n_A, \quad \text{où} \quad \theta_A = T_A^{-1}$$

(14)

§ 2. — ÉLÉMENTS DE GÉOMÉTRIE SYMPLECTIQUE LOCALE

2.1. — La variété \mathcal{V}, de dimension paire $2n$, sera symplectique s'il existe une
2-forme symplectique, $\sigma_{\lambda \mu}$, régulière et fermée. Un champ θ sera dynamique pour
$\sigma_{\lambda \mu}$ si l'on a :

$$X_{\lambda \mu} \theta = 0 \quad (\lambda, \mu = 1, 2, \ldots, 2n)$$

(15)

où $X_{\lambda \mu}$ est la dérivée de Lie associée au champ θ, dont les lignes sont données par

$$dx^\lambda = \theta^\lambda \cdot d\tau$$

(16)

On montre qu'il existe alors, au moins localement :

1° — un potentiel \mathcal{P}, appelé le hamiltonien symplectique, tel que l'on ait

$$\sigma_{\lambda \mu} \theta^\mu = \partial_\lambda \mathcal{P} \Rightarrow \frac{d\mathcal{P}}{d\tau} = 0$$

(17)

Le système (17) est celui des équations de Hamilton (au sens symplectique).

2° — un autre potentiel \mathcal{L}, appelé le lagrangien symplectique, tel que l'on ait

$$X_{\lambda \mu} \pi_\lambda = \partial_\lambda \mathcal{L}$$

(18)

où π_λ est un potentiel de $\sigma_{\lambda \mu}$. Comme ce potentiel symplectique π_λ n'est fixé qu'à un
gradient ∂f près, \mathcal{L} ne sera déterminé qu'à $\frac{df}{d\tau}$ près; et l'on aura :

$$\begin{cases}
\mathcal{L} = \theta^\lambda \pi_\lambda - \mathcal{L} = \theta_\lambda \pi^\lambda - \mathcal{L}' = \ldots \\
\pi'_\lambda = \pi_\lambda + \partial f; \quad \mathcal{L}' = \mathcal{L} + \mathcal{L}'
\end{cases}$$

(19)

Le système (18) est celui des équations de Lagrange (au sens symplectique).

2.2. — Un système de coordonnées, noté $[x^\nu] = [Q^1, \ldots, Q^n, P_1, \ldots, P_n] =
[Q, \mathcal{P}]$, sera canonique s'il confère à $\sigma_{\lambda \mu}$ une écriture canonique, — voir (33)
cia-près. Un potentiel canonique admissible est alors π'_λ, dont les composantes sont :

$$[\pi'_\mu] = [P_1, \ldots, P_n; 0, \ldots, 0] = [\mathcal{P}, 0]$$

(20)

Avec un tel potentiel, on a identiquement :

$$\pi'_\mu dx^\nu = \mathcal{P}_dQ^\nu \quad \{ \mu' = 1, 2, \ldots, 2n \}$$

$$\{ \nu = 1, 2, \ldots, n \}$$

(21)

Donnons-nous une transformation canonique $[\mathcal{P}, \mathcal{Q}] \rightarrow [\mathcal{P}', \mathcal{Q}']$. On sait qu'il existe alors une génératrice $\mathcal{J}(\mathcal{Q}, \mathcal{Q})$, telle que l'on ait

$$\mathcal{P}'dq^i - \mathcal{P}dq^i = d\mathcal{J} \quad (i, j = 1, 2, \ldots, n)$$

(22)
2.3. — Soit maintenant \(x^\lambda \) un système de coordonnées (une carte) obtenu par transformation régulière du système \([\xi^\lambda] = [\Omega, \rho] \) introduit en (22). Au système \([\xi^\lambda] \) correspondait un potentiel canonique \(\pi_\lambda \), du type (20); au système \([x^\lambda] \) va correspondre le potentiel symplectique \(\pi_\lambda \), non canonique en général :

\[
\pi_\lambda = \pi_\lambda \frac{\partial x^\xi}{\partial x^\lambda},
\]

Si nous exprimons \(\pi_\lambda, \mathcal{P} \), \(Q^i \) et \(J \) en fonction des \(x^\lambda \), (22) s'écrit :

\[
\pi_\lambda dx^\lambda - \mathcal{P}_i dQ^i = dJ \quad \begin{cases} \lambda = 1, 2, \ldots, 2n \\ i = 1, 2, \ldots, n \end{cases}
\]

2.4. — En particulier, le système \((Q, \mathcal{P}) \) peut être « résolvant » : L’un des \(\mathcal{P} \) est le hamiltonien \(\mathcal{H} \), et le \(Q \) de même numéro est le paramètre descriptif \(\tau \); les autres \(\mathcal{P} \) et les autres \(Q \) sont des intégrales premières. Dès lors, (24) devient, d’après (19) :

\[
\frac{dJ}{d\tau} = \theta^\lambda \pi_\lambda - \mathcal{J} = \mathcal{L}
\]

En posant

\[
\pi_\lambda^* = \pi_\lambda - \partial_\lambda J \implies \mathcal{J} = 0, \pi_\lambda^*
\]

on définit un potentiel symplectique « standard » \(\pi_\lambda \), pour lequel les équations symplectiques de Lagrange se réduisent à :

\[
\sum_{i=0}^n \pi_\lambda^* = 0
\]

2.5. — Ceci étant rappelé, on constate une analogie frappante entre la relation symplectique (24) et la relation :

\[
\pi_\lambda dx^\lambda - \mathcal{J} d\tau - \mathcal{P} dx = dJ
\]

issue de l’équation (8) de Schmid. Cette analogie est la clé de la théorie symplectique du fluide adiabatique relativiste (et de bien d’autres théories de fluides d’ailleurs, — voir § 4 et 5 ci-après).

§ 3. — Théorie symplectique du fluide relativiste

3.1. — Raccordons les notations des § 1 et 2 en posant maintenant :

\[
x^\nu = Q^1 = x, \quad x^\nu' = Q^2 = \tau, \quad x^\nu'' = \mathcal{P}_1 = \mathcal{P}, \quad x^\nu'' = \mathcal{P}_3 = \mathcal{J}
\]

Ainsi (8) va s’écrire :

\[
\pi_\lambda^* = \mathcal{P}_i x^\nu' - \mathcal{P}_i = \pi_\lambda - \partial_\lambda J = \begin{cases} i = 1, 2, 3, 4 \\ \lambda = 1, 2, 3, 4 \end{cases}
\]

\[
\sigma_{\mu\nu} = \mathcal{P}_i x^\nu, \quad \sigma_{\mu\nu}' = \partial_\mu x^\nu' - \partial_\mu x^\nu = \{x^\nu; x^\nu'\}
\]

où

\[
\{x^\nu; x^\nu'\} = \sigma_{\mu\nu} x^\nu' - \partial_\mu x^\nu = \text{crochet de Lagrange}
\]
avec

\[(33) \quad \text{Mat} (\sigma_{\varphi}) = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}, \quad \text{où} \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{et} \quad \theta = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]

Donc :

\[(31') \quad \sigma_{\varphi} = \partial_{\lambda} \mathcal{F} \cdot \partial_{\mu} \tau - \partial_{\mu} \mathcal{F} \cdot \partial_{\lambda} \tau + \partial_{\lambda} \theta \cdot \partial_{\mu} \tau - \partial_{\mu} \theta \cdot \partial_{\lambda} \tau \]

Ainsi la 2-forme non canonique σ_{φ} est la transformée de la 2-forme canonique σ_{α} ; celle-ci étant régulière, il en va de même pour σ_{φ}. Et le système $[x, \tau, \mathcal{F}, \varphi]$ est une carte canonique pour \mathbf{V}, valable sur \mathbf{M}.

Nous avons ainsi établi le théorème I :

« L'existence du fluide parfait adiabatique confère à l'espace-temps relativiste une structure de variété symplectique. »

3.2. — Démontrons maintenant le théorème II :

« Le champ θ des vecteurs de température reciproque (14) est dynamique pour σ_{φ} ; autrement dit : $X_{(\varphi)\sigma_{\varphi}} = 0$. »

En effet : Comme σ_{φ} est fermée, le théorème classique de Cartan donne :

\[(34) \quad X_{(\varphi)\sigma_{\varphi}} = \partial_{\lambda}(\theta \sigma_{\varphi} \lambda) - \partial_{\mu}(\theta \varphi_{\lambda}) \]

Or, d'après (29) et (31'), en se rappelant que \mathcal{F}, \mathcal{B} et α sont des intégrales premières, — il vient :

\[(35)-(36) \quad \theta \varphi_{\lambda} = \varphi \varphi_{\lambda} = - \partial_{\mu} \mathcal{F} \Rightarrow X_{(\varphi)\sigma_{\varphi}} = 0 \]

Et comme (35) n'est autre chose que le système (17) de Hamilton, nous avons ainsi démontré le théorème III :

« L'entropie spécifique \mathcal{F} est le hamiltonien symplectique du mouvement du fluide, la thermoclie lui est canoniquement conjuguée dans l'espace-temps. »

On remarquera que (35) s'écrit aussi :

\[(37) \quad \varphi \sigma_{\varphi} = - T \partial_{\mu} \mathcal{F} \Rightarrow X_{(\varphi)\sigma_{\varphi}} = 0 \text{ (en général)} \]

où $X_{(\varphi)}$ est la dérivation de Lie associée au champ de vitesses φ. Ce dernier n'est donc pas dynamique en général, mais il admet un facteur intégrant, qui est la température reciproque $\theta = \sqrt{\theta \varphi_{\lambda}} = T^{-1}$.

3.3. — Au potentiel ψ_{λ} de (30) correspond un lagrangien symplectique \mathcal{L} :

\[(38) \quad \frac{d\mathcal{F}}{d\tau} = \mathcal{L} = \theta \varphi_{\lambda} - \mathcal{F} = \theta(1 + \mathcal{H}) - \mathcal{F} = \frac{1 + \mathcal{H}}{T} = \theta + \psi = \mathcal{L} \]

où ψ est le « potentiel thermodynamique » classique. D'où le théorème IV :

« La somme de la température reciproque et du potentiel thermodynamique constitue le lagrangien symplectique. »

D'où le système (18) des équations symplectiques de Lagrange :

\[(39) \quad \text{c.-à.-d. :} \quad X_{(\varphi)}[(1 + \mathcal{H})\varphi_{\lambda}] = \partial_{\lambda}(\theta + \mathcal{H} \theta) \]

\[(40) \quad X_{(\varphi)}[(1 + \mathcal{H})\varphi_{\lambda} - \partial_{\lambda} \mathcal{F}] = 0 \]
ce qui donne le théorème V (réciproque du « théorème de Kelvin », voir 4.7 ci-après):

« L'énergie-impulsion spécifique \(\frac{\partial}{\partial \tau} \sigma^\mu_{\lambda} \) est conservative, au sens de la dérivation de Lie selon le champ \(\theta^\lambda_{\mu} \); c'est un potentiel standard pour \(\sigma^\mu_{\lambda \nu} \). »

3.4. — Des calculs élémentaires ramènent (35), (39), (40) à des écritures plus familières (*):

\[
\begin{align*}
\frac{d}{dt} \left[(1 + \mathcal{H}) \nu^\lambda \right] &= \partial_\lambda p \\
(\varphi + p) \frac{d}{dt} \nu^\lambda &= \partial_\lambda p
\end{align*}
\]

Dans (42), est apparu d'elle-même la dérivée transverse de Cattaneo :

\[
\partial_\lambda = \frac{\delta}{\delta \nu^\lambda}; \quad \partial_\nu^\lambda = \partial_\lambda^\nu - v^\nu \nu^\lambda = \text{projecteur d'espace}
\]

§ 4. — FLUIDE BAROTROPE

4.1. — Nous dirons qu'un fluide est barotrope lorsque son champ \(v^\lambda \) de vitesses matérielles est dynamique pour la 2-forme \(\sigma_{\lambda \mu} \):

\[
X_{\lambda \mu} \sigma_{\lambda \mu} = 0 \]

\[
\begin{align*}
\exists \mathcal{M} : \nu^\lambda \sigma_{\lambda \mu} &= - \partial_\mu \mathcal{M} \\
\exists \mathcal{N} : X_{\lambda \mu} \sigma_{\lambda \mu} &= \partial_\lambda \mathcal{N}
\end{align*}
\]

\[
\Rightarrow \mathcal{M} + \mathcal{N} = v^\lambda \sigma_{\lambda \mu} = 1 + \mathcal{M} \Rightarrow \mathcal{N} = 1 + \mathcal{M} - \mathcal{M}
\]

En conséquence, il existe un hamiltonien symplectique \(\mathcal{M} \), canoniquement conjugué au temps propre \(t \); c'est une intégrale première du mouvement.

4.2. — Pour la généralité de l'exposé, nous pouvons abandonner l'hypothèse d'adiabasie; le fluide exécute alors des échanges (réversibles, toutefois) selon la relation (11) où l'on posera :

\[
\mathcal{F} = \frac{\partial}{\partial \tau} \mathcal{M} = - \frac{d}{dt} \mathcal{F} = \text{flux spécifique}
\]

\(\mathcal{F} \) et \(\tau \) seront toujours canoniquement conjugués, et il en sera encore de même pour les intégrales premières \(\mathcal{B} \) et \(\alpha \). Donc \(\mathcal{M} \) ne dépendra que de \(\mathcal{F} \) et de \(\tau \), et l'on aura les équations canoniques :

\[
\begin{align*}
\frac{\partial \mathcal{M}}{\partial \mathcal{F}} &= \frac{d\tau}{dt} = T; \quad \frac{\partial \mathcal{M}}{\partial \tau} &= - \frac{d\mathcal{F}}{dt} = \mathcal{F}; \quad \frac{\partial \mathcal{M}}{\partial \mathcal{B}} &= \frac{d\alpha}{dt} = 0 = - \frac{d\mathcal{B}}{dt} = \frac{\partial \mathcal{M}}{\partial \alpha}
\end{align*}
\]

(*): Voir n° 5.4, in fine.
\[
\begin{align*}
(49) \quad & \Rightarrow \quad \partial_\lambda \mathcal{M} = T \partial_\lambda \mathcal{P} + \mathcal{F} \partial_\lambda \tau \\
(50) \quad & \Rightarrow \quad \partial_\lambda \mathcal{N} = \partial_\lambda (\mathcal{H} - \mathcal{M}) = \mathcal{V} \partial_\lambda \mathcal{P} - \mathcal{F} \cdot \partial_\lambda \tau
\end{align*}
\]

Donc \(\mathcal{N} \) est une fonction de \(p \) et de \(\tau \) seulement, ou une fonction de \(p \) seulement si le fluide est adiabatique. Les équations lagrangiennes (46) du mouvement seront donc, pour un fluide barotrope :

\[
(51) \quad X_{\mu \nu} [(1 + \mathcal{H}) \nu_\lambda] = \mathcal{V} \cdot \partial_\lambda \mathcal{P} - \mathcal{F} \cdot \partial_\lambda \tau
\]

Le covecteur \(T_\lambda \) de température figurera donc chaque fois que \(\mathcal{F} \neq 0 \).

4.4. — Un fluide relativiste sera stationnaire pour un système \((v^\lambda)\) de lignes de temps, si l'on a

\[
(52) - (53) \quad X_{\mu \nu} \partial_\lambda = 0 \quad \text{et} \quad X_{\mu \nu} = \frac{d'}{dt'} \mathcal{M} = 0
\]

\(X_{\nu \nu} \), étant la dérivation de Lie associée au système \(d'\mathcal{X}^\lambda = v^\lambda \cdot dt' \); on a donc \(X_{\nu \nu} \partial^\lambda = 0 \), ainsi :

\[
(54) \quad X_{\nu \nu} (v^\nu \partial_\lambda) = \frac{d'}{dt'} [(1 + \mathcal{H}) \cdot \text{ch } \varphi] = 0
\]

où

\[
(55) \quad \text{ch } \varphi \overset{\text{def}}{=} v^\lambda \cdot \nu_\lambda
\]

Donc \((1 + \mathcal{H}) \cdot \text{ch } \varphi\) est stationnaire, mais il n'en va pas de même pour \(\mathcal{N} \), contrairement à ce qui se passe pour un fluide non relativiste.

Or, (52) donne identiquement, d'après le théorème de Cartan sur la dérivée de Lie des \(p \)-formes :

\[
(56) \quad 0 = X_{\mu \nu} \partial_\lambda = v^\nu \sigma_{\lambda \mu} + \delta_\lambda [(1 + \mathcal{H}) \cdot \text{ch } \varphi]
\]

Et ainsi \((1 + \mathcal{H}) \cdot \text{ch } \varphi\) est le hamiltonien symplectique associé au champ \(v^\lambda \) (pour lequel \(\pi_\lambda \) est un potentiel symplectique standard).

D'après (45) et (53), il vient

\[
(57) \quad v^\nu \sigma_{\lambda \mu} v^\mu = \frac{d'}{dt'} \mathcal{M} = 0
\]

D'où, d'après (56) :

\[
(58) \quad \frac{d}{dt} [(1 + \mathcal{H}) \cdot \text{ch } \varphi] = 0
\]

C'est le premier théorème de Bernoulli, transposé en Relativité. En effet, à l'approximation newtonienne, \(\text{ch } \varphi \cong a + \mathcal{C}/c^2 \), où \(\mathcal{C} \) est l'énergie cinétique spécifique, relativement au système \((v^\lambda)\).

4.5. — Un fluide relativiste sera irréversible si les deux grandeurs \(\mathcal{B} \) et \(\pi \) de Schmid sont des constantes globales :

\[
(59) \quad \Rightarrow \quad \partial_\lambda \mathcal{B} = 0 \quad \text{et} \quad \partial_\lambda \pi = 0
\]

\[
(60) \quad \sigma_{\lambda \mu} = \partial_\lambda \mathcal{F} \cdot \partial_\mu \tau - \partial_\mu \mathcal{F} \cdot \partial_\lambda \tau
\]

La 2-forme \(\sigma_{\lambda \mu} \) est alors singulière, et son rang est toujours égal à 2 ; En effet,
le gradient de \mathcal{S} est du genre espace et celui de τ est du genre temps; ils ne seront donc jamais colinéaires. Pour un fluide irrotationnel, la variété V d’univers n’est que présymplectique (c fermé, de rang constant $= 2$).

4.6. — Si le fluide est irrotationnel et barotrope, la relation (60) est remplacée par

\[
\sigma_{3\mu} = \partial_{3}M \cdot \partial_{\mu}t - \partial_{\mu}M \cdot \partial_{3}t
\]

où $t(\Phi)$ désigne une hypersurface isochrone propre. A noter que la barotrope suppose toujours l’existence des isochrones propres sur tout morceau barotrope $M \subset V$.

Supposons enfin qu’un tel fluide soit en outre stationnaire pour (v^λ). Comme on a :

\[
v^\lambda \cdot \partial_{\mu} t = \frac{d}{dt} = (\text{ch } \varphi)^{-1},
\]

il vient alors, d’après (56), (61) et (45) :

\[
- \partial_{\mu} [(1 + H) \text{ch } \varphi] = v^\lambda \sigma_{3\mu} = - \text{ch } \varphi \cdot \partial_{\mu} M = \text{ch } \varphi \cdot v^\lambda \sigma_{3\mu}
\]

Par conséquent :

1° — Le vecteur $(v^\lambda - v^\lambda \text{ch } \varphi)$ appartient au noyau de $\sigma_{3\mu}$; ce vecteur vaut

\[
v^\lambda = (\delta^\lambda_{\mu} - v^\lambda v^\mu) \cdot v^\nu
\]

C’est la composante de v^λ selon l’espace physique localement associé à (v^λ).

2° — La relation (63) donne aussi :

\[
\partial_{3} [(1 + H) \text{ch } \varphi] - \text{ch } \varphi \cdot \partial_{3} M = 0
\]

Donc :

a) $H' = (1 + H) \text{ch } \varphi$ est fonction de M seulement, avec $\text{ch } \varphi = \frac{\partial H'}{\partial M}$;

b) la transformée de Legendre $(H' - M \text{ch } \varphi)$ est fonction de $\text{ch } \varphi$ seulement, et il en sera de même pour $1 + H' = M = N'$; autrement dit :

\[
N' + f (\text{ch } \varphi) = W' \quad (W' = \text{d}t \text{ globale})
\]

C’est le second théorème de Bernouilli, transposé en Relativité. Car à l’approximation newtonienne, (65) donne $\partial_{3} (N' + \tau') = 0$, c.-à-d.

\[
N' + \tau' = W' = \text{d}t \text{ globale}.
\]

4.7. — Enfin, le théorème de Kelvin n’est qu’une simple conséquence du symplectisme; il nous dit que :

\[
\text{pour un fluide adiabatique : } \frac{d}{dt} \int_{A} \pi_{\lambda} \delta x^{\lambda} = \int_{A} (X_{(\alpha)} \pi_{\lambda}) \delta x^{\lambda} = 0 \quad \forall A
\]

\[
\text{pour un fluide barotrope : } \frac{d}{dt} \int_{\Gamma} \pi_{\lambda} \delta x^{\lambda} = \int_{\Gamma} (X(\omega) \pi_{\lambda}) \delta x^{\lambda} = 0 \quad \forall \Gamma
\]

où les deux courbes fermées sont l’une (A) isothermique, et l’autre (Γ) isochrone propre.

38
§ 5. — AUTRES FLUIDES

La méthode symplectico-variationnelle s'applique évidemment à d'autres cas. Signalons ici, fort brièvement :

5.1. — LE FLUIDE NON RELATIVISTE : La lagrangienne Λ doit être invariante pour le groupe de Galilée. Pour la construire, il faut introduire :

a) le co vecteur $w = (0, 0, 0, 1)$, invariant galiléen (strates d'espace) ;

b) le contravecteur $\tilde{c} = (c^1, c^2, c^3, 1) = c^\nu$, qui matérialise un repère (c^ν) physique galiléen, privilégié et invariable, par rapport auquel se calculera l'énergie cinétique invariante T ; pour un exposé simplifié, on prendra $\tilde{c} = (0, 0, 0, 1)$, l'observateur s'identifiant ainsi momentanément à (c^ν).

Alors, on choisira :

$$\Lambda = \mu v^3 \left[v_e + (T + F + W) + (F_{\partial_\lambda \tau} \partial_\lambda + \partial_\lambda \mathcal{F}) \right] + p \left[v^3 v^\lambda - 1 \right]$$

avec :

$F = F (\mathcal{F}, \mathcal{F})$ = fonction donnée

W est le potentiel massique, et $v_e = c_t - v_t$, $c_4 = \beta - c^3$, d'où $c^4 e_\lambda = 0$.

5.2. — LE FLUIDE RELATIVISTE ÉLECTRISÉ NON THERMIQUE : On choisira :

$$\Lambda = \varepsilon \left[\mathcal{M} \sqrt{v^3 v_\lambda} + \mathcal{A}_\lambda v^3 - v_\lambda (F_{\partial_\lambda \tau} \partial_\lambda + \partial_\lambda \mathcal{F}) \right] + p \left[\sqrt{v^3 v_\lambda} - 1 \right]$$

avec :

$$\mathcal{M} = \mathcal{M} (\mathcal{F}, \tau)$$

\mathcal{A}_λ est le potentiel-vecteur électromagnétique. Donc, attention : ici, les majuscules cursives désignent des grandeurs rapportées à l'unité de charge ; ainsi, ε est la densité électrique, et le hamiltonien \mathcal{H} est le quotient $\frac{\mu}{\varepsilon}$, lequel est une intégrale première. Si les isochrones existent, alors $\mathcal{M} = \mathcal{F} = \tau = t$.

On notera que le multiplicateur \mathcal{F} est ici la « fonction de jauge » :

$$\mathcal{A}_\lambda = \mathcal{A}_\lambda - \partial_\lambda \mathcal{F}.$$

En imposant la présence de \mathcal{F}, l'invariance de jauge implique la conservation de l'électricité :

$$\frac{\partial \Lambda}{\partial \mathcal{F}_\lambda} = 0 \Rightarrow \partial_\lambda (v^3) = 0$$

5.3. — Une conclusion semblable se présente à propos du fluide non électrisé, et elle apporte un point de vue assez nouveau : La fonction d'action \mathcal{F} est une « fonction de jauge », et la conservation de la matière proprement dite est la conséquence de cette « invariance de jauge ».

Dans les deux cas, — conservation de la matière et conservation de l'électricité, — la théorie symplectique donne une même signification à l'impression si peu opportune d'« invariance de jauge » : celle-ci est rigoureusement synonyme de « invariance de la 2-forme symplectique $\sigma_{\lambda \mu}$ » (pour les changements de potentiel symplectique : $\pi_\lambda \rightarrow \pi_\lambda + \partial_\lambda \mathcal{F}$).

39