UNE REMARQUE SUR LA FORMULE DU CHANGEMENT DE VARIABLES DANS \mathbb{R}^n

Ho Van Thi Si

Abstract

The aim of this paper is to give a remit which generalizes the usual change of variables formula in euclidean spaces.

Mathematics Subject Classification: Primary: 26B10.
Key words: Lebesgue integral, jacobian, change of variable.

1 Introduction

On se place dans l'espace euclidien \mathbb{R}^n avec ℓ, la mesure de Lebesgue. Par ensembles (ou fonctions) mesurables, intégrables, ..., sans autre précision, on entend ensembles (ou fonctions) mesurables, intégrables, ... par rapport à ℓ. L'abréviation "pp" signifie "presque partout par rapport à ℓ", c'est-à-dire "en dehors d'un ensemble négligeable".

Dans cette note, nous allons établir le résultat suivant qui constitue une extension effective de la formule habituelle du changement de variables dans \mathbb{R}^n.

Théorème 1.1 Soit Φ une application continue d'un ouvert Ω de \mathbb{R}^n dans \mathbb{R}^n, différentiable en dehors d'un ensemble négligeable dont l'image par Φ est négligeable. Si Φ est injective pp dans Ω, alors, pour toute fonction f définie pp sur $\Phi(\Omega)$, (i) f est mesurable sur $\Phi(\Omega)$ si et seulement si $(f \circ \Phi) [\det \Phi']$ est mesurable sur Ω, (ii) f est intégrable sur $\Phi(\Omega)$ si et seulement si $(f \circ \Phi) [\det \Phi']$ est intégrable sur Ω, auquel cas

$$\int_{\Phi(\Omega)} f(y) \, dy = \int_{\Omega} f(\Phi(x)) [\det \Phi'(x)] \, dx.$$