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SPECTRAL MEASURES IN CLASSES OF
FRECHET SPACES

José BONET and Werner J. RICKER

Abstract

A detailed investigation is made of the canonical atomic spectral measure
defined in such Fréchet spaces as the Kothe echelon sequence spaces and the
sequence spaces 7T, as well as the (non-atomic) “natural” spectral measures in
such Fréchet spaces of measurable functions as the space of locally p-th power
integrable functions on R and L,_ on [0,1]. Of particular interest are questions
concerned with the range of the spectral measure, whether or not it has finite
variation (for certain operator topologies), the Radon-Nikodym property of the
underlying spaces involved and, most importantly, does the spectral measure
admit unbounded integrable functions?

1 Introduction and preliminaries

The theory of Boolean algebras of projections/spectral measures in Banach spaces
was initiated by W. Bade, N. Dunford and others, [12], and is by now well understood.
In contrast, there is a distinct lack of concrete, non-trivial examples in the non-normable
setting, even within the class of Fréchet (locally convex) spaces. An attempt to rectify
this (to some extent) can be found in [5]. The aim of this paper is two-fold. Firstly, we
wish to summarize the main results of [5] and secondly, to expand on these results and
elaborate further on some closely related topics. In order to do so, we begin with some
general notation and definitions, so that the questions (some answers) and examples
can be properly formulated.

Let X be a locally convex Hausdorff space (briefly, 1cHs) and L(X) denote the
space of all continuous linear operators from X to itself. The space L(X) is denoted
by Ls(X) (resp. Ly(X)) when it is equipped with the topology 7, (resp. 1) of uniform
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convergence on all finite (resp. bounded) subsets of X. A functionm : X —» Y (with Y
a lcHs) is called a vector measure if it is o-additive; here T is a o-algebra of subsets of
some non-empty set Q. If Y coincides with L (X} or Ly(X), for some lcHs X, then m is
called an operator-valued measure (in X). An operator-valued measure P : ¥ — L,(X)
is a spectral measure if it is multiplicative (i.e. P(ENF) = P(E)P(F)forall E,F € %)
and if P()) = I, the identity operator on X. This is an extension of the notion of the
resolution of the identity of a normal operator in Hilbert space. An operator-valued
measure @ : ¥ — L (X) is called boundedly o-additive (or m-countably additive) if it
is o-additive as an L,(X)-valued measure. For X a Banach space and P: £ — L,(X)
a spectral measure, the bounded o-additivity of P can only occur in trivial cases, due
to the fact that ||R|| > 1 for every non-zero projection R € L(X). In the setting of
non-normable X the situation can be quite different, [18], [23].

We will be exclusively interested in certain Fréchet spaces X. Since L;(X) is then
quasicomplete, it follows from general vector measure theory that the range of any
L(X)-valued operator measure is a relatively weakly compact subset of L,(X), [14, IV
Theorem 6.1 |, that is, relatively compact for the weak operator topology. In particular,
the barrelledness of X then ensures that the range is always an equicontinuous subset
of L(X). Since Ly(X) is also quasicomplete, [15, §39 Theorem 6.5], the range of any
Ly(X)-valued operator measure is relatively weakly compact in Ly(X). For L,(X)-
valued spectral measures, their range is always an (equicontinuous) Bade o-complete
Boolean algebra of projections, [18, Lemma 3.1]. The range is a Bade complete Boolean
algebra of projections if and only if it is a closed subset of L;(X), [18, Proposition 3.5].
For instance, if X is separable or there exists a cyclic vector, then this is always the
case, [18, Proposition 3.9]. If the spectral measure happens to be purely atomic with
countably many atoms, then its range is actually a compact subset of L,(X); apply
Theorem 10 of [13] in the quasicomplete IcHs E := L,(X).

Let Y be a lcHs with topology determined by a family of continuous seminorms
A Let Y/q '({0}) be the quotient normed space determined by ¢ € .# and ¥,
denote its Banach space completion. The norm in Y, is denoted by || - ||; and the
canonical quotient map of Y onto Y/¢~!({0}) is denoted by p,. Of course, for elements
y € Y = Y,, we have ||y||; = ¢(y). Given any Y-valued vector measure m defined on
a measurable space (€, L), the continuity of p, ensures that m, := py o m is a vector
measure on ¥ with values in Y/¢7}({0}) — Y, for each ¢ € #". For the definition of
the variation measure |m,| : ¥ — [0,00] of the Banach-space-valued measure mg, see
[10, pp.2-3]. The variation {m,| is called finite if |mq|(£2) < co. We say that the vector
measure m has finite variation if m, has finite variation for every ¢ € A

The only IcH-spaces Y relevant to this paper will be X, L(X) and L;(X), where
X is a Fréchet space. In this case, if {g(™}%, is any sequence of continuous seminorms
determining the topology of X, then the topology 7 of L;(X), respectively 7, of Ly(X),
is determined by the family of seminorms

¢V T ¢™(Tz), T eL(X), (1)
for all z € X and n € N, respectively,
gy) T sup ¢™(Tx), T € Ly(X), (2)

zeB
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for all bounded sets B C X and n € N,

Let @) be any L (X )-valued spectral measure defined on some measurable space
(Q,%). A X-measurable function f : Q@ — C is called Q-integrable if there exists an
operator fﬂ fd@Q € L(X), necessarily unique, such that f is integrable with respect to
each complex measure (Qz,z") : E — (Q(E)z,2'), E€ L, for z € X and ' € X' (the
continuous dual space of X), and

< (/Qf dQ) I’II> = /Qfd<QfC,1‘/>, reX, 2z eX.

The operator [ fdQ := Q(E)([,, fdQ) then satisfies, for each E € L,

(fra0)es)= [raeen sexwex.

The space of all Q-integrable functions is denoted by .Z(Q). An element f € £(Q) is
called Q-null if [, fd@Q = 0. Each continuous seminorm ¢ of the form (1) determines
a seminorm qgn)(Q) in .Z(Q) via the formula

Q) S o (([1aQ)s).  sez@ (3
Ecy E

The family of seminorms {qén)(Q) :n € Nyz € X} makes .Z(Q) into a les. The
quotient space of £ (@), modulo the space of all @-null functions, is a lcHs which is
denoted by .£1(Q). A Z-measurable function f : Q — Cis called Q-essentially bounded
if
[ fllg == inf{sup{|f(w)|:w e E} . E€X, P(E)=1} < co.

The Banach algebra of all (equivalence classes of) Q-essentially bounded functions is
denoted by £*(Q). Since L,(X) is quasicomplete, we have £*(Q)} C .£YQ), [14,
p.26], with a continuous inclusion.

Some basic questions concerning a particular spectral measure @ : & — L (X),
with X a particular Fréchet space, are the following ones.

Q1. What can be said about the range Q(X) := {Q(F) : E € £} as a subset of
L(X)?

Q2. Does @ have finite variation in L (X)?

Q3. Is @ boundedly o-additive and, in the case when it is, does @ have finite
variation in L,(X)7

Q4. In relation to Q2 and Q3 what is the connection with the Radon-Nikodym
property of X, Ly(X) and/or Ly(X)?

Q5. What locally convex space properties does .£1(Q) possess and is the contain-
ment .Z*°(Q) C £'(Q) strict or not (it is always an equality when X is a Banach
space)?

For X a Banach space, the answers are essentially known and can be found in
[12],[26], and the references therein. For X a non-normable Fréchet space, only partial
answers are known in general and, as alluded to above, there is a distinct lack of good
examples available. The aim here is to discuss the results and examples of [5] in relation
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to the above questions and to elaborate further. It is to be expected (and is indeed
the case) that both the geometric and analytic properties of the Fréchet space X play
a crucial role as do individual features of the particular spectral measure @ involved.

To proceed further we need to introduce various (particular) Fréchet spaces. Let
I' denote either N or N x N or any infinite subset of these. An increasing sequence
A = (ay)nen of strictly positive functions a, : I' = (0, 00) is called a Kdthe matriz on
I', where by increasing we mean 0 < a,(i) < a,4;(¢) for all i € I" and n € N. Of course,
each a, € C', for n € N. Elements x € C' are denoted by = = (z;). Interpreting
elements of C' as functions on T, it is clear what the notation such as a,z, for n € N
and z € C'', and a,,/a, for m,n € N, means. To each p € [1,00) is associated the
linear space

o
Mp(A) = {z e C: P (2) = (Zan(z‘)wp) " <o, forallneN).

i€l
We also require the linear space

M(A) = {z € C": apz € ¢o(T), for all n € N},
equipped with the seminorms qﬁo)(z) ‘= SUPer an(8)]zi], for each n € N. The spaces
Ap(A) for p € {0} U [1,00), are called Kithe echelon spaces (of order p): they are all
separable Fréchet spaces relative to the increasing sequence of seminorms qu) < qép) <
... For the general theory of such spaces we refer to {1],[2],[16], for example. We recall
a particular class of Kéthe matrices A, the so called Kéthe-Grothendieck (briefly, KG-)
matrices. Here I' = N x N and a,, : [’ = C, for n € N, must satisfy:

a,(i,7) =1, forall jyn e Nand i > n. (KG-1)
sup ap(n,j) = oo, for all n € N. (KG-2)
jeN

ap(t,j) = aq(4,4), for all i,j € Nand all p,q > ¢. (KG-3)

The original KG-matrix corresponds to

| fori<mnandj €N
an(t,J) = J Z - ] n €N,
1 fori>mnandj €N,
Another class of Fréchet spaces of relevance consists of the spaces ¢Pt = ﬂq>p o,

for p € [1,00). Each one is a separable Fréchet space when equipped with the sequence
of seminorms given by gi,(z) = (Yoo, |$n{ﬂ(k>)l/ﬂ(k), for z € £P*, where 8(k) := p+¢
for k € N. This class of spaces has been thoroughly investigated in [17].

All of the above sequence spaces are contained in the Fréchet space w = CN, con-
sisting of all C-functions on N equipped with the product topology.

For each p € [1,00), let LY (R) denote the space all all (equivalence classes of)

1/p
Borel measurable functions f : R — C satisfying ¢\™ (f) := (ffn [F@)P dt) < 00
for every n € N. Each space L .(R) is a separable Fréchet space when equipped with
the sequence of seminorms q;(,l) < q;(,z) <.
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Finally, we recall the separable Fréchet spaces L,_ := [, 1<rep L7([0,1]), for p €
(1, 00), equipped with the seminorms gy (f) = || fllsom)

= (fo |f(£)]80™) dt) i for every f € L,_ and any increasing sequence 1 < 8(m) 1 p
as m — oco. We have, with continuous inclusions, that L?([0,1]) < L,_ < L7([0,1])
for every 1 < r < p. Each of the spaces L,_, for p € (1,00}, is reflexive und none of
them is Montel. For further properties of this class of F'réchet spaces we refer to [6].

Some relevant spectral measures in the above Fréchet spaces are as follows. If A
denotes one of the sequence spaces \,(A), for p € {0} U [, o0), or one of the sequence
spaces £t for p € [1,00), then the set function given by

P(E):z - zxg, TEN . (4)

for E € 2V, defines a spectral measure P : 2% — L ()\); it is called the canonical spectral
measure in A, [19]. For each p € [1,00), the set function given by

P(E): fe fxs, eI (R), (5)

for E € #(R) (the o-algebra of Borel subsets of R), defines a spectral measure P :
B(R) — L (L1, (R)). Similarly, for each p € (1,00), the set function given by

P(E): fv fxg  f€L, (6)

for E € & (the o-algebra of Borel subsets of [0,1]), defines a spectral measure P :
% — Ly(L,-). The canonical spectral measures P given by (4) are all purely atomic
with countably many atoms (indeed, P(E) = Y, .5 P({n}) for E € 2V), whereas the

spectral measures P and P (as given by (5) and (6)) have no atoms.

2 Q1: The range of spectral measures

For the spectral measures (4}, (5) and (6), as defined in the appropriate Fréchet space,
we conclude from the earlier (general) remarks of Section 1, together with the fact that
all the Fréchet spaces involved are separable, that their ranges P(2V), P(%(R)) and
IB(B) are all Bade complete Boolean algebras of projections.

It was noted in [5, Proposition 2.10] that every spectral measure P (as given by (4))
has a cyclic vector. The same is true of the spectral measures P (resp. P) as given by
(5) (resp. (6)); the constant function 1 on R (resp. on [0,1]) is a cyclic vector (as the
B(R)-simple (resp. %-simple) functions are dense in each space Lf (R) (resp. L,-)).

Since each P (as given by (4)) has countably many atoms, it follows from earlier
remarks that P(2V) is a relatively compact (even compact) subset of Ls(A). This is not
the case for P and P as given by (5) and (6). For, if P(#(R R)) was relatively compact
in Ly(L{,.(R)), then continuity of the map T+ Tx,,,, from L,(L}.(R)) into Lf,.(R)

would imply that {P(E WXoy = Xz + E € B} is relatively compact in L, (R). But,

the relative topology of LP,(R) in P([0, 1])LE.(R) C L?([0,1]) is precisely that of the
Banach space LP([0,1]). Since L?([0,1]) < L'([0,1]), the set {x, : E € %} would
be relatively compact in L'([0, 1]), which is not the case, {10, Example 2, p.61]. So,
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(AB(R)) is not relatively compact in Ly(L}, (R)) for every p € [1,00). Similarly, if
(#) was relatively compact in Ly(L,_), then continuity of the map T — T'1 from
s(Ly—) into L,_ would imply that {P(E)1 = x, : E € @) is relatively compact in
L,_. Since L, — L*([0,1]), it would again follow that {x, : E € B} is relatively
compact in L'([0,1]), which is not the case. So, P(#) is not relatively compact in
Ly(L,_), for every p € (1, 00).

&omew

3 Q2: Finite 7,-variation
We begin with the following result.

Proposition 1 (i) The canonical spectral measure P : 2Y — L (¢P%), as given by (4),
fails to have finite variation for every p € [1,00).

(ii) The spectral measure P : B(R) — Ly(L2.(R)), as given by (5 ), fails to have finite
variation for every p € (1,00) but, does have finite variation in Ly(L,, (R)).

(iii) The spectral measure P : B — Ly(L,_), as given by (6), fails to have finite
variation for every p € (1, 00).

Proof. Part (i) is Proposition 4.7 of [5].
(i) Let p = 1. Consider a typical seminorm (see (1)) determining the topology of
Ly(LL (R)), say ¢(T) .= [ |( | )l dt, T € L(LL (R)) for some fixed (but arbitrary)

loc

n€Nand f € Lloc( ) Let {E( ) k-1 be any Borel partition of R. Then
k —~ '

> o (P(E(m Z/ DX, (B)] dt < / £(1)] dt < oo
m=1 -n

and so, {ﬁlq( R) < 0o. Accordingly, P has finite variation in Ly(LL_(R)).
Forp>1,letn=1and f=x,,. Then

1 1/p
o) = (/ 1|(Tx[0\u>(t>|l'dt) L Te L),

is a continuous seminorm of the form (1). For the partition E(m) := [(m;”, 2], with

1 <m <k, and F(0) =R\ [0, 1], we have

iq (ﬁ(E(m))) 2 zk_: (/: X g my (P dt) Zk Up = gUP

m=0

where  + 5 = 1. Since kP 5 00 as k — oo, it follows that |P|,(R) = oo and hence,

P does not have finite variation in L(L? (R)).
(iii) For any fixed (but arbltrary) r € (1,p) and with f = 1, we see from (1) that

q(T) : <f0 [(T1)(t)] dt) , for T € Ly(L,_), is a continuous seminorm in Ly(L,_).
For the partition {E(m)}*,_, of [0, 1] as given in the proof of part (ii) we have, by an
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analogous calculation as in (ii), that an:l g(P(E(m))) = k¥ - oo as k — oo. So,

}Igiq([O, 1]) = oo and hence, P does not have finite variation in L;(L,_). O

The finite variation of the canonical spectral measure in Kéthe echelon spaces can
also be precisely described. For 7, the complete answer is given by the following result,
{5, Proposition 4.2].

Proposition 2 Let A be a Kithe matriz.

(i) Letp e {0}U(1,00). Then the canonical spectral measure P : 2N — Ly(A\,(A)),
as given by (4), has finite variation if and only if A\,(A) is nuclear.

(ii) The canonical spectral measure P : 2N — L (A (A)) always has finite variation.

Characterizations of when A,(A) is nuclear are known, [16, Proposition 28.16]. As
noted in Remark 4.3 of {5], the space Ai(A) is not always nuclear (eg. for any KG-
matrix this is the case).

As indicated by Proposition 2, nuclearity plays a fundamental role for this class
of examples. This will again be seen in relation to Q3. Accordingly, the following
result is relevant; it was stated (without proof) in [5, Proposition 4.8]. For the sake of
completeness we now include a proof.

Proposition 3 For a Fréchet space X the following assertions are equivalent.
(i) X is nuclear.
(ii) Ly(X) is nuclear.
(i) Lp(X) is nuclear.

Proof. (i) = (iil). Since Fréchet spaces are dual nuclear (i.e. their strong dual is
nuclear), |21, p.78], it follows from [21, Proposition 5.5.1] that Ly(X) is nuclear.

(i) = (i) and (ii) = (i) follow from the facts that X is a closed subspace of both
L,(X) and of Ly(X) and that a subspace of a nuclear space is again nuclear, |21,
Proposition 5.1.1].

(i) = (ii). Fix zy,...,2; € X and an absolutely convex neighbourhood U of 0 in
X. Choose elements ug,...,u; € X' such that (z;,u;) = &; for 1 < 4,5 < t. Since X
is nuclear, there is an absolutely convex neighbourhood V of 0 in X and a sequence
{ba}2, € X' satisfying > o0, gvo(bn) < 00 (where V° C X' is the polar of V and
qvo (') = sup ey |{z,2')|) such that

[, B < quly) <Y [y.ba)l,  weX, (7)

for all b € U°, [21, Proposition 4.1.4]. Here gy denotes the Minkowski functional of U.
For 1 < m < t and n € N, define a linear functional A, , : Ly(X) — C by
T (TZm, by) for T € Ly(X). It isimmediate from (1) that each A, , is 7,-continuous,
that is, A, € (Ls(X))'. For the absolutely convex neighbourhood of 0 in L,(X) given
by
W:={SeL(X):Sz,eViforalll <m <t}

we have, for each 1 <m <t and n € N, that

qwe (Am,n) = sup |<Szm1 bn>| S sup 1(1/, bn>| = Qyo (bn)
Sew yev
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Accordingly,

t o0 t o0
qwo(Amn) < > aye(b
m=1 n=1 m=1 n=1
Define
W:={TeL(X): Tz, €Uforall 1 <m <t}

which is also an absolutely convex neighbourhood of 0 in L,(X), and let g5 be its
Minkowski functional. It follows from (7) that

o0
. — <
aw(T) = max, sup [(Tzm b}l < max Z (T2, b))
t o0
S D MICEINIED 3B S
- n=1 m=1 n=1

for every T € L(X). By [21, Proposition 4.1.4, applied in the lcHs L,;(X), it follows
that L,(X) is nuclear. O

4 Q3: Bounded o-additivity and finite 7,-variation

Concerning the bounded o-additivity of any L{X)-valued operator measure we have
the following general result. It is formulated in [5, Proposition 3.1(i)] for sequence
spaces, but the same proof applies here.

Proposition 4 Let X be a Fréchet Montel space. Then every Ly(X)-valued operator
measure is boundedly o-additive in Ly(X).

For the canonical spectral measure in Kothe echelon spaces the previous proposition
is optimal, as seen by the following result; see {5, Corollary 3.2(ii)].

Proposition 5 For some (all) p € {0}U[1, 00) and any Kithe matriz A, the canonical
spectral measure P : 2N — L (A, (A)) is boundedly o-additive in Ly(A,(A)) if and only
if \p(A) is a Montel space (equivalently, A(A) is reflezive).

Characterizations of when \,(A) is Montel are known, [16, p.329 & p.334]. More-
over, for any KG-matrix A it follows that P fails to be boundedly c-additive in
Ly(A,(A)) for every p € {0} U[L, 00); see Corollary 3.2(ii) of {5].

Proposition 6 (i) For every p € [1,00), the canonical spectral measure P : 2N —
L (€7%) fails to be boundedly o-additive in L,(¢P%).
(ii) For every p € [1,00), the spectral measure P : B(R) — Ly(IL.(R)), as given
y (5), fails to be boundedly o-additive in Ly(LL,.(R)).
(ill) For every p € (1,00), the spectral measure P.%B— Ls(Ly_), as gwen by (6),
is boundedly o-additive in Ly(L,_).
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Proof. (i) is Corollary 3.2(i) of [5].
(ii) Let B:= {f € LL.(R) : f = 0in R\ [~1,1] and ¢\"(f) < 1}, where ¢ (f) =
i/p
(f_l [F ()P dt) , for f € I}, .(R), is a continuous seminorm in LY (R). Then B is a

bounded subset of L (R) because q,(, ") coincides with qp on B, for every n € N. For
every Borel subset E C [—1, 1] of positive Lebesgue measure the continuous seminorm

g on Ly(L7,.(R)) — see (2) — given by ¢(T) := supscp g NTF), for T € L(L} . (R)),

satisfies
1/p
q( = sup </ Ix (O F)P dt) = 1.
feB

Accordingly, P cannot be boundedly o-additive in L,(L%, (R)).
(ili) A typical seminorm for 7, (see (2)) is given by '

q(T) :=sup|[Tfll,, T € L(Ly-),
feB

where B C L,_ is any bounded set, r € {1,p) is arbitrary and || - ||, denotes the usual
norm in the Banach space L7([0,1]). So, fix any such B and r. Let ¢t € (r,p) be
arbitrary and choose s > 1 according to £ = } + L. Since B is bounded in L*([0, 1)),
the generalized Holder inequality (e.g. [11, p.527]) implies, for each F € 4, that

7 (P(B)) = sup I fl- < sup | FLAB)* = K\(E)*
feB feB

for some constant K, > 0 (with A denoting Lebesgue measure in [0,1]). It follows that
g(P(E(m))) — 0 as m — co whenever {E(m)};>_; C % is decreasing to §. This is
precisely the bounded o-additivity of P in Ly(L,_). O

As noted in Section 1, for p € (1,00) the Fréchet spaces L,_ are not Montel. So,
part (iii) of Proposition 6 does not follow from Proposition 4.

Some of the spectral measures P and P (as given by (4) and (6)) are boundedly
o-additive. Accordingly, one can ask if these spectral measures have finite 7,-variation.
A general result in this direction is the following one, [5, Proposition 4.1].

Proposition 7 Let X be a nuclear Fréchet space. Every Ly(X)-valued operator mea-
sure is necessarily boundedly o-additive and has finite variation in both L(X) and
Ly(X).

Since a boundedly o-additive L,(X)-valued operator measure with finite 7,-variation
also has finite 7,-variation in L,(X), we conclude from Proposition 1(iii) and Proposi-
tion 6(iii) that the spectral measures P : 2 — Ly(L,_), for p € (1,00), all fail to have
finite 7,-variation.

The question of finite m,-variation for the boundedly o-additive canonical spectral
measures P : 2N — Ly(A,(A)), with A\,(A4) Montel (see Proposition 5), is answered by
the following result; see Corollary 4.4 and Proposition 4.5 of [5].

Proposition 8 Let A be a Kithe matriz, p € {0} U[1,00) and A\,(A) be Montel. Then
the boundedly o-additive canonical spectral measure P : 28 — Ly(A\(A)) has finite
variation if and only if \py(A) is nuclear.
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5 Q4: The Radon-Nikodym property

Many spectral measures @ : ¥ — Ly(X) have finite 7,-variation and are absolutely
continuous with respect to some finite measure p : ¥ — [0,1]. The question arises
of whether or not there exists a p-integrable function G @  — L,(X) such that
Q(E) = ;G du for E € £7 Measures () which have such a density G often have
special features not exhibited by general spectral measures (e.g. relatively r,-compact
range). In this section we investigate the Radon-Nikodym property (briefly, RNP) for
X-valued vector measures and L(X)-valued operator measures, with special emphasis
on our list of particular examples.

Let (2,2, ) be a probability measure space and X be a Fréchet space. A function
G : Q — X is called strongly p-measurable if there exists a sequence G, :  — X,
for n € N, of T-simple functions such that G(w) = lim, 4 Go(w) in X, for p-a.e.
w € . The obvious definition of “Bochner p-integrable functions” is the one suggested
by the Banach space case. Namely, a strongly p-measurable function G : § — X
is called Bochner pu-integrable if [(qr 0 G) dp < oo, for each k € N, where {g,}%2,
are continuous seminorms determining the topology of X. This is equivalent to the
definition in [27, p.282]. Namely, a function G : Q — X is Bochner y-integrable if there
exist L-simple functions G, : Q@ — X, for n € N, such that G(w) = lim,_,o, Gn(w), in
X, for p-a.e. w € 2 and

n—oo

lim [ (go(G~Gy)) du=0, keN
o
see [20, Lemma 2.5]. The “integral over E” can then be defined by
/ Gdy = lim | G, dy, Eck,
E n—o0 E

using the completeness of X and the obvious definition of fE G, du, for n € N. This
is independent of the sequence {G,}32,. The indefinite integral G - : ¥ — X defined
by E + [, G dp, for E € ¥, is then a vector measure of finite variation, [20, Lemma
2.8].

A vector measure m : ¥ — X is called absolutely continuous with respect to p
{(denoted by m <« p) if m(E) = 0 whenever E € T satisfies u(E) = 0. Given a vector
measure m : & — X of finite variation, if there exists a Bochner p-integrable function
G : Q — X such that m = G - g, then G is called the Radon-Nikodym derivative
of m with respect to u. The Fréchet space X has the RNP if for every (complete)
probability measure space (§2, 2, ) each vector measure m : ¥ — X satisfying m < p
has an X-valued Radon-Nikodym derivative with respect to p. It is known that every
reflexive Fréchet space has the RNP, a result credited to D.R. Lewis; see [7, Corollary
3.1]. For further relevant references we refer to [3], [4], [7], [8], [28], which also apply
to more general lcH-spaces X (not necessarily metrizable) with the various definitions
given above adapted in a natural way (the number of seminorms needed may no longer
be countable). An immediate application to our list of examples is the following fact.

Proposition 9 Fach of the separable, reflezive Fréchet spaces Ap(A), for any 1 <p <
oo and Kdthe matriz A, has the RNP. The same is true of the separable, reflerive
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spaces £PF, for 1 < p < oo, the separable, reflezive spaces LY (R), for 1 < p < oo, and
the separable, reflexive spaces L,_ for 1 < p < co.

Examples of non-reflexive Kéthe echelon spaces with the RNP will be obtained by
using the following three observations.

Proposition 10 Let {X;}3°, be a sequence of Banach spaces with the RNP. Then the
countable product X = [[}2, Xy is a Fréchet space with the RNP.

Proof. Let || ||x denote the norm of X, for k € N, and Ty : X — X} be the canonical
projection onto the k-th coordinate. Then

gn(x) i= Z ke, x = (z1, 9, ) € X,

for n € N, is a fundamental, increasing sequence of seminorms determining the topology
of X.

Let m : ¥ — X be any vector measure with finite variation on a complete proba-
bility measure space (€2, £, 1) such that m < pu. For each k € N, the vector measure
Ty om : ¥ — X is absolutely continuous with respect to p. Accordingly, there ex-
ists a Radon-Nikodym derivative Gy : @ — X; and a sequence of E-simple functions
Gp Q0 = X, for n € N, satisfying

lim G}{w) = Gx(w), w ¢ Ay for some p-null set 4, € 3, (s
00
L1600 du <o, and -
Q
(Ty om)(E) = / Gy dp, Eex. (3)
E

Define G : Q@ — X by G(w) := (G1(w), Go(w),...), for w € Q, and G™ : Q — X by
G (w) = (GM(w),...,GMw),0,0,...), for w € @ and n € N. Then {G™M}2 is a
sequence of X-valued, T-simple functions with the property that G™ — G pointwise
p-a.e. on  (as p (g, Ax) = 0). Accordingly, G is strongly p-measurable. Moreover,
(2)g yields

/Q<qnoa>du=g/nnch)nkdum, nen,

that is, G is Bochner p-integrable.

To see that m = G - u it suffices to show that equality holds in each coordinate.
But, for k£ € N, we have by (3)x that Ty o m = Gy - 4 and, by definition of G and Ty,
that Ty ([, G du) = [ Gk du for each E € % O

Remark. An obvious modification of the previous proof shows that the countable
product of Fréchet spaces with the RNP also has the RNP.

The following result is recorded in [4, Proposition 3.4] but, with a rather unclear
reference to a result in [28]. For the sake of completeness we include a proof.
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Proposition 11 Let Y be a separable Fréchet space with the RNP. If X is a closed
subspace of Y, then also X has the RNP.

Proof. Let m : ¥ — X be any vector measure with finite variation on a complete
probability measure space (£2,%, 1) such that m <« p. If j : X -5 Y denotes the
canonical inclusion, then jom : X — Y is a vector measure with (j om) < u. By
hypothesis there is a Bochner p-integrable function G : Q — Y satisfying (j om)(E) =
J2G dup for E € ¥. Accordingly, [, G du = m(E) € X, for each E € X, with
G : Q — Y strongly p-measurable. Since Y is a Suslin space, it follows that G(w) € X
for prae. w € Q, [28, VIII p.68]. Since X is also Suslin (being a separable Fréchet
space), to check that G :  — X is strongly p-measurable it suffices to verify that
w i (G(w), z') is X-measurable on Q, for each ' € X', |28, Theorem 1|. This follows
easily from the strong p-measurablility of G (in Y) and the Hahn-Banach theorem.
Accordingly, G is an X-valued Radon-Nikodym derivative for m relative to u. a

As a simple application of Proposition 11 we show that L. (R) does not have the

loc
RNP. Indeed, let Y = LL (R) and X = {f € L. (R) : f =0in R\ [~1,1]}, in which
case X is a closed subspace of Y. Since X is isomorphic to the Banach space L!([~1, 1])
and this space fails to have the RNP, [10, p.219], Proposition 11 implies that ¥ also

fails to have the RNP.

Proposition 12 Let X be a Fréchet space which is the projective limit X = proj, X,
of separable Banach spaces {X,}32, with the RNP. Then also X has the RNP.

Proof. X is isomorphic to a closed subspace of [].2, X, and so the conclusion follows
from Proposition 10 and Proposition 11. O

We can now decide about the Koéthe echelon spaces to which Proposition 9 does
not apply.

Proposition 13 Let A be a Kéthe matrix.
(i) M (A) always has the RNP.
(it) Ao(A) has the RNP if and only if it is Montel.

Proof. (i) Note that A\,(A4) = proj,¢*(a,) with each ¢'(a,) ~ ¢!, for n € N. Since the
Banach space ¢! has the RNP, [10, p.218], the conclusion follows from Proposition 12.

(ii) If Ag(A) is Montel, then it is necessarily reflexive and hence, as noted earlier,
must possess the RNP.

Conversely, suppose that Ag(A) is not Montel. According to Theorem 27.9(6) and
Theorem 27.15 of [16] there exists n € N and an infinite set J C N such that, for
every k > n, there is ap > 0 with the property that ax(j) < agan(j) for all j € J.
Then, for each z € Ay(J, 4) := {zx, : © € Ag(A4)}, we have q,(co)(z) < aqtV(z) for all
k > n. Hence, qflo) determines the relative topology in \o(J, A) inherited from Ay(A4),
from which it follows that Ag(J, A) is isomorphic to the Banach space cp. Since Ag(A)
is separable and cy does not have the RNP, |10, p.219], it follows from Proposition 11
that \g(A) fails to have the RNP. O
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Proposition 14 Let X be a Fréchet space.
(1) If X is Montel, then Ly(X) has the RNP.
(i) If X is nuclear, then both L(X) and Ly(X) have the RNP.
(i) If either Ly(X) or Ly(X) has the RNP, then X has the RNP.

Proof. (i) In a Fréchet Montel space 7, coincides with the topology 7, in L(X), of
uniform convergence on the precompact subsets of X. Since L,.(X) has the RNP, [3,
p.339], we are done.

(ii) Since X is Montel, the RNP for L,(X) follows from part (i).

Suppose that m : & — Ly(X) is an operator measure with finite 7,-variation on a
complete probability measure space (2,2, i) such that m < u. By Proposition 4 the
measure m is boundedly o-additive and by Proposition 7 it has finite 7,-variation in
Ly(X). Since Ly(X) has the RNP, m has an Ly(X)-valued Radon-Nikodym derivative
relative to u which, clearly, is then also a strongly p-measurable Ly(X)-valued Radon-
Nikodym derivative.

(iii) Since X is a complemented subspace of both L (X) and L,(X), [9], it suffices
to establish the following

Claim. LetY be a quasicomplete lcHs with the RNP and Z be a complemented
subspace of Y. Then Z also has the RNP.

To establish the Claim, let R € L(Y) be a projection onto Z. Let m : ¥ — Z
be any vector measure with finite variation on a complete probability measure space
(2,3, 1) such that m < p. By hypothesis there is a Bochner p-integrable function
G : Q — Y satisfying m = G- u. Then RoG :  — Z is also Bochner p-integrable and
satisfies m = Rom = (R o G) - u. This completes the proof of the Claim and hence,
also of (iii). O

Remark. Proposition 14 shows that if X fails to have the RNP, then so do both
Ly(X) and Ly(X). For example, it was noted after Proposition 11 that L], (R) fails to
possess the RNP. According to Proposition 14, neither Ly(L! (R)) nor Ly(L._(R)) has
the RNP.

Of course, it can also happen that X does have the RNP but, L,(X) or L,(X) fail
to have it. For instance, the Hilbert space X = ¢2 has the RNP, [10, p.218], but L,(X)
fails to possess the RNP. Indeed, Ly(X) is precisely the Banach space L(£?) equipped
with its operator norm topology {|T|| := supj<; [|T%[le, for T € L(£?). For each
£ € ¢ define M, € L(£*) to be the multiplication operator My : z — (&121, €229, - .),
for each z = (x,) € 2. Then ||M¢|| = |||l and so £ —+ M is an isomorphism of the
Banach space £ into L(£?). Since £ is an injective Banach space, it follows that L(¢?)
contains a complemented copy of €. But, £* fails to have the RNP, [10, p.219], and so
we can conclude from the Claim in the proof of Proposition 14(iii) that Ly(X) = L(£?)
also fails to have the RNP.

6 Q5: Integrable functions for a spectral measure

Given a Fréchet space X and a spectral measure Q : & — L;(X), necessarily equicon-
tinuous, an important space is .Z'(Q)). Much is known about this space. For instance,
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if @ is a closed spectral measure (l.e. its range is a Bade complete Boolean alge-
bra of projections, [18, Proposition 3.5]), then the lcHs .£1(Q) is a complete space
and the integration map f — fﬂ fdQ is a bicontinuous isomorphism of the locally
convex algebra .#1(Q) onto the closed subalgebra of L,(X) generated by the range
Q) = {Q(E) : E € £}, [18, Proposition 3.16]. Or, if the g-algebra ¥ is countably
generated, then the IcHs £ (Q) is separable, |24, Proposition 2[. All of the examples in
this paper are closed spectral measures (as X is separable; see Section 2) and are based
on countably generated o-algebras (i.e. 2%, B(R) and #). Accordingly, the comments
just made are applicable. But, what about the actual elements of .£1(Q)?

If X is a Banach space, then it is known that .Z*(Q) = .£*°(Q) as vector spaces,
[12, XVIII Theorem 2.11(c)]. For non-normable Fréchet spaces X the situation can
be rather different. Although particular spectral measures ¢ are known for which
LHQ) = Z£(Q), 5], [25], there are also plenty of examples where the containment
Z*(Q) C ZHQ) is proper. To describe which functions actually belong to .Z(Q)
is, in general, rather difficult. However, for the canonical spectral measure P in Kothe
echelon spaces it is possible to give a rather elegant description of £ (P) according to
the following result, [5, Proposition 5.1|, which is based on earlier work in [19].

Proposition 15 Let A denote one of the sequence spaces A,(A), for any Kéthe matriz
Aandp € {0}U[1,00), or % with p € [1,00), and let P : 2Y — L (\) be the canonical
spectral measure, as given by (4). Then a function ¢ € CN belongs to £ (P) if and
only if 1t satisfies Ap C X, where p = {zp : © € A}. Moreover, [, ¢ dP € Ly(}) is
precisely the multiplication operator M, : z — xyp, forz € A

This result can be used to describe precisely when the containment £°(P) C
Z1(P) is proper or is an equality.

Proposition 16 (i) The canonical spectral measure P : 28 — L (¢7%) satisfies L (P) =
L2(P) = £% for every p € [1, c0).

(ii) Let p € {0} U[l,00), A be a Kéthe matriz and P : 2% — Ly (A\,(A)) be the
canonical spectral measure. Then the containment £ (P) C £ P) is proper if and
only if there exists an infinite subset J C N such that the sectional subspace \y(J, A) =
{zx, 2z € X\(A)} is Schwartz. In particular:

(a) Ifp e {0} U [1,00) is such that \,(A) satisfies the density condition and is non-
normable, then the inclusion L*(P) C L' (P) is proper.

(b) If A is any KG-matriz, then L (P) = £°°(P) = (> for every p € {0} U [1,00).

The previous result is a combination of Corollary 5.6 and Propositions 5.2, 5.5 and
5.7 of |5]. The eriteria of part (ii) is quite effective since it is known exactly wher
Ap(J, A) is Schwartz, [16, Proposition 27.10].

The following result, for Q = [0, 00) and p = 1, occurs in [22, Lemma 8]. The proof
given there can be easily adapted to the case p > 1 and @ = R.

Proposition 17 Let p € [1,00) and P : B(R) — Ly(L%.(R)) be the spectral measure
given by (5). Then Z£'(P) = LX(R)) as vector spaces. Moreover, [, @ dP : f s of

loc

for f € LE(R), is the operator of multiplication by v, for each ¢ € LYUP). In

loc

particular, the inclusion f"o(ﬁ) C Zl(ﬁ) is proper.
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To identify ! (P) requires some preliminaries.
So, fix p € (1,00) and let P : & — L,(L,_) denote the spectral measure given by
(6). Given a Borel measurable function  : [0,1] — C define the vector space

D,(My)={f€Lp_:pofeLl,,}={f€Ly_:|ofll <oo,¥rell,p}

where || - ||, denotes the norm of the Banach space L"([0, 1]). Define the multiplication
operator M, : D,(M,) = L,_ by f — ¢f, for each f € D,(M,).

Lemma. The linear operator My, : D,(My,) — Ly is closed .

Proof. Let {f,}32, € D,(M,) be a sequence such that f, — fin L, as n — 00
(for some f € L,_) and M, f, — g in L,_ as n — oo (for some g € L,_). Then also
fn — [ and @f, — g in the Banach space L'([0,1]) as n — oo. Accordingly, there
exists a subsequence ¢ fny — g a.e. on [0, 1], in which case also foxy — f in L1([0, 1]).
There then exists an increasing subsequence {n(k;)}2, of {n(k)}2, such that both
fresy = f and @ frk,) — g as 1 — oo, pointwise a.e.on [0, 1]. Then also ¢ fuu,) — ¢f
pointwise a.e. on [0, 1] as ¢ — oc. We conclude that ¢ f = ¢ € L, and so f € D,(M,)
with g = M, f. Hence, M, is a closed operator. [

We can now describe ffl(ﬁ); part (i) should be compared with Proposition 15.

Proposition 18 Let p € (1,00) and P : & — Ly(L,_) be the spectral measure given
by (6).

(1)

A Borel measumble function ¢ : [0,1] — C belongs to LYPY if and only if
Dy(M,) = L,_, that is, ¢L,_ C Lp_ In this case

/ w0 dP = M,
.4

(it) As a vector space

(M Lo, 1)). (8)

1<g<o0

In particular, the inclusion .,2”"0(13) - .,2”1(15) 18 proper.

Proof. (i) Let Q = [0,1]. Note that the P-null sets are precisely the null sets for
Lebesgue measure A : B — [0,1]. If ¢ = Zl;zl @jX g, 18 any Z-simple function, then it

follows from (6) that My = [, v dP. Suppose that ¥ € L*([0,1)) = £>(P). Choose
a sequence {1, }°°, of #-simple functions satisfying |¢,| < [¢| and |[¢n — ¥[leo — 0 as
n — oo. For f € L,_ and any 7 € [1,p) we have

19f = ¥uflle <ln = dlicllfll- =0, n— o0

Accordingly, My, — My in Ly(L,.) as n — oo. Since |¢,| < 9] € #'(P), the Dom-
inated Convergence Theorem for vector measures applied to P in the quasicomplete
leHs Ly(Ly-), [14, p.30], ylelds My, = fQ Yo dP — [, dP in Ly(L,.) as n — oo.

Hence, wi dP My for all ¢ € £(P).
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Suppose now that ¢ € <f1(]3) is arbitrary. Define ¢, = ¢x,,,,, where E(n) :=
l| ([0, n]) for each n € N. Then ¢, — 1 pointwise P-a.e. on [0, 1], each ¢, € .£®(P)

and |1p,] < Jo| € ZY(P) for n € N. Again by the Dominated Convergence Theorem
we conclude that

lim My, = lim / Wy AP = / ¢ dP, (9)
Q Q

n-—=00

in Ly(L, ). For f:=1¢ L, we deduce that ¢, = ([, dP)1 in L, asn— o0 An
“a.e. argument” as in the proof of the previous Lemma implies that ¢ = (jﬂ @ dﬁ)l.

In particular, ¢ € L,_. Using the fact that ¢ &€ L,_ it is routine to check that
L>*{[0,1]) C D,(M,). So, we have thus far established that

© € LY(P) implies ¢ € L, and Dp(M,) is thse in Lp_. (10)

Still with @ € LY(P), fix f € D,(M,). Since p € L(P), it is clear that ¢ is also

integrable for the L,_-valued vector measure Pf : E w— P(E)f, for E € &, in the
usual sense, [14, Chapter II, §2]. Indeed, the integrals are given by

/pw APf) = (/Q‘P dﬁ) P(E)f, E€%.

Since || < || € LYPS) with ¢, — ¢ ae. (for Pf) on Q, it follows from the
Dominated Convergence Theorem applied to the vector measure Pf : # — L,_ that

tim [ wnaB= [oan=( [ oaP)s.

in Ly(L,_). But, for each n € N, we also have
/ 6 d(Bf) = (/ e dP) =My f=vnf = of,

where f, = fx,,. Accordingly, ¢ fn = ([ v dP)f in L,_ asn — oc. Since |f,| < |f]
we deduce from f € D,(M,) that {f,}22, C D,(M,) and, moreover, that f, — f in
L, (as E(n) 1 Q). Using the closedness of M, (see the previous Lemma) we conclude
that ([, ¢ dJS)f = M,f, So, we have established:

1/ 5\ ¢ . U ' joug _
w € £ (P) implies the restriction </ﬂ @ dP) ‘Dp(lwv) = M,.

This fact and the density of D,(M,) - see (10) - imply that D,(M,) = L,_ and
M, = [, dP.

Conversely, suppose that ¢ : [0,1] — C is a Borel measurable function for which
D,(M,) = L,.. By the previous Lemnma and the Closed Graph Theorem we conclude
that M, € L(L,-). If we can show that

we L'Y(Pf,g)) (11)
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and

<M¢f,g>=/ﬂ<pd<15f,g>, (12)

for every f € L,_ and g € (Lpﬁ)’~then, according to the definition of ﬁ—integrability
(see §1), the function ¢ € £*(P) and [, dP = M,. Observe if f € L, and
9 € (Lp-)' = Uy L°([0, 1]), where 117 + i, =1, then (Pf,g) is the complex measure

Ew (P ( Vf,9) = /fgd/\ EecB, (13)

with fg € L([0,1]). Accordingly,

/Qm dt<Pf,g>|=/Qw1-|fgl dA:/Qwal-lgldA<oo

because g € (L,-) and ¢f € L,_ (by hypothesis of D,(M,) = L,_). This establishes
(11). To verify {12), observe that

(Mof,9) ={¢f 9) =/Q<pfg dA:/;lde;f,g%

where the last equality uses (13). So, ¢ € #'(P) and the proof of (i) is complete.

(ii) Denote the right-hand-side of (8) by A. Suppose ¢ € A. Let f € L,_ and
1 <7 < p. Choose t € (r,p) arbitrarily and let s > 0 satisfy 1 T+ 1 = % Then
L=1l_1<landsos>r >1 Hence, p € L*([0,1]) and so, by the generalized
Holder inequality, [[of|l; < {l¢|lslflle < co. This shows that ¢ L, C L, and so, by
part (i), we conclude that ¢ € Z(P).

Suppose now that ¢ € #(P). Let ¢ € [1,00) and choose k € N such that
k > q. Since £*(P) is an algebra under pointwise multiplication, [18, pp.12-13], also
Wk € LY(P). By part (i) it follows that *L,_ C L,_ and hence, ¥* = ¢*1 € L,_ C
L'([0,1]). So, ¢* € L*([0,1]) from which we deduce that

1lly < ol = (I0411) 7 < oo

that is, ¥ € L9([0,1]). Since g € [1,00) is arbitrary, it follows that ¢ € A. This
establishes that A = Z'(P).
To show that .£°°(P) C .£'(P) is a proper inclusion, let {F(n)}22, be any pairwise
disjoint sequence of sets in % satisfying A(F(n)) = ¢, for n € N. Then ¢ =
et MX pny 18 SUTEly not in L=([0,1]) = #>(P). However, for any ¢ € [1,00) we have

llpl|2 = 3 o2, nfe™ < oo, showing that ¢ € L4([0, 1]). Accordingly, ¢ € A = ZLY(P).
d

Remark. It is interesting to note, for the spectral measures P : B(R) — L,(L%.(R))

as given by (5) for each p € [1,00), that the space ﬁ’l(ﬁ) is independent of p. The

same is true for the spectral measures P : & — L(L,_) as given by (6) for each
€ (1, 00).
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