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Abstract. In this paper, we compute the first space of cohomol-
ogy of V ect(Rn|n), the Lie superalgebra of vector fields on the su-
permanifold Rn|n with coefficients in F(Rn|n), the space of smooth
functions on Rn|n. We give a super analog of the cohomologies of
vector fields that where studied for instance by D.B. Fuchs [2].
This work allows us to classify the deformations of the action of
V ect(Rn|n) on F(Rn|n).

1. Introduction

Let V ect(Rn|n) be the Lie superalgebra of vector fields on the super
manifold Rn|n and F(Rn|n) be the space of smooth functions on the
manifold (Rn|n). As F(Rn|n) can be identified with the supercommu-
tative superalgebra Ω(Rn) =

⊕n
k=0 Ωk(Rn) of differential forms on Rn,

then V ect(Rn|n) is identified with the superalgebra of superderivations
of Ω(Rn). So, V ect(Rn|n) is identified to a sum of two copies of the
space of tensor valued differential forms on Rn, Ω =

⊕
k Ωk(Rn, TRn),

one with the Frölicher-Nijenhuis bracket [[ , ]], the other one with the
Richardson Nijenhuis bracket [ , ]∧. We shall set F = (Ω, [[ , ]]), and
R = (Ω, [ , ]∧). For this identification, as well as relationship between
the two brackets, see the book by Michor, Kolar and Slovac [3]. Here
we compute H1(V ect(Rn|n),F(Rn|n)).

1.1. Notations and definitions.

1.1.1. Identification of V ect(Rn|n). We shall first precise the structure
of V ect(Rn|n). The space F(Rn|n) of smooth functions on Rn|n can be
identified with the graded commutative algebra

Ω(Rn) =
n⊕

s=0

Ωs(Rn)

of differential forms on Rn . We denote by Ders(Ω(Rn)) the space of
all graded derivations of degree s, i.e all linear mappings

D : Ω(Rn) −→ Ω(Rn)
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with D(Ωl(Rn)) ⊂ Ωs+l(Rn) and

D(ϕ ∧ ψ) = Dϕ ∧ ψ + (−1)klϕ ∧D(ψ)

for ϕ ∈ Ωl(Rn) and ψ ∈ Ωk(Rn). The space

Der(Ω(Rn)) =
⊕

s

Ders(Ω(Rn))

is a graded Lie superalgebra with the graded commutator:

[D1, D2] := D1 ◦D2 − (−1)s1s2D2 ◦D1

for Di ∈ Dersi
(Ω(Rn)), for i ∈ {1, 2}. Then the space

V ect(Rn|n) := Der(Ω(Rn)).

We call Ω(Rn, TRn) =
⊕n

s=0 Ωs(Rn, TRn) the space of all vector valued
differential forms. We shall frequently use the identification between
Ω∗(Rn, TRn) and the completed tensor product over functions Ω∗(Rn)⊗
TRn. So, by a slight abuse notations, we shall identify ω⊗X where ω ∈
Ω∗(Rn) and X ∈ TRn, with the corresponding tensor valued differential
form.

A derivation D ∈ Ders(Ω(Rn)) is algebraic if its restriction to Ω0(Rn)
vanishes identically. Then D(fω) = fD(ω) for f ∈ C∞(Rn,R). So,
from C. Roger ([6] p 68), D is given by a tensor field. So, D induces a
derivation Dx ∈ Ders∧T ∗

xRn for each x ∈ Rn. It is uniquely determined
by its restriction to 1-forms:

Dx|T ∗xRn : T ∗
xRn −→ ∧s+1T ∗Rn

which we may view as an element Kx ∈ ∧k+1T ∗
xRn ⊗ TxRn depending

smoothly on x ∈ Rn. We write D = iK , where

K ∈ C∞(∧s+1T ∗Rn ⊗ TRn) =: Ωs+1(Rn, TRn).

Note the defining equation: iK(w) = w ◦K for w ∈ Ω1(Rn).
The exterior derivative d is an element of Der1(Ω(Rn)). In view of

the formula
LX = [iX , d] = iX ◦ d + d ◦ iX

for vector fields X ∈ V ect(Rn), we define for K ∈ Ωs(Rn, TRn) the Lie
derivation LK ∈ Ders(Ω(Rn)) by

LK := [iK , d] = iK ◦ d + (−1)sd ◦ iK ,

then the mapping L : Ω(Rn, TRn) −→ Der(Ω(Rn)) is injective, since
LKf = iKdf = df ◦K for f ∈ C∞(Rn,R).

Lemma 1. [6] For any graded derivation D ∈ Derk(Ω(Rn)), there
exists an unique K ∈ Ωk(Rn, TRn) and L ∈ Ωk+1(Rn, TRn) such that
D = LK + iL, where

(1) iL(ω ⊗X) := iL(ω)⊗X and iL(ω) = η ∧ iY (ω) for L = η ⊗ Y.

The degree of D is denoted |D| and is equal to k.
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1.1.2. Richardson-Nijenhuis algebra. The injection

i : Ω∗+1(Rn, TRn) −→ Der∗(Ω(Rn)); i([K, L]∧) := [iK , iL]

is a graded Lie bracket on Ω∗+1(Rn, TRn). So, we get a bracket on
Ω∗+1(Rn, TRn) which defines a graded Lie algebra structure with the
grading as indicated. For K ∈ Ωk+1(Rn, TRn) and L ∈ Ω`+1(Rn, TRn)
we have

[K, L]∧ = iKL− (−1)k`iLK.

The space R = (
⊕

Ω∗+1(Rn, TRn), [ , ]∧) is called the Richardson-
Nijenhuis algebra. It is a subalgebra of V ect(Rn|n)

Remark 2. This Lie superalgebra is linked with R0|n the Lie super-
algebra of vector fields on a purely odd space. More precisely, if one
identifies as a space

Ω∗+1(Rn, TRn) = V ect(R0|n)⊗ C∞(Rn)

with completed tensor product, then the Richardson-Nijenhuis bracket
reads as follows: for K = a⊗ξ and L = b⊗λ with ξ, λ in V ect(R0|n) and
a, b in C∞(Rn), one has [K, L]∧ = ab⊗ [ξ, λ], where [ξ, λ] is the bracket
of vector fields on the supermanifold R0|n. So, it can be identified with
the super Lie algebra of currents with value in V ect(R0|n).

1.1.3. Frölicher-Nijenhuisalgebra. The bracket of Lθ and Lη is still a
derivation, which gives the Frölicher-Nijenhuis bracket by the following
formula:

L[[θ,η]] = [Lθ,Lη].

For θ = α⊗X and η = β ⊗ Y with α ∈ Ωk(Rn), β ∈ Ωl(Rn), X and Y
in V ect(Rn) one has:

[[α⊗X, β ⊗ Y ]] = α ∧ β ⊗ [X,Y ] + α ∧ LXβ ⊗ Y − LY α ∧ β ⊗X

+ (−1)k(dα ∧ iXβ ⊗ Y + iY α ∧ dβ ⊗X).

The space F = (
⊕

Ω∗(Rn, TRn), [[ , ]]) is called Frölicher-Nijenhuis
algebra. It is a subalgebra of V ect(Rn|n) (see [5]). The above formula
has been obtained by Michor in [3].

We get, so, for V ect(Rn|n) = R+ F the following bracket:

Lemma 3. [6] For Ki ∈ Ωki(Rn, TRn) and Li ∈ Ωki+1(Rn, TRn) where
i ∈ {1, 2}, we have:

[LK1 + iL1 ,LK2 + iL2 ] = L(
[[K1, K2]] + iL1(K2)− (−1)k1k2iL2(K1)

)

+ i
(
[L1, L2]

∧ + [[K1, L2]]− (−1)k1k2 [[K2, L1]]
)
.

Remark 4. As a consequence of this lemma, for K ∈ Ωk(Rn, TRn)
and L ∈ Ωl+1(Rn, TRn), one has

[LK , iL] = i([[K, L]])− (−1)klL(iLK)

and
[iL,LK ] = L(iLK)− (−1)ki([[L,K]]).
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2. Mains results

With the notations of previous subsection, one has:

Proposition 5. If n > 2, the space of cohomology H1(F, Ω(Rn)) is one
dimensional and is generated by the 1-cocycle given by:

c1 : F −→ Ω(Rn)
ω ⊗X −→ d(iXω)

Proposition 6. The space of cohomology H1(R, Ω(Rn)) is one dimen-
sional and is generated by the 1-cocycle given by:

c2 : R −→ Ω(Rn)
ω ⊗X −→ (−1)|ω|−1iXω

where |ω| denotes the degree of ω.¤

This result can be deduced from C. Roger and P. Lecomte in [7].
Here we take an other proof and rectify their result.

The cohomology of V ect(Rn|n) = F +R is given by:

Theorem 7. If n > 2, the space of cohomology H1(Vect(Rn|n),F(Rn|n))
is generated by the 1-cocycles

c : V ect(Rn|n) −→ F(Rn|n)

defined by

c(LK + iL) = −c1(K) + ∂ω1(K) + c2(L)

where ∂ω1(K) = LK(ω1), a coboundary on F with ω1 ∈ Ω0(Rn).

3. Proof of propositions 5 and 6 and theorem 7

Before proving the propositions and the theorem, we shall give some
definitions and preliminary results.

3.1. Polynomial notation. (see [1] and [5])
Polynomial notation is very useful to handle computation with dif-

ferential operators. It allows to apply polynomial computations for
operators.

We suppose that E → M and F → M are vector bundles, with
typical fibers E0 and F0, that Γ(E) and Γ(F ) denote their spaces of
smooth sections. Then fixing a local chart (U, x1, ..., xn), we can iden-
tify Γ(E) and Γ(F ) to C∞(U,E0) and C∞(U, F0) respectively. Then a
differential operator of order k can be written in following form:

f 7−→
∑

|α|≤k

Aα(x)Dαf(x)

where Dα = ∂α1
x1
· · · ∂αn

xn
denotes partial derivatives with respect to

(x1, ..., xn), furthermore the mappings Aα is in C∞(U,L(E0, F0)). Then

Bulletin de la Société Royale des Sciences de Liège, Vol. 76, 2007, pp. 12-20



16

the symbolic polynomial associated to A is defined by

P (ξ; X)(x) =
∑

|α|≤k

Aα,x(X)ξα.

For example if X =
∑

i X
i∂xi

∈ V ect(Rn), where ∂xi
= ∂

∂xi
, acting

on a function f ∈ C∞(Rn) through the operator of Lie derivative:

f −→ LX(f) =
∑

i

X i ∂f

∂xi

is represented by the polynomial function∑
i

X iξif =< X, ξ > f.

3.2. Preliminary results. Let

c1 : F −→ Ω(Rn)

be a cochain, the condition of 1-cocycle applied to c1 reads:

c1([[α⊗X, β ⊗ Y ]])−L(α⊗X)c1(β ⊗ Y ) = (−1)|α||β|+1L(β⊗Y )c1(α⊗ Y ).

Remark that for every α⊗X ∈ F and γ ∈ Ωq(Rn) one has

(2) L(α⊗X)(γ) = i(α⊗X)dγ + (−1)q d(i(α⊗X)γ)

where i(α⊗X)γ = α ∧ iXγ.

Lemma 8. If
c : Ω(Rn)⊗ V ect(Rn) −→ Ω(Rn)

is a 1-cocycle, then c is a differential operator.

Proof. This is a simple adaptation of the result of [8]. ¤
Lemma 9. Each cohomology class [c] in H1(F, Ωk(Rn)) contains a 1-
cocycle with constants coefficients.

Proof. We suppose that c is a 1-cocycle, then its restriction to the Lie
subalgebra V ect(Rn) ⊂ F of vector fields is also a 1-cocycle. The first
cohomology space of the Lie algebra of vector fields is generated by
”div” and ”ddiv” so there exist a, b ∈ R and ω ∈ Ωk(Rn) such that

c(X) = a div(X) + b ddiv(X) + ∂Xω ∀X ∈ V ect(Rn).

Now, the 1-cocycle c − ∂ω vanishes on constant vector fields. Here
we use the identification of the algebra of vector fields V ect(Rn) as a
subalgebra of F and the fact that the restriction of the action L of
F on forms to Lie algebra V ect(Rn) coincides with the classical Lie
derivative L. It follows from the relation of 1-cocycle:

(3) LX(c(K)) = c([[X, K]])− LK(c(X))

for K ∈ F, that c commutes with the Lie derivative in the direction of
constant vector fields:

(4) LX(c(K)) = c([[X,K]]).

Bulletin de la Société Royale des Sciences de Liège, Vol. 76, 2007, pp. 12-20



17

A direct computation finishes the proof. ¤

3.3. Proof of proposition 5. Since F is a graded Lie algebra and
Ω(Rn) is a graded module by the degree of forms, the space of coho-
mology H1(F, Ω(Rn)) is graded, then we have

H1(F, Ω(Rn)) =
⊕

q

H1(F, Ω(Rn))q

where H1(F, Ω(Rn))q is the space of class of homogeneous cocycle c1,q

of degree q i.e transforms an argument of degree p on an argument of
degree p + q. The restriction of c1,q to Ωp(Rn)⊗ V ect(Rn) is noted

c1,p,q : Ωp(Rn)⊗ V ect(Rn) −→ Ωp+q(Rn).

The condition of 1-cocycle applied to c1,p,q can be written

(5) c1,p,q([[K1, K2]])− LK1(c1,p,q(K2)) = (−1)|K1||K2|+1LK2(c1,p,q(K1))

for K1 and K2 in F. Up to a coboundary, we may suppose that the
restriction of c to V ect(Rn) ∼= Ω0(Rn)⊗V ect(Rn) ⊂ F is a combination
of ”div” and ”ddiv”. Hence, in equation (5), if we set K1 to be a
linear vector field X, since c1,p,q(K1) is constant, we directly obtain the
relation

c1,p,q(LX(K2))− LX(c1,p,q(K2)) = 0,

where LX is the classical Lie derivative in the direction of X. If η
denote the derivative affecting K, then one may write the symbolic
form c1,p,q(η, K) associated to c1,p,q (see[5]). For X1, ..., Xn+q in TRn,
the polynomial c1,p,q(η,K)(X1, ..., Xn+q) is invariant with respect to
the action of the algebra gl(n,R). The classical result of Weyl (see [1])
states that such invariant polynomials are generated by contractions.
Hence one gets that the degree in η (say r) is equal to q + 1. Now,
the polynomial c1,p,q(η, K)(X1, ..., Xn+q) must be symmetric in η and
antisymmetric in X1, ..., Xn+q, so, r ∈ {0, 1, 2}. Hence, as a result of
the invariance property, we obtain (where ap, bp, cp and ep are reals
numbers):

c1,p,−1(η, K) = apτ(η,K) where K = α⊗X and τ(η,K) = iXα;

c1,p,0(η,K) = bp τ1(η, K) + cp τ2(η,K) where τ1(η, K) = η ∧ τ(η,K)
and τ2(η, K) =< K, η >;

c1,p,1(η,K) = dp τ3(η,K) where τ3(η, K) = epη∧ < K, η >.

Thus, we compute the coefficients ap, bp, cp and ep in accordance with
the degree q.

• Case q = −1
In this case, the condition for c1,p,−1 to be a 1-cocycle forces ap to be

zero for all p, if n > 1.

• Case q = 0

Bulletin de la Société Royale des Sciences de Liège, Vol. 76, 2007, pp. 12-20



18

Take c1,p,0(η, K) = bp τ1(η, K) + cp τ2(η,K) and plug it in equation
(5) one can show that bp is equal to bp′ for all p and p′ and cp must be
zero for all p, if n > 2.

• Case q = 1
In this case we have

δτ3(η, K)(α ∧ 1, X) = ep ddivX ∧ dα

where 1 =
∑n

i=1 dxi ⊗ ∂xi
. A straightforward computation shows that

if n > 2, ep must be zero for all p.

3.4. Proof of proposition 6. Consider the mapping

c2 : R −→ Ω(Rn)
ω ⊗X −→ (−1)|ω|−1iXω

where |ω| denotes the degree of ω.
We shall prove that c2 is a 1-cocycle. Then for L1 = α ⊗X, where

|α| = |L1| = l1 + 1 and |iL1| = l1, and for L2 = β ⊗ Y where |β| =
|L2| = l2 + 1 and |iL2| = l2, one has:

c2([α⊗X, β ⊗ Y ]∧)− iL1c2(β ⊗ Y )− (−1)l1l2+1iL2c2(α⊗X)

= c2(α ∧ iXβ ⊗ Y + (−1)l1l2+1β ∧ iY α⊗X) − α ∧ iX((−1)l2iY β)
− (−1)l1l2+1β ∧ iY ((−1)l1iXα)

= (−1)l1+l2iY (α∧ iXβ) + (−1)l1l2+1+l1+l2iX(β ∧ iY α)− (−1)l2α∧ iXiY β
− (−1)l1l2+1+l1β ∧ iY iXα

= (−1)l1+l2iY α ∧ iXβ + (−1)l2+1α ∧ iY iXβ − (−1)l1l2+l1+l2iXβ ∧ iY α
− (−1)l1l2+l1+1β ∧ iXiY α− (−1)l2α ∧ iXiY β + (−1)l1l2+l1β ∧ iY iXα

= 0.

To prove that this 1-cocycle is unique we use the same method as in
the Proposition 5.

3.5. Proof of theorem 7. Let

c : V ect(Rn|n) −→ F(Rn|n)

be a 1-cocycle. The restriction of c to the subalgebra F (respectively
R) is a 1-cocycle over F (respectively R). According to propositions 5
and 6 the 1-cocycle c reads

c(LK + iL) = c(LK) + c(iL)

and {
c(LK) = a c1(LK) + ∂ω1(K), (6)
c(iL) = b c2(iL) + ∂ω2(L) (7),

where a, b are real constants and ∂ω1 and ∂ω2 are coboundaries of F
and R respectively given by ∂ω1(K) = LK(ω1) and ∂ω2(L) = iL(ω2).
Besides, since the superalgebras F and R are graded and F(Rn|n) ∼=
Ω(Rn) is a graded module, too, the terms in the right hand of the
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equation (6) (respectively (7)) must have the same degrees. Then we
must have in equation (6):

|c1(LK)| = |∂ω1(K)|,
but |c1(LK)| = |c1(α⊗X)| = |α| where K = α⊗X ∈ F and |∂ω1(K)| =
|LK(ω1)| = |α| + |ω1| (see equation (2)) then |ω1| = 0 besides ω1 ∈
Ω0(Rn), moreover we must have in equation (7):

|c2(iL)| = |∂ω2(L)|
but |c2(iL)| = |c2(β ⊗ Y )| = |iY (β)| = |β| − 1 where L = β ⊗ Y ∈ R,
then |∂ω2(L)| = |iβ⊗Y (ω2)| = |β| + |ω2| − 1 (see equation (1)), one
deduces that ω2 ∈ Ω0(Rn). Since, iL(ω2) = iβ⊗Y (ω2) = β ∧ iY (ω2) = 0,

one has ∂ω2(L) = 0.
Now, the condition of 1-cocycle applied to c reads:

(6)
bc2([[K,L]])− (−1)klac1(iL(K))− bLK(c2(iL)) + (−1)lkaiL(c1(LK))

= −(−1)kl∂ω1(iL(K)) + (−1)lkiL(∂ω1(LK)).

We use (2), we obtain that the right hand of equation (6) vanish and
it becomes

(7)
bc2([[K, L]])− (−1)klac1(iL(K))− bLK(c2(iL))

+(−1)lkaiL(c1(LK)) = 0.

Now, if we substitute the expressions of the 1-cocycles c1 and c2 in
equation (7), we show that we must have a + b = 0. The result follows
immediately.
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[7] C. Roger, P. Lecomte. Remarques sur la cohomologie de l’algèbre de Nijenhuis-
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