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Abstract

Maintaining and repairing the engineering machinery will be optimal when
identification of defect or troubleshooting process, error analysis and fix it and in other word
repair process, perform in highest precise, low time and cost. However speed and precise in
troubleshooting process, defect analysis and repairing cause to decrease costs. So, the repair
and troubleshooting role in a repair and maintenance system is so significant. While today’s,
the software has a main role to perform systems tasks, so they have a high importance in
systems reliabilities. Therefore, to increase reliability, it is necessary to design systems
against error if tolerable. With regard to increasingly development and applying software in
different domains, software reliability has an important role during software life time. One of
the most important solutions to increase software reliability is predicting software errors that
cause to decrease in software maintenance cost in the future. There are many ways to predict
software errors. Due to intelligence algorithms such as genetics algorithms, have a high
ability to predict, so we can use them to predict software future condition or predict software
errors. In this paper, we present a method to predict software error via genetics algorithm. The
aim of this method is to predict software error with a higher precise and speed, and also to
present structure that be implementation and expansion easily. The attained results show a
desired performance of this method from time period for predicting error and output rate or
recognition. The results show the recognition rates of suggested method more that 95 percent
in best condition.
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1. Introduction

Given the important role of software systems, the quality of software components and

their reliability is crucial. One of the important aspects of quality is reliability, thus, Software

Reliability Engineering (SRE) is of great importance. One of the important aspects of SRE is

software reliability modeling. Software reliability modeling became popular and prevalent

from the early 1970s. Accordingly, the original method is modeling of previous erroneous

data to predict its behavior in the future. This method uses the number of errors observed in

each period of time or the time between the occurrences of software errors. Error Tolerance

refers to the capability of the system which enables the system so even when an error occurs,

it can cover the error and prevent system failure. This capability in many systems is among

the most important non-functional requirements of the system. For many systems, correct and

reliable software operation is an important requirement, such as aerospace applications, air
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traffic control, medical equipments, nuclear, and electronic banking. The cost and failure of

these systems can result in a broad range of human injury, financial loss, etc. Given that,

today, software plays the major role in carrying out systems’ functions, hence, it is of special

importance on the reliability of systems. Therefore, to increase reliability, it is necessary to

design error-tolerant systems. Software error tolerance is often obtained by redundancy and

diversity which increases the complexity of software design. Due to the increasing

development and application of software in various areas, software reliability plays an

important role throughout the software life. Software reliability is of the main features of

software quality and the most important factor that customers expect from software products.

The software reliability declines by software failure at run time, and the degree of error

tolerance, software maturity, and the software recovery capability are important and affecting

factors on software reliability. There are different models for estimating software reliability.

One of the solutions to enhance software reliability is forecasting software errors, reducing

the cost of software maintenance in the future. There are many methods for forecasting

software error. Considering the fact that intelligent algorithms such as genetic algorithms

have a high ability to forecast, they could be used in forecasting the future status of software

or software error.

2. Theoretical foundations and background

There are important definitions regarding the structure of reliability which are briefly

described here.

Fault: the assumed or detected cause of error, sometimes also called Bug

Error: a part of the system status that leads to a failure. Error may not be detected (secret) or

may be detected. Error may diffuse, i.e. generate other errors. When errors are detected, it

means that there are faults.

Failure: failure occurs when the provided service is deviated by the system from its main

function, or otherwise, generates wrong result. So, through fault tolerance in software, failures

may be prevented.

In this diagram, the error rate per unit time is specified. There are two major differences

between the hardware and software curves. The first difference is that the hardware does not

have increasing failure till the final stage; however, the software, in the final stage, gets closer

to obsolescence, and there is no incentive for any upgrade or change in software. Thus, the

failure rate will not change. The second difference is that in the useful or used stage in the
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software life cycle, each time, a sharp rise in the failure rate upgrades the software. The

failure rate after each upgrade remains constant in a time limit.

Figure 1: Software lifecycle and its stages

Usually in reliability growth models, the possibility of error over a period of time [0, T] is

used as software reliability. Formula 1 shows the formula describing software reliability:

]},0[__{Pr)( TinfailurenoobTR = (1)

Today, the test stage is considered one of the most important stages of software development.

As application programs are rapidly developing in different environments, there is a high

focus on software testing. In the test phase, the part of the code that may have the greatest

number of faults, more focus is placed to eliminate the complexity of this part, hence,

reducing the development costs and upgrade the software lifetime. But, it needs to predict the

location of potential faults. In 1995, Scherrer did research on error forecast in software. In his

study, neural networks were used to forecast fault. He tested his proposed structure on several

applications of National Aeronautics and Space Administration. The results showed that the

proposed method diagnosed error-prone modules, and through measures after the forecast, the

detected module was assessed. A review of studies includes the following:

• Error forecast with the detailed structure

• Error forecast using detailed processing

• Error forecast using event processing

• Error forecast using fault tree structure

• Error forecast using statistical analyses

• Error forecast using intelligent algorithms

3. Development of hypotheses and conceptual model
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The proposed method consists of three steps:

• Selection of appropriate software database to use software indices

• Extraction of important features using genetic algorithm

• Software error forecast using genetic algorithm output

In order to forecast error in each application, first the software database must be determined

and then extract the indices by the genetic algorithm to determine the probability of error of

the application as the output of genetic algorithm.

Given that finding code indicators is a major factor for having an appropriate data source for

error forecast in an application, first, the main indicators must be selected to forecast error.

One of the most important data bases used in error forecast is NASA MDP 3 database. This

database contains 13 data sets which contains information about different understudy software

applications at NASA database. This database is created through various software feedbacks

from NASA, and the used indicators are appropriate criteria to determine the characteristics of

the application code. Table 1 shows the data set of each system separately. Each row of this

table represents a function set responsible for a specific performance in leading spacecrafts or

satellites.

Table 1: NASA MDP data set and the related software system

Software systemData set

Satellite instrument control system while flying or landingCM1

Real-time forecasting system on EarthJM1

Storage management system for receiving and processing data from the EarthKC1

Management and storage of data sent to EarthKC3

Shared server system with the EarthKC4

Space shuttle combustion control softwareMC1

Video control system for all parts of the satelliteMC2

No gravity control systemMW1

Flight control software and number one rotation around the EarthPC1

Flight control software and number two rotation around the EarthPC2

Flight control software and number three rotation around the EarthPC3

Satellite angle control software while flying or landingPC4

Cockpit security increase systemPC5
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Table 2 lists the name of each set, the number of modules, and the error modules.

Table 2: Systems available in NASA MDP database and the number of modules and error modules

Percentage of error modulesNumber of modulesDataset

9.5505CM1

19.310878JM1

15.42107KC1

9.3458KC3

48.8125KC4

0.79466MC1

32.29161MC2

7.69403MW1

6.941109PC1

0.45589PC2

10.21563PC3

12.21548PC4

317186PC5

One of the most important sections of the proposed method is selection of criteria or

important code indices to forecast the error speedily and accurately in the software. Figure 2

shows the method structure of a genetic algorithm used in the thesis as a flowchart.
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Figure 2: The structure of the genetic algorithm performance in selecting important indicators

Table 3: Structure of indices set in a system

Problem in moduleIndex n....Index 2Index 1Module No.

Given that the index table in each column is indicative of a function as Table 3, so for

population genetic algorithm, bit array is used, i.e. each chromosome is composed of a

number of ones and zeros. The number of genes per chromosome is dependent on the rate of

system table indices (Table 1). If a gene is one, the index related to the gene is selected and

considered in the operator. And if it is zero, it means that the index is ignored. Selection of the

End

Data set

Selection of a set of indices

No. of
generations > N

Selection operator using KNN

Composition operator

Mutation operator
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indices is done randomly. KNN algorithm is used to calculate the value of the indices. KNN is

a supervised training algorithm.

In general, this algorithm is used for two purposes: to estimate the function of density

distribution of training data and for classification of test data based on training patterns. KNN

is the easiest and most popular method based on learning sample. The assumption is that all

samples are points in real n-dimensional space, and the neighbors are determined based on the

standard Euclidean distances. k is the number of neighbors. To measure the performance of

KNN function, the error rate is calculated using regression. In fact, lower the resulting error

rate, better the function output. The formula for calculating the error rate is obtained using the

regression is presented as equation (2).

(2)

Yi is the real output (main class), and f(xi) is the calculated output by KNN (KNN

classification). In the proposed method, the composition operator is from the two point

random method, and the mutation operator on A% is from the new generation. Equations 3

and 4 are composition and mutation operators, respectively.

t = Rand ((length-1)*cr/2) (3)

t = Rand ((length-1)/2) (4)

t is considered the first point, and length-t is the second point. cr is considered an optional

parameter to limit or broaden the random process of generation of children.

4. Methodology

This method works based on the number of correct or incorrect answers. The method

is based on using confusion matrix. Confusion matrix shows the performance of the relevant

algorithms. Confusion matrix for the proposed method is presented as Table 4.

Table 4: Profile of indices’ structure in a system

Reality
Error in module

NegativePositive

False-positives (FP)True positives (TP)Positive
Forecast

True-negatives (TN)False- negatives (FN)Negative
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The accuracy of the performance is calculated as equation 5:

Accuracy = (TP + TN) / (TP + TN + FP + FN) (5)

In the proposed method, one of the most important factors to decide about the genetic

algorithm is using appropriate data source. The dataset used in this method involves the

number of variables, operators, operands used, rings, modules, and conditional structures.

Fitness function algorithm, using this dataset, modifies the population generated at each stage,

and finally, all points leading to software fault are detected.

5. Data analysis and results

The results of detection simulation of software error are provided, using genetic

algorithm and MATLAB software. K-nearest neighbor function is considered. To determine

the performance of the proposed method, the following parameters have been changed in

every simulation: dataset, the number of genetic algorithm generation, the population

requirement of education and testing, and changes in the composition operator

Simulation number one, variations in dataset

In this simulation, the initial population is 50, the number of generations is 100; the

composition rate for the next generation is 0.8, the mutation operator 0.1, the data for training

and selection of indices, 70%, and the test data rate is considered 30%. The simulation was

performed with two datasets, including satellite landing equipment control software and the

Earth data management software. The forecast results specify that if the frequency of the

number of modules is higher at any rate, the index selection is done with higher accuracy.
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Example: CM1 and PC1 data set

Figure 3: Detection of correct and error-prone modules in the data set of satellite equipment control

software

The results show that the accuracy of the proposed method is 90.8 %.

Figure 4: Detection of correct and error-prone modules in data management software from the Earth

The results of the performance accuracy of the proposed method show 96.16 %.

Simulations number two, variations in the number of generations

In this simulation, CM1 dataset with 37 indicators, initial population of 50, the composition

rate for the next generation population 0.8, mutation operator rate of 0.1, the data for training

and selection of indices, 70%, and 30% test data are used. The simulation was performed with
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the number of generation of 50 and 200. The results specifies the error forecast rate that the

generation number should be selected empirically and according to the dataset, and

practically, it generation increase or decrease will have no demonstrable effect on upgrading

the performance of the method.

Example: CM1 data set with 50 and 200 generations

Figure 5: Detection of correct and error-prone modules in 50 generations

The results show that the accuracy of the proposed method is 91.17 %.

Figure 6: Detection of correct and error-prone modules in 200 generations

The results show that the performance accuracy of the proposed method is 90.08 %.

Simulations number three, variations in population requirement of training and testing

In this simulation, CM1 dataset with 37 indicators, initial population of 50, the number of

generation of 100, composition rate of 0.8 for the next generation population, and mutation

operator of 0.1 are used. At first, the simulation is carried out with 60% data rate for the
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training and selection of indices and the test data of 40%, and at the second time, 80% data

rate for training and selection of indices, and test data of 20%. Error forecast results indicates

that variations in population requirements of training and testing are also empirical, such as

the previous indicator, which requires the best value empirically. By default, in a lot of

research studies, the training data is considered 70% and the test data 30%.

Example: CM1 dataset with 60 % population for training and 40% for testing and with 80 %

for training and 20 % for testing

Figure 7: Detection of correct and error-prone modules with 60% population for training and 40% for

test

The results show that the accuracy of the proposed method is 90.10 %.

Figure 8: Detection of correct and error-prone modules with 80% population for training and 20% for

test
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The results show that the accuracy of the proposed method is 94.27 %.

Simulation number four, variations in the composition operator rate

In this simulation, CM1 dataset with 37 indicators, initial population of 50, 100 generations,

0.1 mutation operator, 70% training data and indices selection, and 30% test data rate are

used. The effect of composition operator in the first simulation is 0.5 and in the next

simulation is selected 0.9. Although composition operator is one of the most effective factors

on genetic algorithm, the results of error forecast indicates that the composition operator

changes have no effect on the final result, and after a certain number of generations in this

method, the same results are obtained.

Example: CM1 dataset and composition operator equal to 0.5 and composition operator

equal to 0.9

Figure 9: Detection of correct and error-prone modules and operator composition equal to 0.5

The results show that the performance accuracy of the proposed method is 90.80 %.
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Figure 10: Detection of correct and error-prone modules and composition operator equal to 0.9

The results show that the performance accuracy of the proposed method is 90.80 %.

6. Conclusion

Comparison of the proposed approach with other methods

So far, various algorithms have been proposed and implemented to forecast software errors.

The most important algorithms are methods based on statistics, machine learning techniques,

neural networks, and cluster-based methods, and more recently, parametric models’ methods,

nonlinear time series analysis, and data mining. Almost, all these methods have the following

common faults: because of the functionality limit of a software and creation of a matrix from

different running forecasted or non-forecasted statuses during using application and, most

importantly, the constant change of constituent elements of the matrices’ components at larger

time intervals during actual software running, virtually, there is no possibility of superficial

and deep navigation of all software sectors. Accordingly, this process will require a lot of

time even if all sectors and different functional statuses of software are navigated. Above all,

these algorithms can usually provide information only on the current software reliability at

proper run of processes in real time, or eventually proper and errorless run of later processes.

The problem is that, in general, an application is so complicated that these methods cannot

ever guarantee software reliability in future performances. Moreover, these algorithms cannot

review statuses and parts of a running application when an error occurs, thus understand the

root causes of errors and failures. Since the search space of the so-called problem is very

large, genetic algorithm is a perfect solution for issues with large search space and can

accurately and more quickly find the location of the error. A new method was presented for
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predicting error using genetic algorithm. The results show that the proposed method’s optimal

performance is considered in terms of error forecast duration, the output rate, or its detection.

The results, at best, suggest a higher detection rate of the proposed method higher than 95%.

Recommendations

• Using new intelligent algorithms

As discussed in the third section, the proposed method uses the genetic algorithm. Given that

the genetic algorithm is one of the oldest optimization algorithms, it is recommended to use

newer algorithms such as flying bats or cuckoo search algorithms.

• The use of other datasets

Although one of the most significant datasets to forecast error or software reliability is NASA

MDP and it is used in many research studies; however, new datasets have recently been

proposed. It is suggested to review and discuss the presented method in this thesis with

respect to these datasets.

• Use of self-organizing fuzzy neural network

This is one of the most notable structures to categorize and identify true or false grouping of a

fuzzy neural network set. If the fuzzy neural network can change its layers during training, it

is self-organizing. One of the strongest and fastest forecast structures based on early training

is the self-organizing fuzzy neural network. It is suggested to use this structure to forecast

software error in future researches.
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