ABOUT THE COHOMOLOGY OF THE LIE SUPERALGEBRA OF VECTOR FIELDS ON $\mathbb{R}^{n \mid n}$

AMMAR FAOUZI AND KAMOUN KAOUTHAR

Abstract

In this paper, we compute the first space of cohomology of $V e c t\left(\mathbb{R}^{n \mid n}\right)$, the Lie superalgebra of vector fields on the supermanifold $\mathbb{R}^{n \mid n}$ with coefficients in $\mathcal{F}\left(\mathbb{R}^{n \mid n}\right)$, the space of smooth functions on $\mathbb{R}^{n \mid n}$. We give a super analog of the cohomologies of vector fields that where studied for instance by D.B. Fuchs [2]. This work allows us to classify the deformations of the action of $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$ on $\mathcal{F}\left(\mathbb{R}^{n \mid n}\right)$.

1. Introduction

Let $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$ be the Lie superalgebra of vector fields on the super manifold $\mathbb{R}^{n \mid n}$ and $\mathcal{F}\left(\mathbb{R}^{n \mid n}\right)$ be the space of smooth functions on the manifold $\left(\mathbb{R}^{n \mid n}\right)$. As $\mathcal{F}\left(\mathbb{R}^{n \mid n}\right)$ can be identified with the supercommutative superalgebra $\Omega\left(\mathbb{R}^{n}\right)=\bigoplus_{k=0}^{n} \Omega^{k}\left(\mathbb{R}^{n}\right)$ of differential forms on \mathbb{R}^{n}, then $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$ is identified with the superalgebra of superderivations of $\Omega\left(\mathbb{R}^{n}\right)$. So, $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$ is identified to a sum of two copies of the space of tensor valued differential forms on $\mathbb{R}^{n}, \Omega=\bigoplus_{k} \Omega^{k}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$, one with the Frölicher-Nijenhuis bracket [[,]], the other one with the Richardson Nijenhuis bracket [, $]^{\wedge}$. We shall set $\mathfrak{F}=(\Omega,[[]]$,$) , and$ $\mathcal{R}=\left(\Omega,[,]^{\wedge}\right)$. For this identification, as well as relationship between the two brackets, see the book by Michor, Kolar and Slovac [3]. Here we compute $H^{1}\left(\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right), \mathcal{F}\left(\mathbb{R}^{n \mid n}\right)\right)$.

1.1. Notations and definitions.

1.1.1. Identification of $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$. We shall first precise the structure of $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$. The space $\mathcal{F}\left(\mathbb{R}^{n \mid n}\right)$ of smooth functions on $\mathbb{R}^{n \mid n}$ can be identified with the graded commutative algebra

$$
\Omega\left(\mathbb{R}^{n}\right)=\bigoplus_{s=0}^{n} \Omega^{s}\left(\mathbb{R}^{n}\right)
$$

of differential forms on \mathbb{R}^{n}. We denote by $\operatorname{Der}_{s}\left(\Omega\left(\mathbb{R}^{n}\right)\right)$ the space of all graded derivations of degree s, i.e all linear mappings

$$
D: \Omega\left(\mathbb{R}^{n}\right) \longrightarrow \Omega\left(\mathbb{R}^{n}\right)
$$

Key words and phrases. cohomology space, the Lie superalgebra of vector fields on the super manifold $\mathbb{R}^{n \mid n}$, Frölicher-Nijenhuis bracket, Richardson-Nijenhuis bracket.
with $D\left(\Omega^{l}\left(\mathbb{R}^{n}\right)\right) \subset \Omega^{s+l}\left(\mathbb{R}^{n}\right)$ and

$$
D(\varphi \wedge \psi)=D \varphi \wedge \psi+(-1)^{k l} \varphi \wedge D(\psi)
$$

for $\varphi \in \Omega^{l}\left(\mathbb{R}^{n}\right)$ and $\psi \in \Omega^{k}\left(\mathbb{R}^{n}\right)$. The space

$$
\operatorname{Der}\left(\Omega\left(\mathbb{R}^{n}\right)\right)=\bigoplus_{s} \operatorname{Der}_{s}\left(\Omega\left(\mathbb{R}^{n}\right)\right)
$$

is a graded Lie superalgebra with the graded commutator:

$$
\left[D_{1}, D_{2}\right]:=D_{1} \circ D_{2}-(-1)^{s_{1} s_{2}} D_{2} \circ D_{1}
$$

for $D_{i} \in \operatorname{Der}_{s_{i}}\left(\Omega\left(\mathbb{R}^{n}\right)\right)$, for $i \in\{1,2\}$. Then the space

$$
\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right):=\operatorname{Der}\left(\Omega\left(\mathbb{R}^{n}\right)\right)
$$

We call $\Omega\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)=\bigoplus_{s=0}^{n} \Omega^{s}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ the space of all vector valued differential forms. We shall frequently use the identification between $\Omega^{*}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ and the completed tensor product over functions $\Omega^{*}\left(\mathbb{R}^{n}\right) \otimes$ $T \mathbb{R}^{n}$. So, by a slight abuse notations, we shall identify $\omega \otimes X$ where $\omega \in$ $\Omega^{*}\left(\mathbb{R}^{n}\right)$ and $X \in T \mathbb{R}^{n}$, with the corresponding tensor valued differential form.

A derivation $D \in \operatorname{Der}_{s}\left(\Omega\left(\mathbb{R}^{n}\right)\right)$ is algebraic if its restriction to $\Omega^{0}\left(\mathbb{R}^{n}\right)$ vanishes identically. Then $D(f \omega)=f D(\omega)$ for $f \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. So, from C. Roger ([6] p 68), D is given by a tensor field. So, D induces a derivation $D_{x} \in \operatorname{Der}_{s} \wedge T_{x}^{*} \mathbb{R}^{n}$ for each $x \in \mathbb{R}^{n}$. It is uniquely determined by its restriction to 1 -forms:

$$
D_{x \mid T_{x}^{*} \mathbb{R}^{n}}: T_{x}^{*} \mathbb{R}^{n} \longrightarrow \wedge^{s+1} T^{*} \mathbb{R}^{n}
$$

which we may view as an element $K_{x} \in \wedge^{k+1} T_{x}^{*} \mathbb{R}^{n} \otimes T_{x} \mathbb{R}^{n}$ depending smoothly on $x \in \mathbb{R}^{n}$. We write $D=i_{K}$, where

$$
K \in C^{\infty}\left(\wedge^{s+1} T^{*} \mathbb{R}^{n} \otimes T \mathbb{R}^{n}\right)=: \Omega^{s+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)
$$

Note the defining equation: $i_{K}(w)=w \circ K$ for $w \in \Omega^{1}\left(\mathbb{R}^{n}\right)$.
The exterior derivative d is an element of $\operatorname{Der}_{1}\left(\Omega\left(\mathbb{R}^{n}\right)\right)$. In view of the formula

$$
\mathcal{L}_{X}=\left[i_{X}, d\right]=i_{X} \circ d+d \circ i_{X}
$$

for vector fields $X \in \operatorname{Vect}\left(\mathbb{R}^{n}\right)$, we define for $K \in \Omega^{s}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ the Lie derivation $\mathcal{L}_{K} \in \operatorname{Der}_{s}\left(\Omega\left(\mathbb{R}^{n}\right)\right)$ by

$$
\mathcal{L}_{K}:=\left[i_{K}, d\right]=i_{K} \circ d+(-1)^{s} d \circ i_{K},
$$

then the mapping $\mathcal{L}: \Omega\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right) \longrightarrow \operatorname{Der}\left(\Omega\left(\mathbb{R}^{n}\right)\right)$ is injective, since $\mathcal{L}_{K} f=i_{K} d f=d f \circ K$ for $f \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
Lemma 1. [6] For any graded derivation $D \in \operatorname{Der}_{k}\left(\Omega\left(\mathbb{R}^{n}\right)\right)$, there exists an unique $K \in \Omega^{k}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ and $L \in \Omega^{k+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ such that $D=\mathcal{L}_{K}+i_{L}$, where
(1) $i_{L}(\omega \otimes X):=i_{L}(\omega) \otimes X$ and $i_{L}(\omega)=\eta \wedge i_{Y}(\omega)$ for $L=\eta \otimes Y$.

The degree of D is denoted $|D|$ and is equal to k.
1.1.2. Richardson-Nijenhuis algebra. The injection

$$
i: \Omega^{*+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right) \longrightarrow \operatorname{Der}^{*}\left(\Omega\left(\mathbb{R}^{n}\right)\right) ; \quad i\left([K, L]^{\wedge}\right):=\left[i_{K}, i_{L}\right]
$$

is a graded Lie bracket on $\Omega^{*+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$. So, we get a bracket on $\Omega^{*+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ which defines a graded Lie algebra structure with the grading as indicated. For $K \in \Omega^{k+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ and $L \in \Omega^{\ell+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ we have

$$
[K, L]^{\wedge}=i_{K} L-(-1)^{k \ell} i_{L} K
$$

The space $\mathcal{R}=\left(\bigoplus \Omega^{*+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right),[,]^{\wedge}\right)$ is called the RichardsonNijenhuis algebra. It is a subalgebra of $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$
Remark 2. This Lie superalgebra is linked with $\mathbb{R}^{0 \mid n}$ the Lie superalgebra of vector fields on a purely odd space. More precisely, if one identifies as a space

$$
\Omega^{*+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)=\operatorname{Vect}\left(\mathbb{R}^{0 \mid n}\right) \otimes C^{\infty}\left(\mathbb{R}^{n}\right)
$$

with completed tensor product, then the Richardson-Nijenhuis bracket reads as follows: for $K=a \otimes \xi$ and $L=b \otimes \lambda$ with ξ, λ in $V e c t\left(\mathbb{R}^{0 \mid n}\right)$ and a, b in $C^{\infty}\left(\mathbb{R}^{n}\right)$, one has $[K, L]^{\wedge}=a b \otimes[\xi, \lambda]$, where $[\xi, \lambda]$ is the bracket of vector fields on the supermanifold $\mathbb{R}^{0 \mid n}$. So, it can be identified with the super Lie algebra of currents with value in $\operatorname{Vect}\left(\mathbb{R}^{0 \mid n}\right)$.
1.1.3. Frölicher-Nijenhuisalgebra. The bracket of \mathcal{L}_{θ} and \mathcal{L}_{η} is still a derivation, which gives the Frölicher-Nijenhuis bracket by the following formula:

$$
\mathcal{L}_{[[\theta, \eta]]}=\left[\mathcal{L}_{\theta}, \mathcal{L}_{\eta}\right] .
$$

For $\theta=\alpha \otimes X$ and $\eta=\beta \otimes Y$ with $\alpha \in \Omega^{k}\left(\mathbb{R}^{n}\right), \beta \in \Omega^{l}\left(\mathbb{R}^{n}\right), X$ and Y in $\operatorname{Vect}\left(\mathbb{R}^{n}\right)$ one has:

$$
\begin{aligned}
{[[\alpha \otimes X, \beta \otimes Y]]=} & \alpha \wedge \beta \otimes[X, Y]+\alpha \wedge L_{X} \beta \otimes Y-L_{Y} \alpha \wedge \beta \otimes X \\
& +(-1)^{k}\left(d \alpha \wedge i_{X} \beta \otimes Y+i_{Y} \alpha \wedge d \beta \otimes X\right) .
\end{aligned}
$$

The space $\mathfrak{F}=\left(\bigoplus \Omega^{*}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right),[[]],\right)$ is called Frölicher-Nijenhuis algebra. It is a subalgebra of $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)$ (see [5]). The above formula has been obtained by Michor in [3].
We get, so, for $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)=\mathcal{R}+\mathfrak{F}$ the following bracket:
Lemma 3. [6] For $K_{i} \in \Omega^{k_{i}}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ and $L_{i} \in \Omega^{k_{i}+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ where $i \in\{1,2\}$, we have:

$$
\begin{aligned}
{\left[\mathcal{L}_{K_{1}}+i_{L_{1}}, \mathcal{L}_{K_{2}}+i_{L_{2}}\right] } & =\mathcal{L}\left(\left[\left[K_{1}, K_{2}\right]\right]+i_{L_{1}}\left(K_{2}\right)-(-1)^{k_{1} k_{2}} i_{L_{2}}\left(K_{1}\right)\right) \\
& +i\left(\left[L_{1}, L_{2}\right]^{\wedge}+\left[\left[K_{1}, L_{2}\right]\right]-(-1)^{k_{1} k_{2}}\left[\left[K_{2}, L_{1}\right]\right]\right) .
\end{aligned}
$$

Remark 4. As a consequence of this lemma, for $K \in \Omega^{k}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$ and $L \in \Omega^{l+1}\left(\mathbb{R}^{n}, T \mathbb{R}^{n}\right)$, one has

$$
\left[\mathcal{L}_{K}, i_{L}\right]=i([[K, L]])-(-1)^{k l} \mathcal{L}\left(i_{L} K\right)
$$

and

$$
\left[i_{L}, \mathcal{L}_{K}\right]=\mathcal{L}\left(i_{L} K\right)-(-1)^{k} i([[L, K]])
$$

2. Mains Results

With the notations of previous subsection, one has:
Proposition 5. If $n>2$, the space of cohomology $\mathrm{H}^{1}\left(\mathfrak{F}, \Omega\left(\mathbb{R}^{\mathrm{n}}\right)\right)$ is one dimensional and is generated by the 1-cocycle given by:

$$
\begin{array}{lc}
c_{1}: & \mathfrak{F} \\
\omega \otimes X & \longrightarrow \Omega\left(\mathbb{R}^{n}\right) \\
\longrightarrow d\left(i_{X} \omega\right)
\end{array}
$$

Proposition 6. The space of cohomology $\mathrm{H}^{1}\left(\mathcal{R}, \Omega\left(\mathbb{R}^{\mathrm{n}}\right)\right)$ is one dimensional and is generated by the 1-cocycle given by:

$$
\begin{array}{cc}
c_{2}: & \mathcal{R} \\
\omega \otimes X & \longrightarrow
\end{array} \begin{aligned}
& \Omega\left(\mathbb{R}^{n}\right) \\
& \\
& \omega
\end{aligned}
$$

where $|\omega|$ denotes the degree of ω.
This result can be deduced from C. Roger and P. Lecomte in [7]. Here we take an other proof and rectify their result.
The cohomology of $\operatorname{Vect}\left(\mathbb{R}^{n \mid n}\right)=\mathfrak{F}+\mathcal{R}$ is given by:
Theorem 7. If $n>2$, the space of cohomology $\mathrm{H}^{1}\left(\operatorname{Vect}\left(\mathbb{R}^{\mathrm{n} \mid \mathrm{n}}\right), \mathcal{F}\left(\mathbb{R}^{\mathrm{n} \mid \mathrm{n}}\right)\right)$ is generated by the 1-cocycles

$$
c: V e c t\left(\mathbb{R}^{n \mid n}\right) \longrightarrow \mathcal{F}\left(\mathbb{R}^{n \mid n}\right)
$$

defined by

$$
c\left(\mathcal{L}_{K}+i_{L}\right)=-c_{1}(K)+\partial \omega_{1}(K)+c_{2}(L)
$$

where $\partial \omega_{1}(K)=\mathcal{L}_{K}\left(\omega_{1}\right)$, a coboundary on \mathfrak{F} with $\omega_{1} \in \Omega^{0}\left(\mathbb{R}^{n}\right)$.

3. Proof of propositions 5 and 6 and theorem 7

Before proving the propositions and the theorem, we shall give some definitions and preliminary results.

3.1. Polynomial notation. (see [1] and [5])

Polynomial notation is very useful to handle computation with differential operators. It allows to apply polynomial computations for operators.
We suppose that $E \rightarrow M$ and $F \rightarrow M$ are vector bundles, with typical fibers E_{0} and F_{0}, that $\Gamma(E)$ and $\Gamma(F)$ denote their spaces of smooth sections. Then fixing a local chart $\left(U, x_{1}, \ldots, x_{n}\right)$, we can identify $\Gamma(E)$ and $\Gamma(F)$ to $C^{\infty}\left(U, E_{0}\right)$ and $C^{\infty}\left(U, F_{0}\right)$ respectively. Then a differential operator of order k can be written in following form:

$$
f \longmapsto \sum_{|\alpha| \leq k} A_{\alpha}(x) D^{\alpha} f(x)
$$

where $D^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}$ denotes partial derivatives with respect to $\left(x_{1}, \ldots, x_{n}\right)$, furthermore the mappings A_{α} is in $C^{\infty}\left(U, \mathcal{L}\left(E_{0}, F_{0}\right)\right)$. Then
the symbolic polynomial associated to A is defined by

$$
P(\xi ; X)(x)=\sum_{|\alpha| \leq k} A_{\alpha, x}(X) \xi^{\alpha} .
$$

For example if $X=\sum_{i} X^{i} \partial_{x_{i}} \in \operatorname{Vect}\left(\mathbb{R}^{n}\right)$, where $\partial_{x_{i}}=\frac{\partial}{\partial x_{i}}$, acting on a function $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ through the operator of Lie derivative:

$$
f \longrightarrow L_{X}(f)=\sum_{i} X^{i} \frac{\partial f}{\partial x_{i}}
$$

is represented by the polynomial function

$$
\sum_{i} X^{i} \xi_{i} f=<X, \xi>f
$$

3.2. Preliminary results. Let

$$
c_{1}: \mathfrak{F} \longrightarrow \Omega\left(\mathbb{R}^{n}\right)
$$

be a cochain, the condition of 1-cocycle applied to c_{1} reads:
$c_{1}([[\alpha \otimes X, \beta \otimes Y]])-\mathcal{L}_{(\alpha \otimes X)} c_{1}(\beta \otimes Y)=(-1)^{|\alpha||\beta|+1} \mathcal{L}_{(\beta \otimes Y)} c_{1}(\alpha \otimes Y)$.
Remark that for every $\alpha \otimes X \in \mathfrak{F}$ and $\gamma \in \Omega^{q}\left(\mathbb{R}^{n}\right)$ one has

$$
\begin{equation*}
\mathcal{L}_{(\alpha \otimes X)}(\gamma)=i_{(\alpha \otimes X)} d \gamma+(-1)^{q} d\left(i_{(\alpha \otimes X)} \gamma\right) \tag{2}
\end{equation*}
$$

where $i_{(\alpha \otimes X)} \gamma=\alpha \wedge i_{X} \gamma$.
Lemma 8. If

$$
c: \Omega\left(\mathbb{R}^{n}\right) \otimes \operatorname{Vect}\left(\mathbb{R}^{n}\right) \longrightarrow \Omega\left(\mathbb{R}^{n}\right)
$$

is a 1-cocycle, then c is a differential operator.
Proof. This is a simple adaptation of the result of [8].
Lemma 9. Each cohomology class $[c]$ in $\mathrm{H}^{1}\left(\mathfrak{F}, \Omega^{\mathrm{k}}\left(\mathbb{R}^{\mathrm{n}}\right)\right)$ contains a 1cocycle with constants coefficients.

Proof. We suppose that c is a 1-cocycle, then its restriction to the Lie subalgebra $\operatorname{Vect}\left(\mathbb{R}^{n}\right) \subset \mathfrak{F}$ of vector fields is also a 1-cocycle. The first cohomology space of the Lie algebra of vector fields is generated by "div" and "ddiv" so there exist $a, b \in \mathbb{R}$ and $\omega \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ such that

$$
c(X)=a \operatorname{div}(X)+b \operatorname{ddiv}(X)+\partial_{X} \omega \quad \forall X \in \operatorname{Vect}\left(\mathbb{R}^{n}\right) .
$$

Now, the 1-cocycle $c-\partial \omega$ vanishes on constant vector fields. Here we use the identification of the algebra of vector fields $\operatorname{Vect}\left(\mathbb{R}^{n}\right)$ as a subalgebra of \mathfrak{F} and the fact that the restriction of the action \mathcal{L} of \mathfrak{F} on forms to Lie algebra $\operatorname{Vect}\left(\mathbb{R}^{n}\right)$ coincides with the classical Lie derivative L. It follows from the relation of 1-cocycle:

$$
\begin{equation*}
L_{X}(c(K))=c([[X, K]])-\mathcal{L}_{K}(c(X)) \tag{3}
\end{equation*}
$$

for $K \in \mathfrak{F}$, that c commutes with the Lie derivative in the direction of constant vector fields:

$$
\begin{equation*}
L_{X}(c(K))=c([[X, K]]) . \tag{4}
\end{equation*}
$$

A direct computation finishes the proof.
3.3. Proof of proposition 5. Since \mathfrak{F} is a graded Lie algebra and $\Omega\left(\mathbb{R}^{n}\right)$ is a graded module by the degree of forms, the space of cohomology $\mathrm{H}^{1}\left(\mathfrak{F}, \Omega\left(\mathbb{R}^{\mathrm{n}}\right)\right)$ is graded, then we have

$$
\mathrm{H}^{1}\left(\mathfrak{F}, \Omega\left(\mathbb{R}^{\mathrm{n}}\right)\right)=\bigoplus_{\mathrm{q}} \mathrm{H}^{1}\left(\mathfrak{F}, \Omega\left(\mathbb{R}^{\mathrm{n}}\right)\right)_{\mathrm{q}}
$$

where $\mathrm{H}^{1}\left(\mathfrak{F}, \Omega\left(\mathbb{R}^{\mathrm{n}}\right)\right)_{\mathrm{q}}$ is the space of class of homogeneous cocycle $c_{1, q}$ of degree q i.e transforms an argument of degree p on an argument of degree $p+q$. The restriction of $c_{1, q}$ to $\Omega^{p}\left(\mathbb{R}^{n}\right) \otimes \operatorname{Vect}\left(\mathbb{R}^{n}\right)$ is noted

$$
c_{1, p, q}: \Omega^{p}\left(\mathbb{R}^{n}\right) \otimes \operatorname{Vect}\left(\mathbb{R}^{n}\right) \longrightarrow \Omega^{p+q}\left(\mathbb{R}^{n}\right)
$$

The condition of 1-cocycle applied to $c_{1, p, q}$ can be written
(5) $c_{1, p, q}\left(\left[\left[K_{1}, K_{2}\right]\right]\right)-\mathcal{L}_{K_{1}}\left(c_{1, p, q}\left(K_{2}\right)\right)=(-1)^{\left|K_{1}\right|\left|K_{2}\right|+1} \mathcal{L}_{K_{2}}\left(c_{1, p, q}\left(K_{1}\right)\right)$
for K_{1} and K_{2} in \mathfrak{F}. Up to a coboundary, we may suppose that the restriction of c to $\operatorname{Vect}\left(\mathbb{R}^{n}\right) \cong \Omega^{0}\left(\mathbb{R}^{n}\right) \otimes \operatorname{Vect}\left(\mathbb{R}^{n}\right) \subset \mathfrak{F}$ is a combination of "div" and "ddiv". Hence, in equation (5), if we set K_{1} to be a linear vector field X, since $c_{1, p, q}\left(K_{1}\right)$ is constant, we directly obtain the relation

$$
c_{1, p, q}\left(L_{X}\left(K_{2}\right)\right)-L_{X}\left(c_{1, p, q}\left(K_{2}\right)\right)=0,
$$

where L_{X} is the classical Lie derivative in the direction of X. If η denote the derivative affecting K, then one may write the symbolic form $c_{1, p, q}(\eta, K)$ associated to $c_{1, p, q}\left(\right.$ see[5]). For X_{1}, \ldots, X_{n+q} in $T \mathbb{R}^{n}$, the polynomial $c_{1, p, q}(\eta, K)\left(X_{1}, \ldots, X_{n+q}\right)$ is invariant with respect to the action of the algebra $g l(n, \mathbb{R})$. The classical result of Weyl (see [1]) states that such invariant polynomials are generated by contractions. Hence one gets that the degree in η (say r) is equal to $q+1$. Now, the polynomial $c_{1, p, q}(\eta, K)\left(X_{1}, \ldots, X_{n+q}\right)$ must be symmetric in η and antisymmetric in X_{1}, \ldots, X_{n+q}, so, $r \in\{0,1,2\}$. Hence, as a result of the invariance property, we obtain (where a_{p}, b_{p}, c_{p} and e_{p} are reals numbers):
$c_{1, p,-1}(\eta, K)=a_{p} \tau(\eta, K)$ where $K=\alpha \otimes X$ and $\tau(\eta, K)=i_{X} \alpha ;$
$c_{1, p, 0}(\eta, K)=b_{p} \tau_{1}(\eta, K)+c_{p} \tau_{2}(\eta, K)$ where $\tau_{1}(\eta, K)=\eta \wedge \tau(\eta, K)$ and $\tau_{2}(\eta, K)=<K, \eta>$;
$c_{1, p, 1}(\eta, K)=d_{p} \tau_{3}(\eta, K)$ where $\tau_{3}(\eta, K)=e_{p} \eta \wedge\langle K, \eta\rangle$.
Thus, we compute the coefficients a_{p}, b_{p}, c_{p} and e_{p} in accordance with the degree q.

- Case $q=-1$

In this case, the condition for $c_{1, p,-1}$ to be a 1-cocycle forces a_{p} to be zero for all p, if $n>1$.

- Case $q=0$

Take $c_{1, p, 0}(\eta, K)=b_{p} \tau_{1}(\eta, K)+c_{p} \tau_{2}(\eta, K)$ and plug it in equation (5) one can show that b_{p} is equal to $b_{p^{\prime}}$ for all p and p^{\prime} and c_{p} must be zero for all p, if $n>2$.

- Case $q=1$

In this case we have

$$
\delta \tau_{3}(\eta, K)(\alpha \wedge 1, X)=e_{p} \quad d d i v X \wedge d \alpha
$$

where $\mathbf{1}=\sum_{i=1}^{n} d x^{i} \otimes \partial_{x_{i}}$. A straightforward computation shows that if $n>2, e_{p}$ must be zero for all p.

3.4. Proof of proposition 6. Consider the mapping

$$
\begin{array}{cccc}
c_{2}: & \mathcal{R} & \longrightarrow & \Omega\left(\mathbb{R}^{n}\right) \\
\omega \otimes X & \longrightarrow & (-1)^{|\omega|-1} i_{X} \omega
\end{array}
$$

where $|\omega|$ denotes the degree of ω.
We shall prove that c_{2} is a 1 -cocycle. Then for $L_{1}=\alpha \otimes X$, where $|\alpha|=\left|L_{1}\right|=l_{1}+1$ and $\left|i_{L_{1}}\right|=l_{1}$, and for $L_{2}=\beta \otimes Y$ where $|\beta|=$ $\left|L_{2}\right|=l_{2}+1$ and $\left|i_{L_{2}}\right|=l_{2}$, one has:
$c_{2}\left([\alpha \otimes X, \beta \otimes Y]^{\wedge}\right)-i_{L_{1}} c_{2}(\beta \otimes Y)-(-1)^{l_{1} l_{2}+1} i_{L_{2}} c_{2}(\alpha \otimes X)$
$=c_{2}\left(\alpha \wedge i_{X} \beta \otimes Y+(-1)^{l_{1} l_{2}+1} \beta \wedge i_{Y} \alpha \otimes X\right)-\alpha \wedge i_{X}\left((-1)^{l_{2}} i_{Y} \beta\right)$
$-(-1)^{l_{1} l_{2}+1} \beta \wedge i_{Y}\left((-1)^{l_{1}} i_{X} \alpha\right)$
$=(-1)^{l_{1}+l_{2}} i_{Y}\left(\alpha \wedge i_{X} \beta\right)+(-1)^{l_{1} l_{2}+1+l_{1}+l_{2}} i_{X}\left(\beta \wedge i_{Y} \alpha\right)-(-1)^{l_{2}} \alpha \wedge i_{X} i_{Y} \beta$
$-(-1)^{l_{1} l_{2}+1+l_{1}} \beta \wedge i_{Y} i_{X} \alpha$
$=(-1)^{l_{1}+l_{2}} i_{Y} \alpha \wedge i_{X} \beta+(-1)^{l_{2}+1} \alpha \wedge i_{Y} i X \beta-(-1)^{l_{1} l_{2}+l_{1}+l_{2}} i_{X} \beta \wedge i_{Y} \alpha$
$-(-1)^{l_{1} l_{2}+l_{1}+1} \beta \wedge i_{X} i_{Y} \alpha-(-1)^{l_{2}} \alpha \wedge i_{X} i_{Y} \beta+(-1)^{l_{1} l_{2}+l_{1}} \beta \wedge i_{Y} i_{X} \alpha$
$=0$.
To prove that this 1-cocycle is unique we use the same method as in the Proposition 5.

3.5. Proof of theorem 7. Let

$$
c: V e c t\left(\mathbb{R}^{n \mid n}\right) \longrightarrow \mathcal{F}\left(\mathbb{R}^{n \mid n}\right)
$$

be a 1 -cocycle. The restriction of c to the subalgebra \mathfrak{F} (respectively \mathcal{R}) is a 1 -cocycle over \mathfrak{F} (respectively \mathcal{R}). According to propositions 5 and 6 the 1 -cocycle c reads

$$
c\left(\mathcal{L}_{K}+i_{L}\right)=c\left(\mathcal{L}_{K}\right)+c\left(i_{L}\right)
$$

and

$$
\left\{\begin{array}{l}
c\left(\mathcal{L}_{K}\right)=a c_{1}\left(\mathcal{L}_{K}\right)+\partial \omega_{1}(K), \tag{6}\\
c\left(i_{L}\right)=b c_{2}\left(i_{L}\right)+\bar{\partial} \omega_{2}(L)
\end{array}\right.
$$

where a, b are real constants and $\partial \omega_{1}$ and $\bar{\partial} \omega_{2}$ are coboundaries of \mathfrak{F} and \mathcal{R} respectively given by $\partial \omega_{1}(K)=L_{K}\left(\omega_{1}\right)$ and $\bar{\partial} \omega_{2}(L)=i_{L}\left(\omega_{2}\right)$. Besides, since the superalgebras \mathfrak{F} and \mathcal{R} are graded and $\mathcal{F}\left(\mathbb{R}^{n \mid n}\right) \cong$ $\Omega\left(\mathbb{R}^{n}\right)$ is a graded module, too, the terms in the right hand of the
equation (6) (respectively (7)) must have the same degrees. Then we must have in equation (6):

$$
\left|c_{1}\left(\mathcal{L}_{K}\right)\right|=\left|\partial \omega_{1}(K)\right|,
$$

but $\left|c_{1}\left(\mathcal{L}_{K}\right)\right|=\left|c_{1}(\alpha \otimes X)\right|=|\alpha|$ where $K=\alpha \otimes X \in \mathfrak{F}$ and $\left|\partial \omega_{1}(K)\right|=$ $\left|\mathcal{L}_{K}\left(\omega_{1}\right)\right|=|\alpha|+\left|\omega_{1}\right|$ (see equation (2)) then $\left|\omega_{1}\right|=0$ besides $\omega_{1} \in$ $\Omega^{0}\left(\mathbb{R}^{n}\right)$, moreover we must have in equation (7):

$$
\left|c_{2}\left(i_{L}\right)\right|=\left|\bar{\partial} \omega_{2}(L)\right|
$$

but $\left|c_{2}\left(i_{L}\right)\right|=\left|c_{2}(\beta \otimes Y)\right|=\left|i_{Y}(\beta)\right|=|\beta|-1$ where $L=\beta \otimes Y \in \mathcal{R}$, then $\left|\bar{\partial} \omega_{2}(L)\right|=\left|i_{\beta \otimes Y}\left(\omega_{2}\right)\right|=|\beta|+\left|\omega_{2}\right|-1$ (see equation (1)), one deduces that $\omega_{2} \in \Omega^{0}\left(\mathbb{R}^{n}\right)$. Since, $i_{L}\left(\omega_{2}\right)=i_{\beta \otimes Y}\left(\omega_{2}\right)=\beta \wedge i_{Y}\left(\omega_{2}\right)=0$, one has $\bar{\partial} \omega_{2}(L)=0$.

Now, the condition of 1-cocycle applied to c reads:
(6)

$$
\begin{gathered}
b c_{2}([[K, L]])-(-1)^{k l} a c_{1}\left(i_{L}(K)\right)-b \mathcal{L}_{K}\left(c_{2}\left(i_{L}\right)\right)+(-1)^{l k} a i_{L}\left(c_{1}\left(\mathcal{L}_{K}\right)\right) \\
=-(-1)^{k l} \partial \omega_{1}\left(i_{L}(K)\right)+(-1)^{l k} i_{L}\left(\partial \omega_{1}\left(\mathcal{L}_{K}\right)\right) .
\end{gathered}
$$

We use (2), we obtain that the right hand of equation (6) vanish and it becomes

$$
\begin{gather*}
b c_{2}([[K, L]])-(-1)^{k l} a c_{1}\left(i_{L}(K)\right)-b \mathcal{L}_{K}\left(c_{2}\left(i_{L}\right)\right) \\
+(-1)^{l k} a i_{L}\left(c_{1}\left(\mathcal{L}_{K}\right)\right)=0 . \tag{7}
\end{gather*}
$$

Now, if we substitute the expressions of the 1 -cocycles c_{1} and c_{2} in equation (7), we show that we must have $a+b=0$. The result follows immediately.

Acknowledgements The authors would like to thank C. Roger and P. Lecomte for their suggestions and remarks.

References

[1] M. De Wilde, P. Lecomte. Cohomology of the Lie algebra of smooth vector fields of manifold associated to the Lie derivative of smooth forms. J. Math. Pures et Appl. 62, 1983.
[2] D. B . Fuchs. Cohomology of infinite dimensionel Lie algebras. Consultants Bureau. New York (1986).
[3] I. Kolar, P. W. Michor, J. Slovak. Natural operations in differential geometry, Springer-Verlag, 1993.
[4] Y. Kosmann-Schwarzbach, J. Monterde. Divergence operator and Poisson Brakets. Ann. Inst. Fourrier, Grenoble, 52(2)(2002), p.419-456.
[5] P. Lecomte, P. Mathonet, E. Tousset. Comparison of some modules of the Lie algebra of vector fields, Indagationes Mathematicae, N.S., 7 (4),461-471 (1996).
[6] C. Roger. Algèbres de Lie graduées et quantification. Symplectic Geometry and Mathematical Physics. Birkhäuser, Boston, 1991 Verlag.
[7] C. Roger, P. Lecomte. Remarques sur la cohomologie de l'algèbre de NijenhuisRichardson. Communications in Algebra, (1994) 3053-3059.
[8] H. Schicketanz. On derivation and cohomology of the graded Lie algebra of valued differential forms related to a smooth manifold. Bulletin de la Société Royale des Sciences de Liège. ann 57(6) 610-617 (1988).

Ammar Faouzi: Faculté des Sciences, Université de Sfax, B.P.802, Sfax, Tunisie. E-mail: faammar@yahoo.com

Kamoun Kaouthar: Faculté des Sciences, Université de Sfax, B.P.802, Sfax, Tunisie. E-mail:Lkkaouthar@Yahoo.com

