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Intersections of non quasi-analytic classes
of ultradifferentiable functions

Jean SCHMETS Manuel VALDIVIA*

Abstract

As in [8] and [9], we define the intersections Eny(£2), Dowy(K)
and D) (€2) of non quasi-analytic classes by means of a matrix 901.
We prove that they differ from classical Beurling classes and that they
coincide algebraically with the corresponding intersections of Roumieu
classes. We next consider a few elementary properties and give a
condition on 91 under which these spaces are nuclear.
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1 Introduction

Intersections of non quasi-analytic classes have first been investigated by
Chaumat and Chollet in [3] in the case M;, = M,’ where (M,)yen, is a
sequence with moderate growth and (a;)jen a sequence of positive num-
bers strictly decreasing to 0. They obtained a Whitney extension theorem,
a Lojasiewicz theorem on regular situation, some theorem of division and
preparation and a Whitney spectral theorem.

Later on Beaugendre studied extensively such intersections in [1] and [2]
when the numbers M, are defined by means of a convex and increasing func-
tion ® on [0, +oo[ such that lim, .., ®(¢)/t = co. In particular he obtained
extension results for Whitney jets and an explicit continuous linear extension
map for Whitney jets.

We considered such intersections for general matrices 9 = (M, ) jen peN,
and obtained analytic and holomorphic extensions of Whitney jets in [8] and
an explicit continuous linear extension map for Whitney jets in [9].

*Partially supported by MEC and FEDER, Project MTM 2005-08210.
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In this paper we investigate general properties of the spaces Emmy(£2),
Dmy(K) and Dwy(2). We first prove that, under a mild condition for the
matrix, they are never classical Beurling classes and that they coincide with
the corresponding intersections of Roumieu classes. We next develop some
elementary properties based on the following result: every bounded subset
of Emy(Q) is a bounded subset of a space £M"(Q) such that the canonical
injection from EM"(Q) into Euw) () is well defined, continuous and linear.
We also prove that, if the compact subset K of R™ has the local displacement
property, then D (K) is a dense subspace of each one of the step spaces
DMI)(K). Finally we give a condition on 9t under which these spaces are
nuclear.

2 Notations

All functions we consider are complex valued and all vector spaces are C-
vector spaces. The euclidean norm of x € R” is denoted |z|. If f is a
function defined on A C R”, then we set || f|| , := sup,e4 | f(2)].

If F is a Hausdorff locally convex topological vector space (in short: a
locally convex space), E' designates its topological dual endowed with the
strong G(E', E) topology. We refer to [4] and [7] for properties of locally
convex spaces.

Whenever m is a sequence (my,)pen, of real numbers, the notation M
designates as usual the sequence (M,),en, Where M, = mq...m, for every
p € Ny. Such a sequence is
(a) normalized if mo =1 and m, > 1 for every p € N;

(b) non quasi-analytic if 3777 ;1/m,, < .

Let m be a normalized, increasing and non quasi-analytic sequence. Let
moreover {) be a non empty open subset of R™ and K be a compact subset
of R™. Then as in [5], one can consider the following Beurling classes:

a) the (FS)-space EM)(Q): its elements are the C*-functions f on € such

that .
[l = sup DSl

&9
aeNg h‘a|M|a\

for every compact subset H of 2 and all constants h > 0, endowed with the
fundamental system of semi-norms {||-||;;,, : H € Q,h > 0};

b) the (FS)-space D™)(K): it is the topological subspace of £M)(R"), the
elements of which have their support contained in K;

c) the (LFS)-space D™)(Q): it is the inductive limit of the spaces D) (H)
where H runs through the family of the compact subsets of €.
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One also considers the following Roumieu classes which for the time being
will not be endowed with locally convex topologies:
a) the vector space EMI(Q): its elements are the C®-functions f on €2 such
that, for every compact subset H of ), there are A > 0 and h > 0 such that
LAl < 003
b) the vector spaces DIM}(K) and DM} (Q) which have then a clear meaning.
As the sequence m is normalized and increasing, the sequence M is
logarithmically convex; therefore it is well known (cf. [5]) that all these spaces
are algebras.

From now on, throughout the paper m designates a semi-reqular matrix

m = (1) jeN peNo

i.e. a matrix such that, for every j € N, the sequence m; = (m;,)pen, is
normalized, increasing, non quasi-analytic and such that
(a) mj, > mji1, for every p € Ny,
(b) limy—co mjy1,/myp = 0.

Then, of course, M ; designates the sequence (M;,)en, for every j € Ny
and 9 the matrix (M; ) jen pen -

This allows to introduce the following vector spaces

Ean () = (N EMI(Q); Emp(Q) = [ €M (Q);

JEN jeN
Dy (Q) = [ DMI(Q); Doy () = [ DM (Q);
JEN JEN
Dowy(K) = () DMI(K);  Dpwy(K) = () DM (K).
jeN jEN

Of course, we then define
a) the (FS)-space Eny(§2) as the projective limit of the spaces £Mi)(Q), i.e.
we endow it with the fundamental system of the semi-norms ||-[|; , ; defined

by
ID*fl

1 sy = 5;1@ HTA, o

where H is a compact subset of 2, h > 0 and j € N;
b) the (FS)-space Doy (K) as a topological subspace of Eny(R™);
c) the (LFS)-space Dimy(§2) as the inductive limit of the spaces Dwmy(H)
where H runs through the family of the compact subsets of 2.

If g belongs to Emy(2) (resp. Dmy(£2)), then the multiplication map
Mgy: f +— gf is a continuous linear map from Em)(€2) into itself as well as
from Dmy(€2) into itself (resp. from Emny () into Dwmy(£2)) (cf. [5]).
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3 Equality of vector spaces

Proposition 3.1 For every semi-reqular matriz 9, the following equal-
ities of vector spaces hold

Em () =Emy(Q); Dmy(Q2) = Dimy(Q); - Dowy (K) = Dy (K).

Proof. Tt clearly suffices to establish the first one of these equalities.

On one hand, the inclusion Ewmy(2) C Emy(2) is a direct consequence of
the fact that, for every j € N, we certainly have £M3)(Q) c £IMs}(Q).

To establish the other inclusion, it suffices to prove that, for every j € N,
every element f of £MMi+1}(Q) belongs to EM)(Q).

Let H be a compact subset of 2 and h > 0 be fixed. As f belongs to
EMi+1}(Q), there are Aj,; > 0 and hjy; > 0 such that

||Daf||H < Aj-&-lhlﬁ,_‘le+1,\a|, Va € Ng.
As m is semi-regular, there is an integer py € N such that

it
J+1,p S
Mjp hjsa

, VD > po;

this leads to a constant B; > 0 such that, for every p > py,

Mjy1p _ Mjpipy Mjsipor1  Myrip

M, Mjpe ™Mot Mjp

< Mj+1,po ( h )ppo :Bj( h )P.
Mjpy \jn hjt

Therefore, for every a € Njj such that |a| > po, we get

1D fll y < A1 BB M ).

Moreover, if we set

hiv \" M;
C; ::sup{( ]};1> ]\i;l’p:p<po},

J?p

we obtain

ID* fll y < A1 CihIY M o

for every o € Njj such that || < py and we conclude at once.y
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4 Autonomy of the spaces Eyp)(€2)

The following result establishes the autonomy of the spaces Enmy(£2). The
idea of its proof goes back to the one of Proposition 24 of [8]; for the sake of
clarity, we give a full proof.

Proposition 4.1 Let the matriz m verify

Mip _ Mjp+1 .
< VY peN,
p — ptl hp

and suppose that, for every j € N, there is A(j) > 0 such that
M1 pMji1 501 < AGP (0 4+ 1)!M;,,  Vp e No.

Then, for any normalized, increasing and non quasi-analytic sequence r,
the vector spaces Eg (] — 1,1]) and ER(] —1,1]) differ.

Proof.  Let us suppose that there are such a matrix m and a sequence
r for which the equality of these two spaces holds.

By Theorem 13 of [8], for every sequence a = (a,)pen, of complex numbers
such that

supa—<oo, Vh > 0,5 € N,

there is a C*°-function f on R, with compact support and such that

ID"flle

sup < oo, Vh>0,5€N.
pENo hpMj,p

As we may suppose supp(f) C] — 1, 1], we get
fe&m(-11)=ER(]-11)

which leads to the fact that, for such sequences a, we also have

sup 2| < o0, Vh>D0.

PENp hpRP

With the notations of [8], this means that we have K(M) C K(R) where the
matrix t = (r;,)jenpen, is defined by r;, = r, for every j € N and p € Ny.
By hypothesis, we of course have
M,

M.
J,p > j+1,p+1 VieN e N,.
My, ~ ZHAGpr ) TR

33



Jean SCHMETS and Manuel VALDIVIA : Intersections of non quasi-analytic classes ...

Moreover, for every j € N, the sequence m; is normalized, increasing and
non quasi-analytic; this implies p/m;, — 0 hence

1\ 1/ (p+1)
lim (D" —0, VjeN
p Mj+1,p+1

Putting these two informations together leads to

M.
liminf —2* — > 1,Vj € N.
p 2PMjap

Now we apply Proposition 22 of [8] and get the existence of an integer ¢ > 1
such that M., < R, , = R, for every integer p > c. This implies

M|~ 1,1)) € £®(] - 1,1]) = Ewy (] — 1,1])

hence EM)(] — 1,1]) = ER)(] — 1,1]) for every j > c.
However, the hypothesis leads directly to

1/p 1/p
lim (%) > lim A(c + 1)—(p+1)/p (M) - o0,
p c+2,p p (p + 1)'

So the result ([6], 6.7.I) provides the existence of a function
f e £0e (]~ 1, 1)\ gMe2)( - 1,1)

hence a contradiction.g

5 Elementary properties

We start with the following lemma, the proof of which goes back to ideas of
Chaumat and Chollet [3].

Lemma 5.1 For every bounded subset B of Enwmy(S2), there is a normal-
ized, increasing and non quasi-analytic sequence m' = (m;)peNo such that,
for every j € N, there is a constant C(j) > 0 such that m;, < C(j)m;, for

every p € Ny and such that B is a bounded subset of EM)(Q).

Proof.  Let (K,)nen be a fundamental sequence of compact subsets of
Q) and set for every j € N

" 2271HID £,
i 1= sup sup )
! fEB aeNy Mj,|a|
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Now we define the sequences (ny)4en, and (hy)qen, by means of the fol-
lowing recursion:
(a) we set ng = hy = 0;
(b) once n,_y and h,_; are determined, n, is the first integer for which

o0

1 — —n,
ng > hqy_1, Z S <277 and k;q27™ <1

Pq

and then h, is the first integer such that mgy,, < mgi14,. In particular, as
the sequence (mMg41,p)pen, 18 increasing and as mqy, > Mgy1n,, We certainly
have ng, < hy.

This allows us to introduce the sequence m' = (my,),en, as follows: we
set my = 1 and for every p € N

o — ] Map it pe{hg,...,n4},
P Men, if pE{ng+1,...,hg—1}.

It is clear that this sequence M’ is normalized and increasing. It also is non
quasi-analytic since we successively have

9 1 ) hg—1 1 Ng+1 1
> =2 X + 2.
p=ni+1 My g=1 \p=ng+1 T"a  p=p, Mg+1,p
[e.e] oo
<> L o<
g=1 p=ng+1  4TLP

Moreover for every j € N, the existence of the constant C(j) is a direct
consequence of the fact that, for every p > n;, we have m;, < m;,,.

To conclude, we now prove that B is a bounded subset of EM7(Q). Let
|l s, be any fundamental continuous semi-norm of € (M)(Q). There is then
k € N such that 2 > h™! and K C Kj. So, for every @ € Nj such that
|| > ny, there is a unique integer j > k such that n;_; < |a| < nj; as this
implies m;, < m;, for every p € Ny verifying p < |a|, hence M; o < M)y, we
get

@ klo D¢
HD f”K 2 H fHKJ —jled —nj_1
h\alM{a‘ = M; |af =2 k< 2y <

for every f € B. The conclusion is then immediate.y

Proposition 5.2 a) For every compact subsets H and K of Q such that
0 # K C H°, there is f € Doy (H), f >0, identically 1 on a neighbourhood
of K.
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b) If {Q;: j € J} is a finite open cover of the compact subset K of €,
then there are functions ¢; € Dm)(2) such that p; >0 and ;05 =1 on
a neighbourhood of K.

c) For every open cover O of ), there is a Doy (Q2)-partition of unity on
), subordinate to O.

Proof.  As the function xq belongs to Emm)(€2), we may consider the
sequence m’ that Lemma 5.1 associates to the bounded subset {xq}.

As the existence of the constants C/(j) implies that €M’ () is contained
in Em)(£2), the Denjoy-Carleman-Mandelbrojt theorem leads directly to the
conclusion: cf. ([5], Theorem 4.2) in the case a), ([5], Lemma 5.1) in the case
b) and ([5], Proposition 5.2) in the case c)

Proposition 5.3 The vector space Dy (Q2) is dense in Epmy(§2).

Proof.  This is standard.

Let (K,)nen be a fundamental sequence of compact subsets of © such
that K, C Ky, for every n € N. By Proposition 5.2 (a), there is then
a sequence (¢n)nen such that, for every n € N, ¢, belongs to Dwy(K41)
and is identically 1 on a neighbourhood of K,. To conclude, it suffices to
check that, for every f € Em)(£2), the sequence (fy,)nen converges to f in

Em(€2)a

These properties imply consequences about the 9M-distributions on €2, i.e.
the elements of the topological dual of D (€2).

Proposition 5.4 a) FEvery IM-distribution on Q) has a support.

b) Every distribution on ) is a IMM-distribution.

c) A M-distribution has a compact support if and only if it has a contin-
uous linear extension on Epy(£2).

Proof.  a) is a direct consequence of the part (b) of the Proposition 5.2.

b) is trivial since the canonical injection from Dwy(2) into D(2) is a well
defined continuous linear map.

c) is standard. Let u € Dywy(2)" have a compact support K. We then
choose a compact subset H of () such that K’ C H° and next an element 1
of Diwy(H°) identically 1 on a neighbourhood of K. We then have u(yp) =
u(py) for every ¢ € Dim)(§2). Now we define the linear functional v on
Em)(2) by v(f) = u(fy). As we have v(p) = u(py) = u(yp) for every
© € Dimy(€2), v is a linear extension of u to the Fréchet space Epy)(€2). Now
if (fn)nen is a sequence of Ewmy(2) converging to 0, (f,Y)nen is a sequence of
Dm)(H ) converging to 0 hence such that u(f,1) — 0. Hence the conclusion.g
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6 Approximation

Proposition 6.1 The set of the restrictions of the polynomials to ) is a
dense vector subspace of En(€2).

Proof.  This is clear since we know by [5] that the set of the restrictions
of the polynomials to €2 is a dense vector subspace of each one of the spaces
EMI)(Q) 4

Definition. By £®)(R"), we designate the space of the C*®-functions
f on R™ such that, for every h > 0 and non void compact subset K of R",

ID*fllx
= <
Flica = s Tpialar <>

endowed with the system {5, : K € R",h > 0} of semi-norms; it clearly
is a Fréchet space.

We denote by H(C™) the Fréchet space of the entire functions on C"
endowed with the topology of uniform convergence on the compact subsets.

The following result is easily obtained by classical holomorphy arguments.
Proposition 6.2 The restriction map
I':H(C") — EPIRY); [ flre
is a well defined isomorphism.y
Proposition 6.3 The restriction map
Ra: EM(R") — Em(Q); [ fla
is well defined, continuous, linear and injective.

Proof.  For every j € N, the sequence m; is increasing, normalized
and non quasi-analytic; this implies lim, p/m;, = 0 hence there is B; > 0
such that p! < B;jM;, for every p € Ny. Therefore for every f € £P)(R"),
compact subset K of R” and h > 0, we get

ID*fllx < ’f’K,h hl*lal < B, ’f’K,h h‘a|Mj,|a\

for every a € Njj .3
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Proposition 6.4 If the compact subsets K and H of R" are such that
H C K°, then, for every j € N, the closure of Doy (K) in D™ (K) contains
DM (H).

Proof.  Let f belong to D™3)(H) and consider any continuous semi-
norm ||. s, on DMI(K) and & > 0.
We first choose ¢ € Dwy(K) identically 1 on a neighbourhood of H.
Setting
() = 7T_”/2m”e_m2‘x|2, Ve e R",m e N,

we know that the sequence (f * 1, )men converges to f in £M3)(R™) hence
that the sequence ((f * ¥m).¢)men converges to fo = f in DM (K). In
particular, there is mg € N such that ||f — (f * ¢¥m).0l| k0 < €/2.

As f*1,, has a holomorphic extension on C", it belongs to £ (R") and
there is a sequence (P;);en of polynomials converging to f * t,,, in £P)(R™).
Therefore the sequence (Pyp)ien converges to (f * Y, ). in DM (K) and
we can conclude.y

To obtain cases when Dyy)(K) is dense in D™4)(K) we need some infor-
mation and a definition.

Notation. Given b € R" and a function f on R", 7, f designates the
function defined on R™ by 7,f(.) = f(. — b).

Proposition 6.5 For everyb € R", 7, is a well defined continuous linear
map from Ey(R™) into itself.
Moreover we have limy_o 7 f = f for every f € Em(R™).

Proof.  The first part is trivial.

Let ||k, ; be any continuous semi-norm on Ewm(R") and € > 0 be
given. We first choose a compact subset H of R™ such that K C H° and set
0 = d(K,R"\ H°?). We then choose m € N such that 27" || f|; ., < ¢e/2.

On the one hand, for every x € K, b € R™ and o € Nf} such that |[b] < ¢
and || > m, we immediately get

D" f(z) — D f(x — b)|
(2)l My

2
< om ||f||H]h <e

On the other hand {D”f: |a| < m} is a finite set of continuous functions
on the compact set H hence is uniformly equicontinuous on H.
These two informations put together lead directly to the conclusion.g
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Definition. A subset B of R" has the local displacement property if
every * € B has a neighbourhood W such that, for every ¢ > 0, there is
a € R™ such that |a| < e and a+ BNW C B°.

If By, ..., B, are finitely many closed balls in R™ such that B; N By, # ()
implies BN By, # (), one can check that their union has the local displacement
property. Therefore every open subset of R has an exhaustion (K;);en made
of compact sets having the local displacement property and such that K; C
Ky | for every | € N.

Proposition 6.6 If the compact subset K of R™ has the local displace-

ment property, then, for every j € N, Doy (K) is a dense vector subspace of
DMI)(K).

Proof.  Let f be an element of D) (K) and let us consider any con-
tinuous semi-norm ||.[| ;, on DMI)(K) and € > 0.

As K has the local displacement property, it has a finite open cover
{Whi,...,W,} such that, for every 6 > 0 and [ € {1,...,q}, there is u; € R"
such that || < § and v, + K N W, C K°. We then choose 1 € Dimy(W1),

.5 ©q € Dy (Wy) such that ¢, ..., ¢, > 0and Y ] | ¢ =1 on a neigh-
bourhood of K.
We next set f; = fy, for [ =1, ..., q¢. From f € DM)(K) and ¢, €
D) (W), we obtain f; € DMi)(K). Therefore there is n > 0 such that
|70 f1 — fl”Rn,j,h < ¢e/(2q) for every [ =1, ..., ¢ whenever |b] <.

Finally for every [ € {1,..., ¢}, we choose z; € R" such that |z <n and
2+ (K NW;) C K°. Therefore 7,, f; belongs to D™3)(H,) for some compact
subset H; such that H; C K°. So, by Proposition 6.4, there is g; € Dm)(K)
such that |7, fi — gillgn ;. < €/(29).

Hence the conclusion since this leads to [[f —> 7, ¢

Z?:l g1 € D('V')<K)-I

g0 < € with

7 Regularity of 9t and the maps D’

Definition. Let us say that m (or equivalently 90t) is regular if, for
every j € N, there are constants A(j) > 1 and H(j) > 1 such that

Mj1p41 < A(G)H ()" My, Vp €N.

Proposition 7.1 If 9 is regular, then, for every B € N, DP is a con-
tinuous linear map from Emy () into itself as well as from Dy () into
itself.
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Proof. Tt clearly suffices to establish the statement in the case || = 1.
Let |||/, ; be any fundamental continuous semi-norm on &) (€2). For
every o € N, a direct calculation shows

o AG) ; ja
||D +/E)fHI( ||f||Kh/H(j ),d+1 H(])h| H_1]\4 o

hence

D"l _ AG)
HDBfHK,h,j = sg\% h|0‘\Mj7‘af < H(j)h 1 s vy g1

and we conclude at once.g

8 Regularity of 9J1 and nuclearity

Notation. a) For every § € Nj and x € R", we set (5, x) := fiz1 +

b) For every 3, v € Nij with 3 # 0, we set
2. 2 2
B = p ... B
B =60 ﬁ%s
where 3;,, ..., 3. are the non zero elements of the finite sequence 3.

c¢) We denote by Pwy(R") the subspace of Ewmy(R"), the elements of which
are 2m-periodic in each component. Of course, its topology is also given by
the system of norms {||[ - [||,, ; : » >0, € N} with

[D*f ()]
11 £Ill;; == sup  sup
h.g aeNG ze[—m,m|n hl |M |a|

Proposition 8.1 If M is reqular, then Puay(R™) is a Fréchet nuclear
space.

Proof.  Given the fundamental continuous semi-norm ||| - |, ; on the
space Py (R™), let Y (resp. X) be the Banach completion of the normed
space Pim)(R") endowed with |[| - [[|, ; (vesp. |I[ - [[[/m(jy2n ji2n). Of course

the elements of X and Y are C>*-functions on R"™ which are 27-periodic
in each component. To conclude we just need to prove that the canonical
injection from X into Y is nuclear.

For every 3 € N, we define the functional ug on P (R") by

1

(frug) = 2

/[ ) FOe D At Vf € Py (RY).
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It is clear that ug belongs to X'. Moreover it is well known that, for any
[ € Pamy(R™), the series ZﬁeNg (f,ug) e converges in C*(R") to f. In
fact, we have a lot more.

For this purpose, we first remark that, by repeated use of the regularity
of 9 where we may suppose the sequence (H(j)),en increasing, we obtain
for any s € {1,...,n}

Mj+2n,p+28 S A(] + 2n — 1) Ce A(] + 2n — 28)
CH(j+2n — )P0 D H (G + 2n — 28)P Mji9n_2sp

2n—1
: (H Al + k>) H(j+ 2N
k=0

i.e. for every j € N, there are constants A’(j) > 1 and H'(j) > 1 such that
Mj+2n,p+2$ < A,(j)H,<j)2anj,p7 Vp S Na s € {17 s 7n}‘

For any 3 € Nj different from 0, there is v € Njj such that

i(6.) Den|_, &
H|€ |||h,j < 2966?_%}?”}” ANIM; 2hMMJ}|v|

and we may impose 7, = 0 whenever 3, = 0. Now we define 7' € N as
follows: 7, = 0 if 7, = 0 and 7, = v, + 2 otherwise. Then integrating by
parts leads to

: 1
ft)e o dt‘ =—
‘[—Wﬂr}” (> ﬁ’y

If s is the number of the non zero components of ~, then, for every ¢t €
[—m, m]", we have

/ DY f(t).e” 10 dt’ :
[_7'(771—]”

) b Iv[+2s
D7 10] < W aymn oo (rms)  Misanioae

A direct use of these informations leads to
i(6,) yus h? 1
11 (f,ug) ]|, <2 (J)W LA ay 22 s42n 2

Hence the conclusion since the series 5\ 1/3% converges.y
0

Theorem 8.2 [f9M is regular,
(a) the Fréchet space Doy (K) is nuclear;
(b) the (LF)-space Doy () is nuclear;
(c) the Fréchet space Emy(Q2) is nuclear.
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Proof.  (a) There is a > 0 such that H := aK is contained in [—7, 7|".
Of course, the map

T,: Dony(K) — Domy(H);  fr=T,f(x) = f(x/a)

is an isomorphism. Moreover it is clear that D) (H) is isomorphic to a
subspace of Pim)(R™). Hence the conclusion since every subspace of a nuclear
space is nuclear.

(b) Every Hausdorff countable inductive limit of nuclear spaces is nuclear.

(c) We know that the vector space Dpv)(€2) is dense in Em(€2). To
conclude it suffices then to establish that D (€2) considered as a subspace
of Emmy(§2) is nuclear. This easily follows from (a).

Let |||/, ; be any fundamental continuous semi-norm on Emwm(£2). We
choose a compact subset H of © such that K C H°® and ¢ € D (H)
identically 1 on a neighbourhood of K. Since |||, ; is a continuous semi-
norm on Dov)(H), there is a fundamental continuous semi-norm |-/, , on
Dawy(H) such that [|-[| ., ; is sub-nuclear with respect to ||-[|;,, i.e. there

are sequences (¢, )nen of complex numbers and (t,)nen of Doy (H)' such that

1 lliens < leatal £, YV € Dowy(H),
n=1

with
[o@)
D el <00 and [t ()] < Il -
n=1

In particular, for every f € Dy(£2), we have

1A eny = 1F N eny; <D lenta(f10)]
n=1

with .
oleal <oo ()] < Nl -
n=1

As the multiplication map
My: Domy(H) — Dmy(H); = fo

is linear and continuous, there are C' > 0 and a fundamental continuous
semi-norm ||| ., on Dwy(H) such that

Hwa”H,k,l <C Hf“H,k/,l/ , Vf € Dwmy(H).

42



Bulletin de la Société Royale des Sciences de Liege, Vol. 77, 2008, pp. 29 - 43

This leads to

Hf”K,h,j S Z |CntM1/1tn(f)} ’ Vf € D(M)(Q)v
n=1

with

Y lenl <00 and  ["Myta(H)] < Cllfllgpops VS € Dwy(9).

n=1

This implies that Dm)(£2) considered as a subspace of Eny(€2) is nuclear.
Hence the conclusion.g
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