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ABOUT THE COHOMOLOGY OF THE LIE
SUPERALGEBRA OF VECTOR FIELDS ON R""

AMMAR FAOUZI AND KAMOUN KAOUTHAR

ABSTRACT. In this paper, we compute the first space of cohomol-
ogy of Vect(R™™), the Lie superalgebra of vector fields on the su-
permanifold R™"™ with coefficients in F(R"™), the space of smooth
functions on R™"™. We give a super analog of the cohomologies of
vector fields that where studied for instance by D.B. Fuchs [2].
This work allows us to classify the deformations of the action of
Vect(R™™) on F(R™™).

1. INTRODUCTION

Let Vect(R™") be the Lie superalgebra of vector fields on the super
manifold R™™ and F(R™") be the space of smooth functions on the
manifold (R™"). As F(R"") can be identified with the supercommu-
tative superalgebra Q(R") = @,_, *(R™) of differential forms on R",
then Vect(R"") is identified with the superalgebra of superderivations
of Q(R™). So, Vect(R"") is identified to a sum of two copies of the
space of tensor valued differential forms on R", Q = @@, QF(R", TR"),
one with the Frolicher-Nijenhuis bracket [[ , |], the other one with the
Richardson Nijenhuis bracket [ , ]*. We shall set § = (Q,[[, ]]), and
R = (9,], |"). For this identification, as well as relationship between
the two brackets, see the book by Michor, Kolar and Slovac [3]. Here
we compute H'(Vect(R""), F(R™™)).

1.1. Notations and definitions.

1.1.1. Identification of Vect(R™™). We shall first precise the structure
of Vect(R""). The space F(R"") of smooth functions on R™"™ can be
identified with the graded commutative algebra

QR") = P (R")

of differential forms on R™ . We denote by Dery(2(R™)) the space of
all graded derivations of degree s, i.e all linear mappings

D : Q(R") — Q(R")
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with D(Q/(R™)) € Q@+ (R") and

D(p Ay) = Dp A+ (=1)"p A D(v)
for p € QY(R") and ¢ € QF(R™). The space

Der(Q(R")) = @) Der,(QR"))

is a graded Lie superalgebra with the graded commutator:
[Dy1, D3] := Dy o Dy — (—1)"**2Dy 0 Dy
for D; € Derg,(QR™)), for ¢ € {1,2}. Then the space
Vect(R"") := Der(Q(R")).

We call Q(R™, TR") = @'_, Q2*(R™, TR") the space of all vector valued
differential forms. We shall frequently use the identification between
O (R™, TR™) and the completed tensor product over functions Q*(R")®
TR™. So, by a slight abuse notations, we shall identify w® X where w €
Q*(R™) and X € TR", with the corresponding tensor valued differential
form.

A derivation D € Der (Q2(R™)) is algebraic if its restriction to Q°(R™)
vanishes identically. Then D(fw) = fD(w) for f € C*(R",R). So,
from C. Roger ([6] p 68), D is given by a tensor field. So, D induces a
derivation D, € Der ;AT R" for each x € R™. It is uniquely determined
by its restriction to 1-forms:

Dypsgn : T;R" — ASHT*R™
which we may view as an element K, € AFMTR" @ T,R" depending
smoothly on x € R". We write D = 15, where

K € C®(AHTR™ @ TR™) =: QT (R", TR").
Note the defining equation: ix(w) = w o K for w € Q(R"™).
The exterior derivative d is an element of Der;(Q(R™)). In view of

the formula

,CX = [Zx,d] = iXOd+dOiX
for vector fields X € Vect(R™), we define for K € Q°(R™, TR"™) the Lie
derivation Lx € Der (Q2(R™)) by

L= [iK, d] =i od+ (—1)8d 01K,

then the mapping £ : Q(R", TR") — Der(Q2(R™)) is injective, since
Lif=igdf =df oK for f € C*°(R™R).

Lemma 1. [6] For any graded derivation D € Dery(2(R™)), there
exists an unique K € QF(R™, TR™) and L € QF1(R", TR™) such that
D = Lk + iy, where

(1) if(w®X) =ir(w)®X and ig(w) =nANiy(w) for L=n®Y.
The degree of D is denoted |D| and is equal to k.
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1.1.2. Richardson-Nijenhuis algebra. The injection
i P R™, TR™) — Der*(QR™));  i([K, L]") := [ik, iz)
is a graded Lie bracket on Q*"(R" TR"). So, we get a bracket on
Q*T1(R", TR") which defines a graded Lie algebra structure with the
grading as indicated. For K € Q*(R" TR") and L € Q“"Y(R", TR")
we have
(K, L] = ixgL — (—1)"i K.

The space R = (6 QH(R™, TR"),[ , ]") is called the Richardson-
Nijenhuis algebra. It is a subalgebra of Vect(R™")

Remark 2. This Lie superalgebra is linked with R%™ the Lie super-
algebra of vector fields on a purely odd space. More precisely, if one
identifies as a space

QY R, TR") = Vect(RO™) @ C=(R")

with completed tensor product, then the Richardson-Nijenhuis bracket
reads as follows: for K = a®¢ and L = b\ with &, X in Vect(R%") and
a, bin C*(R™), one has [K, L|" = ab® [, A], where [¢, A] is the bracket
of vector fields on the supermanifold R, So, it can be identified with
the super Lie algebra of currents with value in Vect(R%™).

1.1.3. Frolicher-Nijenhuisalgebra. The bracket of Ly and L, is still a
derivation, which gives the Frolicher-Nijenhuis bracket by the following
formula:

Lijo = [Lo, Ly)-

For ) =a®X andn = 3®Y with a € Q*(R"), 3 € Q{(R"), X and Y
in Vect(R™) one has:

[ X,0RY]]=aABR[X,Y]+aANLxfRY — LyaANF® X
+ (D) danixBRY +iya AdB® X).

The space § = (P Q*(R", TR"™),[[ , ]]) is called Frolicher-Nijenhuis
algebra. It is a subalgebra of Vect(R™") (see [5]). The above formula
has been obtained by Michor in [3].

We get, so, for Vect(R"") = R + § the following bracket:

Lemma 3. [6] For K; € Q%(R™, TR") and L; € QFT1(R", TR™) where
i € {1,2}, we have:

[£K1 + Z.L17£K2 + iL2] = L:([[Klv KQH + iLl (K2> - (_1>k1k2iL2<K1))
+i([Ly, Lo]" + [[K1, Lo]] = (—=1)M*2[[K2, Lu]]).

Remark 4. As a consequence of this lemma, for K € QF(R", TR")
and L € Q"1(R", TR"), one has

[Lxcyiz] = (K, L]]) — (=1)"L(iL K)

and
i, L] = L(iLK) = (=1)*([[L, K])).
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2. MAINS RESULTS
With the notations of previous subsection, one has:

Proposition 5. If n > 2, the space of cohomology H'(F, Q(R™)) is one
dimensional and is generated by the 1-cocycle given by:
(G %’ — Q(Rn)
weX — dixw)

Proposition 6. The space of cohomology H' (R, Q(R")) is one dimen-
sitonal and is generated by the 1-cocycle given by:
Co . R e Q(Rn)
wX — (=D

where |w| denotes the degree of w.[]

This result can be deduced from C. Roger and P. Lecomte in [7].
Here we take an other proof and rectify their result.
The cohomology of Vect(R"") = & + R is given by:

Theorem 7. Ifn > 2, the space of cohomology H'(Vect(R"™), F(R"™))
18 generated by the 1-cocycles

¢: Vect(R"") — F(R"™)

defined by
c(Lg+ip) =—c1(K)+ 0w (K) + (L)
where Owy (K) = Li(w1), a coboundary on § with wy € Q°(R").

3. PROOF OF PROPOSITIONS 5 AND 6 AND THEOREM 7

Before proving the propositions and the theorem, we shall give some
definitions and preliminary results.

3.1. Polynomial notation. (see [1] and [5])

Polynomial notation is very useful to handle computation with dif-
ferential operators. It allows to apply polynomial computations for
operators.

We suppose that £ — M and FF — M are vector bundles, with
typical fibers Ey and Fj, that I'(E) and I'(F) denote their spaces of
smooth sections. Then fixing a local chart (U, x1, ..., x,), we can iden-
tify I'(F) and I'(F') to C*(U, Ey) and C*(U, Fy) respectively. Then a
differential operator of order k£ can be written in following form:

fr— 3" Au(@)D" f(x)
o <k

where D = 991 ---0g" denotes partial derivatives with respect to
(21, ..., T,), furthermore the mappings A, is in C°(U, L(Ey, Fp)). Then
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the symbolic polynomial associated to A is defined by
P& X)(x) = ) Aau(X)E"
|| <k

For example if X = Y, X'0,, € Vect(R"), where §,, = 5=, acting

on a function f € C*(R™) through the operator of Lie derivative:
Of
— L = E X'—

is represented by the polynomial function

inaf =< X, &> f.

3.2. Preliminary results. Let
5§ — QR
be a cochain, the condition of 1-cocycle applied to ¢; reads:
a([la® X, BRY]) = Lasx)c1(BRY) = (1)L G0 (a@Y).
Remark that for every a ® X € § and v € Q¢(R") one has

(2) Liaax)(7) =i@eex)dy + (1) d(i@wex)y)
where iagx)y = a Nix7y.
Lemma 8. If

c: QR") @ Vect(R") — Q(R")
1s a 1-cocycle, then c is a differential operator.

Proof. This is a simple adaptation of the result of [8]. O

Lemma 9. Each cohomology class [c] in H(F, Q(R")) contains a 1-
cocycle with constants coefficients.

Proof. We suppose that c is a 1-cocycle, then its restriction to the Lie
subalgebra Vect(R™) C § of vector fields is also a 1-cocycle. The first
cohomology space of the Lie algebra of vector fields is generated by
"div” and "ddiv” so there exist a,b € R and w € QF(R") such that

c(X)=a div(X)+b ddiv(X)+ Oxw VX € Vect(R").

Now, the 1-cocycle ¢ — Ow vanishes on constant vector fields. Here
we use the identification of the algebra of vector fields Vect(R") as a
subalgebra of § and the fact that the restriction of the action £ of
§ on forms to Lie algebra Vect(R™) coincides with the classical Lie
derivative L. It follows from the relation of 1-cocycle:

(3) Ly (e(K)) = e([[X, KJ]) = Lx(c(X))

for K € §, that ¢ commutes with the Lie derivative in the direction of
constant vector fields:

(4) Lix(e(K)) = ([[X; K]).
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A direct computation finishes the proof. O

3.3. Proof of proposition 5. Since § is a graded Lie algebra and
Q(R™) is a graded module by the degree of forms, the space of coho-
mology H'(F, Q(R")) is graded, then we have

H'(3, Q(R") = P H' 3, QARY),

where H'(F, Q(R™)), is the space of class of homogeneous cocycle ¢,
of degree ¢ i.e transforms an argument of degree p on an argument of
degree p + ¢. The restriction of ¢; , to QP(R™) ® Vect(R") is noted

Clpq: P (R") @ Vect(R") — QPTI(R™).
The condition of 1-cocycle applied to ¢1,4 can be written

(5) crpa([[K1, Kal]) = L, (c1pq(JG)) = (=)L (01,(K7))

for K1 and K5 in §. Up to a coboundary, we may suppose that the
restriction of ¢ to Vect(R") = Q°(R")@Vect(R") C § is a combination
of "div” and "ddiv”. Hence, in equation (5), if we set K; to be a
linear vector field X, since ¢;,,(K7) is constant, we directly obtain the
relation
C1pg(Lx(K2)) — Lx(c1p4(K2)) =0,

where Ly is the classical Lie derivative in the direction of X. If n
denote the derivative affecting K, then one may write the symbolic
form ¢ 4(n, K) associated to ¢1,, (see[5]). For Xi,..., X+, in TR",
the polynomial ¢y, 4(n, K)(Xy, ..., Xn4q) is invariant with respect to
the action of the algebra gl(n,R). The classical result of Weyl (see [1])
states that such invariant polynomials are generated by contractions.
Hence one gets that the degree in n (say r) is equal to ¢ + 1. Now,
the polynomial ¢y ,4(n, K)(Xi, ..., Xt+q) must be symmetric in 7 and
antisymmetric in Xy, ..., X,,44, so, r € {0,1,2}. Hence, as a result of
the invariance property, we obtain (where a,, b,, ¢, and e, are reals
numbers):

c1p-1(n, K) = a,7(n, K) where K = a® X and 7(n, K) = ixa;

CLP,O(U7 K) - bp 7—1(777 K) + Cp 7—2(777 K) Where 71(7]7K> =7 A 7'(777 K)
and 7o(n, K) =< K,n >;

c1p1(n, K) =d, m5(n, K) where 73(n, K) = e,n\ < K,n >.

Thus, we compute the coefficients a,, b,, ¢, and e, in accordance with
the degree q.

e Case q = —1
In this case, the condition for ¢; , 1 to be a 1-cocycle forces a, to be
zero for all p, if n > 1.

e Case ¢ =0
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Take ¢ 0(n, K) = b, 11(n, K) 4+ ¢, 72(n, K) and plug it in equation
(5) one can show that b, is equal to b, for all p and p" and ¢, must be
zero for all p, if n > 2.

e Case g =1
In this case we have

oms(n, K)(a N1, X) =e, ddivX Ada

where 1 = Y7 da' ® 0,,. A straightforward computation shows that
if n > 2, e, must be zero for all p.

3.4. Proof of proposition 6. Consider the mapping
Cot R — Q(R™)
w@X — (=D igw
where |w| denotes the degree of w.
We shall prove that ¢, is a 1-cocycle. Then for L1 = a ® X, where

la| = |L1] = 1 + 1 and ig,| = [1, and for Ly = § ® Y where || =
|Ls| = Iy + 1 and |ig,| = la, one has:

(o X, 3Y]N) —iL,c(BaY) — (=1)1 i cy(a @ X)

(O./ A\ ZXﬁ RY + ( 1)l1[2+15 AN iy& & X) — aA ix((—l)biyﬁ)
DB Ady ((-1)ixa)

1)ll+l22y(a /\ZXB) + (—1)lll2+1+h+l2ix(ﬁ A iya) _ (—1)1204 Az'Xiyﬁ
1>l1l2+1+ll/6 Niyixa

1)l1+12iy0é A iXﬁ + (_1)l2+1a A Zleﬁ ( )l1l2+l1+l27/X/8 Ny o
1)l H g Ajviya — (—=1)2a A iyiy S + (—1)12 3 Adyixa

—(
= (=
- (=
= (=
- (=

= 0.

To prove that this 1-cocycle is unique we use the same method as in
the Proposition 5.

3.5. Proof of theorem 7. Let
¢ : Vect(R"") — F(R™")

be a 1-cocycle. The restriction of ¢ to the subalgebra § (respectively
R) is a 1-cocycle over § (respectively R). According to propositions 5
and 6 the 1-cocycle c reads

C(ﬁK + iL) = C([,K) + C(iL)
and
{ (L) =a a(Lk)+ 0w (K), (6)
c(ir) =bca(in) + Ows(L) (7),
where a, b are real constants and dw; and dw, are coboundaries of §
and R respectively given by dw;(K) = Lk (wy) and Ows(L) = ip(ws).
Besides, since the superalgebras § and R are graded and F(R"") =
Q(R™) is a graded module, too, the terms in the right hand of the
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equation (6) (respectively (7)) must have the same degrees. Then we
must have in equation (6):

1 (Lx)| = |0 (K)],

but |1 (Lk)| = |e1(a®@X)| = |a| where K = a®X € §F and |0w; (K)| =
|Lx(w1)| = |a| + |w1] (see equation (2)) then |wi| = 0 besides w; €
Q°(R™), moreover we must have in equation (7):

lea(in)| = [Owa(L)]

but |ea(in)| = |e2(B@Y)| = [iv(B)] = 8] — 1 where L = @Y € R,
then |0ws(L)| = liggy (w2)| = |B] + |wa| — 1 (see equation (1)), one
deduces that wy € Q°(R™). Since, iy (w2) = iggy (w2) = B Aty (wa) =0,
one has Jws(L) = 0.

Now, the condition of 1-cocycle applied to ¢ reads:
(6)

bea([[K, L]]) = (=) acy (i (K)) — bLx(ea(ir)) + (—1)*air(e1(Lx))

= —(=D)M0w1(iL(K)) + (=1)*ir (0w (Lk)).

We use (2), we obtain that the right hand of equation (6) vanish and

it becomes
™) bes([[K, L) = (=1)Maci (i1 (K)) = bLic(ealir))
+(—1)*air(e1(Lk)) = 0.

Now, if we substitute the expressions of the 1-cocycles ¢; and ¢y in
equation (7), we show that we must have a + b = 0. The result follows
immediately.
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