(Manuscrit reçu le 6 octobre 2007, version finale reçue le 27 novembre 2007)

ABOUT THE COHOMOLOGY OF THE LIE SUPERALGEBRA OF VECTOR FIELDS ON $\mathbb{R}^{n|n|}$

AMMAR FAOUZI AND KAMOUN KAOUTHAR

ABSTRACT. In this paper, we compute the first space of cohomology of $Vect(\mathbb{R}^{n|n})$, the Lie superalgebra of vector fields on the supermanifold $\mathbb{R}^{n|n}$ with coefficients in $\mathcal{F}(\mathbb{R}^{n|n})$, the space of smooth functions on $\mathbb{R}^{n|n}$. We give a super analog of the cohomologies of vector fields that where studied for instance by D.B. Fuchs [2]. This work allows us to classify the deformations of the action of $Vect(\mathbb{R}^{n|n})$ on $\mathcal{F}(\mathbb{R}^{n|n})$.

1. INTRODUCTION

Let $Vect(\mathbb{R}^{n|n})$ be the Lie superalgebra of vector fields on the super manifold $\mathbb{R}^{n|n}$ and $\mathcal{F}(\mathbb{R}^{n|n})$ be the space of smooth functions on the manifold $(\mathbb{R}^{n|n})$. As $\mathcal{F}(\mathbb{R}^{n|n})$ can be identified with the supercommutative superalgebra $\Omega(\mathbb{R}^n) = \bigoplus_{k=0}^n \Omega^k(\mathbb{R}^n)$ of differential forms on \mathbb{R}^n , then $Vect(\mathbb{R}^{n|n})$ is identified with the superalgebra of superderivations of $\Omega(\mathbb{R}^n)$. So, $Vect(\mathbb{R}^{n|n})$ is identified to a sum of two copies of the space of tensor valued differential forms on \mathbb{R}^n , $\Omega = \bigoplus_k \Omega^k(\mathbb{R}^n, T\mathbb{R}^n)$, one with the Frölicher-Nijenhuis bracket [[,]], the other one with the Richardson Nijenhuis bracket [,]^{\wedge}. We shall set $\mathfrak{F} = (\Omega, [[,]])$, and $\mathcal{R} = (\Omega, [,]^{\wedge})$. For this identification, as well as relationship between the two brackets, see the book by Michor, Kolar and Slovac [3]. Here we compute $H^1(Vect(\mathbb{R}^{n|n}), \mathcal{F}(\mathbb{R}^{n|n}))$.

1.1. Notations and definitions.

1.1.1. Identification of $Vect(\mathbb{R}^{n|n})$. We shall first precise the structure of $Vect(\mathbb{R}^{n|n})$. The space $\mathcal{F}(\mathbb{R}^{n|n})$ of smooth functions on $\mathbb{R}^{n|n}$ can be identified with the graded commutative algebra

$$\Omega(\mathbb{R}^n) = \bigoplus_{s=0}^n \Omega^s(\mathbb{R}^n)$$

of differential forms on \mathbb{R}^n . We denote by $Der_s(\Omega(\mathbb{R}^n))$ the space of all graded derivations of degree s, i.e all linear mappings

$$D: \Omega(\mathbb{R}^n) \longrightarrow \Omega(\mathbb{R}^n)$$

Key words and phrases. cohomology space, the Lie superalgebra of vector fields on the super manifold $\mathbb{R}^{n|n}$, Frölicher-Nijenhuis bracket, Richardson-Nijenhuis bracket.

with $D(\Omega^l(\mathbb{R}^n)) \subset \Omega^{s+l}(\mathbb{R}^n)$ and

$$D(\varphi \wedge \psi) = D\varphi \wedge \psi + (-1)^{kl}\varphi \wedge D(\psi)$$

for $\varphi \in \Omega^{l}(\mathbb{R}^{n})$ and $\psi \in \Omega^{k}(\mathbb{R}^{n})$. The space

$$Der(\Omega(\mathbb{R}^n)) = \bigoplus_s Der_s(\Omega(\mathbb{R}^n))$$

is a graded Lie superalgebra with the graded commutator:

$$[D_1, D_2] := D_1 \circ D_2 - (-1)^{s_1 s_2} D_2 \circ D_1$$

for $D_i \in Der_{s_i}(\Omega(\mathbb{R}^n))$, for $i \in \{1, 2\}$. Then the space

 $Vect(\mathbb{R}^{n|n}) := Der(\Omega(\mathbb{R}^n)).$

We call $\Omega(\mathbb{R}^n, T\mathbb{R}^n) = \bigoplus_{s=0}^n \Omega^s(\mathbb{R}^n, T\mathbb{R}^n)$ the space of all vector valued differential forms. We shall frequently use the identification between $\Omega^*(\mathbb{R}^n, T\mathbb{R}^n)$ and the completed tensor product over functions $\Omega^*(\mathbb{R}^n) \otimes T\mathbb{R}^n$. So, by a slight abuse notations, we shall identify $\omega \otimes X$ where $\omega \in \Omega^*(\mathbb{R}^n)$ and $X \in T\mathbb{R}^n$, with the corresponding tensor valued differential form.

A derivation $D \in Der_s(\Omega(\mathbb{R}^n))$ is algebraic if its restriction to $\Omega^0(\mathbb{R}^n)$ vanishes identically. Then $D(f\omega) = fD(\omega)$ for $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$. So, from C. Roger ([6] p 68), D is given by a tensor field. So, D induces a derivation $D_x \in Der_s \wedge T_x^* \mathbb{R}^n$ for each $x \in \mathbb{R}^n$. It is uniquely determined by its restriction to 1-forms:

$$D_{x|T^*_x\mathbb{R}^n}: T^*_x\mathbb{R}^n \longrightarrow \wedge^{s+1}T^*\mathbb{R}^n$$

which we may view as an element $K_x \in \wedge^{k+1} T_x^* \mathbb{R}^n \otimes T_x \mathbb{R}^n$ depending smoothly on $x \in \mathbb{R}^n$. We write $D = i_K$, where

$$K \in C^{\infty}(\wedge^{s+1}T^*\mathbb{R}^n \otimes T\mathbb{R}^n) =: \Omega^{s+1}(\mathbb{R}^n, T\mathbb{R}^n).$$

Note the defining equation: $i_K(w) = w \circ K$ for $w \in \Omega^1(\mathbb{R}^n)$.

The exterior derivative d is an element of $Der_1(\Omega(\mathbb{R}^n))$. In view of the formula

$$\mathcal{L}_X = [i_X, d] = i_X \circ d + d \circ i_X$$

for vector fields $X \in Vect(\mathbb{R}^n)$, we define for $K \in \Omega^s(\mathbb{R}^n, T\mathbb{R}^n)$ the Lie derivation $\mathcal{L}_K \in Der_s(\Omega(\mathbb{R}^n))$ by

$$\mathcal{L}_K := [i_K, d] = i_K \circ d + (-1)^s d \circ i_K,$$

then the mapping $\mathcal{L} : \Omega(\mathbb{R}^n, T\mathbb{R}^n) \longrightarrow Der(\Omega(\mathbb{R}^n))$ is injective, since $\mathcal{L}_K f = i_K df = df \circ K$ for $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$.

Lemma 1. [6] For any graded derivation $D \in Der_k(\Omega(\mathbb{R}^n))$, there exists an unique $K \in \Omega^k(\mathbb{R}^n, T\mathbb{R}^n)$ and $L \in \Omega^{k+1}(\mathbb{R}^n, T\mathbb{R}^n)$ such that $D = \mathcal{L}_K + i_L$, where

(1) $i_L(\omega \otimes X) := i_L(\omega) \otimes X$ and $i_L(\omega) = \eta \wedge i_Y(\omega)$ for $L = \eta \otimes Y$.

The degree of D is denoted |D| and is equal to k.

1.1.2. Richardson-Nijenhuis algebra. The injection

 $i: \Omega^{*+1}(\mathbb{R}^n, T\mathbb{R}^n) \longrightarrow Der^*(\Omega(\mathbb{R}^n)); \quad i([K, L]^{\wedge}):=[i_K, i_L]$

is a graded Lie bracket on $\Omega^{*+1}(\mathbb{R}^n, T\mathbb{R}^n)$. So, we get a bracket on $\Omega^{*+1}(\mathbb{R}^n, T\mathbb{R}^n)$ which defines a graded Lie algebra structure with the grading as indicated. For $K \in \Omega^{k+1}(\mathbb{R}^n, T\mathbb{R}^n)$ and $L \in \Omega^{\ell+1}(\mathbb{R}^n, T\mathbb{R}^n)$ we have

$$[K,L]^{\wedge} = i_K L - (-1)^{k\ell} i_L K.$$

The space $\mathcal{R} = (\bigoplus \Omega^{*+1}(\mathbb{R}^n, T\mathbb{R}^n), [,]^{\wedge})$ is called the Richardson-Nijenhuis algebra. It is a subalgebra of $Vect(\mathbb{R}^{n|n})$

Remark 2. This Lie superalgebra is linked with $\mathbb{R}^{0|n}$ the Lie superalgebra of vector fields on a purely odd space. More precisely, if one identifies as a space

$$\Omega^{*+1}(\mathbb{R}^n, T\mathbb{R}^n) = Vect(\mathbb{R}^{0|n}) \otimes C^{\infty}(\mathbb{R}^n)$$

with completed tensor product, then the Richardson-Nijenhuis bracket reads as follows: for $K = a \otimes \xi$ and $L = b \otimes \lambda$ with ξ , λ in $Vect(\mathbb{R}^{0|n})$ and a, b in $C^{\infty}(\mathbb{R}^n)$, one has $[K, L]^{\wedge} = ab \otimes [\xi, \lambda]$, where $[\xi, \lambda]$ is the bracket of vector fields on the supermanifold $\mathbb{R}^{0|n}$. So, it can be identified with the super Lie algebra of currents with value in $Vect(\mathbb{R}^{0|n})$.

1.1.3. Frölicher-Nijenhuisalgebra. The bracket of \mathcal{L}_{θ} and \mathcal{L}_{η} is still a derivation, which gives the Frölicher-Nijenhuis bracket by the following formula:

$$\mathcal{L}_{[[heta,\eta]]} = [\mathcal{L}_{ heta}, \mathcal{L}_{\eta}].$$

For $\theta = \alpha \otimes X$ and $\eta = \beta \otimes Y$ with $\alpha \in \Omega^k(\mathbb{R}^n)$, $\beta \in \Omega^l(\mathbb{R}^n)$, X and Y in $Vect(\mathbb{R}^n)$ one has:

$$\begin{split} \left[\left[\alpha \otimes X, \beta \otimes Y \right] \right] &= \alpha \wedge \beta \otimes \left[X, Y \right] + \alpha \wedge L_X \beta \otimes Y - L_Y \alpha \wedge \beta \otimes X \\ &+ (-1)^k (d\alpha \wedge i_X \beta \otimes Y + i_Y \alpha \wedge d\beta \otimes X). \end{split}$$

The space $\mathfrak{F} = (\bigoplus \Omega^*(\mathbb{R}^n, T\mathbb{R}^n), [[,]])$ is called Frölicher-Nijenhuis algebra. It is a subalgebra of $Vect(\mathbb{R}^{n|n})$ (see [5]). The above formula has been obtained by Michor in [3].

We get, so, for $Vect(\mathbb{R}^{n|n}) = \mathcal{R} + \mathfrak{F}$ the following bracket:

Lemma 3. [6] For $K_i \in \Omega^{k_i}(\mathbb{R}^n, T\mathbb{R}^n)$ and $L_i \in \Omega^{k_i+1}(\mathbb{R}^n, T\mathbb{R}^n)$ where $i \in \{1, 2\}$, we have:

$$\begin{aligned} [\mathcal{L}_{K_1} + i_{L_1}, \mathcal{L}_{K_2} + i_{L_2}] &= \mathcal{L}\big([[K_1, K_2]] + i_{L_1}(K_2) - (-1)^{k_1 k_2} i_{L_2}(K_1)\big) \\ &+ i\big([L_1, L_2]^{\wedge} + [[K_1, L_2]] - (-1)^{k_1 k_2} [[K_2, L_1]]\big). \end{aligned}$$

Remark 4. As a consequence of this lemma, for $K \in \Omega^k(\mathbb{R}^n, T\mathbb{R}^n)$ and $L \in \Omega^{l+1}(\mathbb{R}^n, T\mathbb{R}^n)$, one has

$$[\mathcal{L}_K, i_L] = i([[K, L]]) - (-1)^{kl} \mathcal{L}(i_L K)$$

and

$$[i_L, \mathcal{L}_K] = \mathcal{L}(i_L K) - (-1)^k i([[L, K]]).$$

2. Mains results

With the notations of previous subsection, one has:

Proposition 5. If n > 2, the space of cohomology $H^1(\mathfrak{F}, \Omega(\mathbb{R}^n))$ is one dimensional and is generated by the 1-cocycle given by:

$$\begin{array}{ccc} c_1 : & \mathfrak{F} & \longrightarrow & \Omega(\mathbb{R}^n) \\ & \omega \otimes X & \longrightarrow & d(i_X \omega) \end{array}$$

Proposition 6. The space of cohomology $H^1(\mathcal{R}, \Omega(\mathbb{R}^n))$ is one dimensional and is generated by the 1-cocycle given by:

$$c_2: \begin{array}{cc} \mathcal{R} & \longrightarrow & \Omega(\mathbb{R}^n) \\ \omega \otimes X & \longrightarrow & (-1)^{|\omega|-1} i_X \omega \end{array}$$

where $|\omega|$ denotes the degree of ω .

This result can be deduced from C. Roger and P. Lecomte in [7]. Here we take an other proof and rectify their result.

The cohomology of $Vect(\mathbb{R}^{n|n}) = \mathfrak{F} + \mathcal{R}$ is given by:

Theorem 7. If n > 2, the space of cohomology $H^1(Vect(\mathbb{R}^{n|n}), \mathcal{F}(\mathbb{R}^{n|n}))$ is generated by the 1-cocycles

$$c: Vect(\mathbb{R}^{n|n}) \longrightarrow \mathcal{F}(\mathbb{R}^{n|n})$$

defined by

$$c(\mathcal{L}_K + i_L) = -c_1(K) + \partial \omega_1(K) + c_2(L)$$

where $\partial \omega_1(K) = \mathcal{L}_K(\omega_1)$, a coboundary on \mathfrak{F} with $\omega_1 \in \Omega^0(\mathbb{R}^n)$.

3. Proof of propositions 5 and 6 and theorem 7

Before proving the propositions and the theorem, we shall give some definitions and preliminary results.

3.1. Polynomial notation. (see [1] and [5])

Polynomial notation is very useful to handle computation with differential operators. It allows to apply polynomial computations for operators.

We suppose that $E \to M$ and $F \to M$ are vector bundles, with typical fibers E_0 and F_0 , that $\Gamma(E)$ and $\Gamma(F)$ denote their spaces of smooth sections. Then fixing a local chart $(U, x_1, ..., x_n)$, we can identify $\Gamma(E)$ and $\Gamma(F)$ to $C^{\infty}(U, E_0)$ and $C^{\infty}(U, F_0)$ respectively. Then a differential operator of order k can be written in following form:

$$f\longmapsto \sum_{|\alpha|\leq k} A_{\alpha}(x) D^{\alpha} f(x)$$

where $D^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$ denotes partial derivatives with respect to $(x_1, ..., x_n)$, furthermore the mappings A_{α} is in $C^{\infty}(U, \mathcal{L}(E_0, F_0))$. Then

16

the symbolic polynomial associated to A is defined by

$$P(\xi; X)(x) = \sum_{|\alpha| \le k} A_{\alpha, x}(X) \xi^{\alpha}.$$

For example if $X = \sum_{i} X^{i} \partial_{x_{i}} \in Vect(\mathbb{R}^{n})$, where $\partial_{x_{i}} = \frac{\partial}{\partial x_{i}}$, acting on a function $f \in C^{\infty}(\mathbb{R}^{n})$ through the operator of Lie derivative:

$$f \longrightarrow L_X(f) = \sum_i X^i \frac{\partial f}{\partial x_i}$$

is represented by the polynomial function

$$\sum_{i} X^{i} \xi_{i} f = \langle X, \xi \rangle f.$$

3.2. Preliminary results. Let

$$c_1:\mathfrak{F}\longrightarrow\Omega(\mathbb{R}^n)$$

be a cochain, the condition of 1-cocycle applied to c_1 reads:

$$c_1([[\alpha \otimes X, \beta \otimes Y]]) - \mathcal{L}_{(\alpha \otimes X)}c_1(\beta \otimes Y) = (-1)^{|\alpha||\beta|+1}\mathcal{L}_{(\beta \otimes Y)}c_1(\alpha \otimes Y).$$

Remark that for every $\alpha \otimes X \in \mathfrak{F}$ and $\gamma \in \Omega^q(\mathbb{R}^n)$ one has

(2)
$$\mathcal{L}_{(\alpha \otimes X)}(\gamma) = i_{(\alpha \otimes X)} d\gamma + (-1)^q d(i_{(\alpha \otimes X)} \gamma)$$

where $i_{(\alpha \otimes X)}\gamma = \alpha \wedge i_X\gamma$.

Lemma 8. If

 $c: \Omega(\mathbb{R}^n) \otimes Vect(\mathbb{R}^n) \longrightarrow \Omega(\mathbb{R}^n)$

is a 1-cocycle, then c is a differential operator.

Proof. This is a simple adaptation of the result of [8]. \Box

Lemma 9. Each cohomology class [c] in $H^1(\mathfrak{F}, \Omega^k(\mathbb{R}^n))$ contains a 1-cocycle with constants coefficients.

Proof. We suppose that c is a 1-cocycle, then its restriction to the Lie subalgebra $Vect(\mathbb{R}^n) \subset \mathfrak{F}$ of vector fields is also a 1-cocycle. The first cohomology space of the Lie algebra of vector fields is generated by "div" and "ddiv" so there exist $a, b \in \mathbb{R}$ and $\omega \in \Omega^k(\mathbb{R}^n)$ such that

$$c(X) = a \ div(X) + b \ ddiv(X) + \partial_X \omega \ \forall X \in Vect(\mathbb{R}^n).$$

Now, the 1-cocycle $c - \partial \omega$ vanishes on constant vector fields. Here we use the identification of the algebra of vector fields $Vect(\mathbb{R}^n)$ as a subalgebra of \mathfrak{F} and the fact that the restriction of the action \mathcal{L} of \mathfrak{F} on forms to Lie algebra $Vect(\mathbb{R}^n)$ coincides with the classical Lie derivative L. It follows from the relation of 1-cocycle:

(3)
$$L_X(c(K)) = c([[X, K]]) - \mathcal{L}_K(c(X))$$

for $K \in \mathfrak{F}$, that c commutes with the Lie derivative in the direction of constant vector fields:

(4)
$$L_X(c(K)) = c([[X, K]]).$$

A direct computation finishes the proof.

3.3. **Proof of proposition 5.** Since \mathfrak{F} is a graded Lie algebra and $\Omega(\mathbb{R}^n)$ is a graded module by the degree of forms, the space of cohomology $\mathrm{H}^1(\mathfrak{F}, \Omega(\mathbb{R}^n))$ is graded, then we have

$$\mathrm{H}^{1}(\mathfrak{F}, \Omega(\mathbb{R}^{n})) = \bigoplus_{q} \mathrm{H}^{1}(\mathfrak{F}, \Omega(\mathbb{R}^{n}))_{q}$$

where $\mathrm{H}^{1}(\mathfrak{F}, \Omega(\mathbb{R}^{n}))_{q}$ is the space of class of homogeneous cocycle $c_{1,q}$ of degree q i.e transforms an argument of degree p on an argument of degree p + q. The restriction of $c_{1,q}$ to $\Omega^{p}(\mathbb{R}^{n}) \otimes Vect(\mathbb{R}^{n})$ is noted

$$c_{1,p,q}: \Omega^p(\mathbb{R}^n) \otimes Vect(\mathbb{R}^n) \longrightarrow \Omega^{p+q}(\mathbb{R}^n)$$

The condition of 1-cocycle applied to $c_{1,p,q}$ can be written

(5)
$$c_{1,p,q}([[K_1, K_2]]) - \mathcal{L}_{K_1}(c_{1,p,q}(K_2)) = (-1)^{|K_1||K_2|+1} \mathcal{L}_{K_2}(c_{1,p,q}(K_1))$$

for K_1 and K_2 in \mathfrak{F} . Up to a coboundary, we may suppose that the restriction of c to $Vect(\mathbb{R}^n) \cong \Omega^0(\mathbb{R}^n) \otimes Vect(\mathbb{R}^n) \subset \mathfrak{F}$ is a combination of "div" and "ddiv". Hence, in equation (5), if we set K_1 to be a linear vector field X, since $c_{1,p,q}(K_1)$ is constant, we directly obtain the relation

$$c_{1,p,q}(L_X(K_2)) - L_X(c_{1,p,q}(K_2)) = 0,$$

where L_X is the classical Lie derivative in the direction of X. If η denote the derivative affecting K, then one may write the symbolic form $c_{1,p,q}(\eta, K)$ associated to $c_{1,p,q}$ (see[5]). For X_1, \ldots, X_{n+q} in $T\mathbb{R}^n$, the polynomial $c_{1,p,q}(\eta, K)(X_1, \ldots, X_{n+q})$ is invariant with respect to the action of the algebra $gl(n, \mathbb{R})$. The classical result of Weyl (see [1]) states that such invariant polynomials are generated by contractions. Hence one gets that the degree in η (say r) is equal to q + 1. Now, the polynomial $c_{1,p,q}(\eta, K)(X_1, \ldots, X_{n+q})$ must be symmetric in η and antisymmetric in X_1, \ldots, X_{n+q} , so, $r \in \{0, 1, 2\}$. Hence, as a result of the invariance property, we obtain (where a_p , b_p , c_p and e_p are reals numbers):

$$c_{1,p,-1}(\eta, K) = a_p \tau(\eta, K) \text{ where } K = \alpha \otimes X \text{ and } \tau(\eta, K) = i_X \alpha;$$

$$c_{1,p,0}(\eta, K) = b_p \ \tau_1(\eta, K) + c_p \ \tau_2(\eta, K) \text{ where } \tau_1(\eta, K) = \eta \wedge \tau(\eta, K)$$

and $\tau_2(\eta, K) = \langle K, \eta \rangle;$

 $c_{1,p,1}(\eta, K) = d_p \ \tau_3(\eta, K)$ where $\tau_3(\eta, K) = e_p \eta \wedge \langle K, \eta \rangle$.

Thus, we compute the coefficients a_p , b_p , c_p and e_p in accordance with the degree q.

• Case q = -1

In this case, the condition for $c_{1,p,-1}$ to be a 1-cocycle forces a_p to be zero for all p, if n > 1.

• Case q = 0

17

Take $c_{1,p,0}(\eta, K) = b_p \tau_1(\eta, K) + c_p \tau_2(\eta, K)$ and plug it in equation (5) one can show that b_p is equal to $b_{p'}$ for all p and p' and c_p must be zero for all p, if n > 2.

• Case q = 1

In this case we have

$$\delta \tau_3(\eta, K)(\alpha \wedge \mathbf{1}, X) = e_p \ ddiv X \wedge d\alpha$$

where $\mathbf{1} = \sum_{i=1}^{n} dx^{i} \otimes \partial_{x_{i}}$. A straightforward computation shows that if n > 2, e_{p} must be zero for all p.

3.4. Proof of proposition 6. Consider the mapping

$$c_2 \colon \begin{array}{ccc} \mathcal{R} & \longrightarrow & \Omega(\mathbb{R}^n) \\ \omega \otimes X & \longrightarrow & (-1)^{|\omega| - 1} i_X \omega \end{array}$$

where $|\omega|$ denotes the degree of ω .

We shall prove that c_2 is a 1-cocycle. Then for $L_1 = \alpha \otimes X$, where $|\alpha| = |L_1| = l_1 + 1$ and $|i_{L_1}| = l_1$, and for $L_2 = \beta \otimes Y$ where $|\beta| = |L_2| = l_2 + 1$ and $|i_{L_2}| = l_2$, one has: $c_2([\alpha \otimes X, \beta \otimes Y]^{\wedge}) - i_{L_1}c_2(\beta \otimes Y) - (-1)^{l_1l_2+1}i_{L_2}c_2(\alpha \otimes X)$ $= c_2(\alpha \wedge i_X\beta \otimes Y + (-1)^{l_1l_2+1}\beta \wedge i_Y\alpha \otimes X) - \alpha \wedge i_X((-1)^{l_2}i_Y\beta)$ $- (-1)^{l_1l_2+1}\beta \wedge i_Y((-1)^{l_1}i_X\alpha)$ $= (-1)^{l_1+l_2}i_Y(\alpha \wedge i_X\beta) + (-1)^{l_1l_2+1+l_1+l_2}i_X(\beta \wedge i_Y\alpha) - (-1)^{l_2}\alpha \wedge i_Xi_Y\beta$ $- (-1)^{l_1l_2+1+l_1}\beta \wedge i_Yi_X\alpha$ $= (-1)^{l_1+l_2}i_Y\alpha \wedge i_X\beta + (-1)^{l_2+1}\alpha \wedge i_Yi_X\beta - (-1)^{l_1l_2+l_1+l_2}i_X\beta \wedge i_Y\alpha$ $- (-1)^{l_1l_2+l_1+1}\beta \wedge i_Xi_Y\alpha - (-1)^{l_2}\alpha \wedge i_Xi_Y\beta + (-1)^{l_1l_2+l_1}\beta \wedge i_Yi_X\alpha$ = 0.

To prove that this 1-cocycle is unique we use the same method as in the Proposition 5.

3.5. Proof of theorem 7. Let

$$c: Vect(\mathbb{R}^{n|n}) \longrightarrow \mathcal{F}(\mathbb{R}^{n|n})$$

be a 1-cocycle. The restriction of c to the subalgebra \mathfrak{F} (respectively \mathcal{R}) is a 1-cocycle over \mathfrak{F} (respectively \mathcal{R}). According to propositions 5 and 6 the 1-cocycle c reads

$$c(\mathcal{L}_K + i_L) = c(\mathcal{L}_K) + c(i_L)$$

and

$$\begin{cases} c(\mathcal{L}_K) = a \ c_1(\mathcal{L}_K) + \partial \omega_1(K), \\ c(i_L) = b \ c_2(i_L) + \overline{\partial} \omega_2(L) \end{cases}$$
(6) (7)

where a, b are real constants and $\partial \omega_1$ and $\overline{\partial} \omega_2$ are coboundaries of \mathfrak{F} and \mathcal{R} respectively given by $\partial \omega_1(K) = L_K(\omega_1)$ and $\overline{\partial} \omega_2(L) = i_L(\omega_2)$. Besides, since the superalgebras \mathfrak{F} and \mathcal{R} are graded and $\mathcal{F}(\mathbb{R}^{n|n}) \cong$ $\Omega(\mathbb{R}^n)$ is a graded module, too, the terms in the right hand of the

$$|c_1(\mathcal{L}_K)| = |\partial \omega_1(K)|,$$

but $|c_1(\mathcal{L}_K)| = |c_1(\alpha \otimes X)| = |\alpha|$ where $K = \alpha \otimes X \in \mathfrak{F}$ and $|\partial \omega_1(K)| = |\mathcal{L}_K(\omega_1)| = |\alpha| + |\omega_1|$ (see equation (2)) then $|\omega_1| = 0$ besides $\omega_1 \in \Omega^0(\mathbb{R}^n)$, moreover we must have in equation (7):

$$|c_2(i_L)| = |\overline{\partial}\omega_2(L)|$$

but $|c_2(i_L)| = |c_2(\beta \otimes Y)| = |i_Y(\beta)| = |\beta| - 1$ where $L = \beta \otimes Y \in \mathcal{R}$, then $|\overline{\partial}\omega_2(L)| = |i_{\beta\otimes Y}(\omega_2)| = |\beta| + |\omega_2| - 1$ (see equation (1)), one deduces that $\omega_2 \in \Omega^0(\mathbb{R}^n)$. Since, $i_L(\omega_2) = i_{\beta\otimes Y}(\omega_2) = \beta \wedge i_Y(\omega_2) = 0$, one has $\overline{\partial}\omega_2(L) = 0$.

Now, the condition of 1-cocycle applied to c reads: (6)

$$bc_2([[K, L]]) - (-1)^{kl}ac_1(i_L(K)) - b\mathcal{L}_K(c_2(i_L)) + (-1)^{lk}ai_L(c_1(\mathcal{L}_K))) \\= -(-1)^{kl}\partial\omega_1(i_L(K)) + (-1)^{lk}i_L(\partial\omega_1(\mathcal{L}_K)).$$

We use (2), we obtain that the right hand of equation (6) vanish and it becomes

(7)
$$bc_2([[K, L]]) - (-1)^{kl}ac_1(i_L(K)) - b\mathcal{L}_K(c_2(i_L)) + (-1)^{lk}ai_L(c_1(\mathcal{L}_K)) = 0.$$

Now, if we substitute the expressions of the 1-cocycles c_1 and c_2 in equation (7), we show that we must have a + b = 0. The result follows immediately.

Acknowledgements The authors would like to thank C. Roger and P. Lecomte for their suggestions and remarks.

References

- M. De Wilde, P. Lecomte. Cohomology of the Lie algebra of smooth vector fields of manifold associated to the Lie derivative of smooth forms. J. Math. Pures et Appl. 62, 1983.
- [2] D. B. Fuchs. Cohomology of infinite dimensionel Lie algebras. Consultants Bureau. New York (1986).
- [3] I. Kolar, P. W. Michor, J. Slovak. Natural operations in differential geometry, Springer-Verlag, 1993.
- [4] Y. Kosmann-Schwarzbach, J. Monterde. Divergence operator and Poisson Brakets. Ann. Inst. Fourrier, Grenoble, 52(2)(2002), p.419-456.
- [5] P. Lecomte, P. Mathonet, E. Tousset. Comparison of some modules of the Lie algebra of vector fields, Indagationes Mathematicae, N.S.,7 (4),461-471 (1996).
- [6] C. Roger. Algèbres de Lie graduées et quantification. Symplectic Geometry and Mathematical Physics. Birkhäuser, Boston, 1991 Verlag.
- [7] C. Roger, P. Lecomte. Remarques sur la cohomologie de l'algèbre de Nijenhuis-Richardson. Communications in Algebra, (1994) 3053-3059.
- [8] H. Schicketanz. On derivation and cohomology of the graded Lie algebra of valued differential forms related to a smooth manifold. Bulletin de la Société Royale des Sciences de Liège. ann 57(6) 610-617 (1988).

20

Ammar Faouzi: Faculté des Sciences, Université de Sfax, B.P.802, Sfax, Tunisie. E-mail: faammar@yahoo.com

KAMOUN KAOUTHAR: FACULTÉ DES SCIENCES, UNIVERSITÉ DE SFAX, B.P.802, SFAX, TUNISIE. E-MAIL:LKKAOUTHAR@YAHOO.COM