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Multifractal functions: Recent advances and open problems

Stéphane Jaffard*

Abstract: We raise several questions related to the pointwise regularity of functions and their

multifractal analysis.

1 Introduction

The present paper can be seen as a sequence of |25], which was written in 1996 and listed open problems
related with the multifractal analysis of functions. The subject at that time was in full bloom, driven by
an explosion of applications: All possible kinds of signals were submitted to a “multifractal analysis”,
with apparent success. Indeed, as we shall see, the criterium of multifractality for a signal amounts to
check that a certain curve, obtained from the data, is not linear, a criterium which is particularly easy
to check in practice. Several scientists challenged these results and asked for a scientific interpretation of
these numerical computations which would be backed by mathematical theorems. Though multifractal
analysis of measures had largely developed at that time, very few mathematical results were available
for functions, and the most simple and natural questions were open. The motivation of [25] was to
list these questions, organize them as what could be described as a “research program” and hopefully
attract students to a very promising area. And, indeed, the subject widely developed, largely due to
talented students. It evolved widely since then, and its foundations have been largely renewed. Here
are two examples of these changes:

Multifractal analysis is based on the notion of Holder pointwise regularity; its purpose is to determine
the dimensions of the sets of points with a given regularity. All mathematical results concerning this type
of regularity assume that the function considered has some uniform Holder regularity; this prevented
the introduction of these tools in image analysis, since images always present discontinuities, as a result
of the occlusion phenomenon (some objects are partly hidden behind others). Recently, it was found

that a slight weakening of the notion of Hélder pointwise regularity, the T2 regularity, allows to derive
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similar results for which the uniform Hdélder regularity assumption is no more needed, thus allowing
for discontinuous functions (see Section 2.4). This example shows how in some settings, the basic
definitions of the tools which are used had to be changed.

Another example is supplied by the derivation of the multifractal formalism: The dimensions of
the sets with a given Holder regularity cannot be computed directly in applications; they have to be
deduced from global, averaged quantities. The quantities used were based on the Sobolev or Besov
regularity of the function. This had strange consequences: The domain of validity of the formulas thus
obtained were partial, and these failures could be witnessed, but not really explained, untill it was
understood that these quantities should not be based on Sobolev spaces, but on other new function
spaces of a different kind. This alternative point of view shed a new light on all the problems concerning
the validity of the multifractal formalism.

As these radical changes took place, most problems raised in [25] became either solved or obsolete;
now, the mathematical foundations of the subject are firm, and the purpose of the present paper is to
give an overview of these recent deep changes in the field and of the many new open problems which

have thus been uncovererd.

Acknowledgement: This paper ows a lot to many discussions with P. Abry, A. Arneodo, J.-M. Aubry,
A. Ayache, S. Cohen, C. Melot and Y. Meyer. Let them find here the expression of all my gratitude.

2 Pointwise regularity

2.1 The Holder exponent

Historically, the first definition of pointwise regularity introduced was the Holder regularity.

Definition 1. Let o € R? and let & > 0. A locally bounded function f : R® — R belongs to C*(zq) if
there exists a constant C > 0 and a polynomial P of degree less than o and such that, in a neighbourhood

of zq,
|f(z) — P(z — z0)| < Clz — x| (1)

The Holder exponent of f at zg is
hy(zo) = sup{a : f € C(z0)}.

A first natural question is to determine which functions h(z) are Holder exponents. The answer
may depend on the global regularity assumptions made on f. Since (1) implies that f is bounded in a

neighbourhood of xy, we do not restrict the problem by assuming that f € L>(R). On the other hand,

130



the Holder exponents of continuous functions are known to be exactly the functions which are lim inf
of a sequence of continuous functions, see [14, 23] (we will say that such a function is LIC). However,
the general problem of determining which functions are Holder expouents of bounded functions remains
open. Note that several classes of functions which have a dense set of discontinuities have been studied
in the one-dimensional case (d = 1) and also led to LIC Hélder exponents. One example is given by the
sample paths of Lévy processes, see |26]; another example is supplied by Hecke’s functions for s > 2.
see [28]; these functions are defined as follows: Let '
{2} =a—-[z)-3 il z¢Z } @)

=0 otherwise

({x} is the “sawtooth function”); Hecke's functions are

o~ {nz}
HS(I) = HZ:I s (3)
Keeping these examnples in mind, the general problem of finding the class of Hilder exponents, which
we raised in the L™ setting, can be specified by making additional assumptions on f (listed here in

increasing order of requirements):
o f has only discontinuities of the first kind.

e fisa pure jump function, i.e. f can be written as the uniform limit of a series ) f,(z) where
each f, is of the form f,, = a,H(x — by) + ¢4, and H(x) is the Heaviside function,

[ee)
e f is the sum of a normally convergent Davenport series Zan{nx}, with a, € I! (and {2} is

n=1
defined by (2)).

The following lemma can always be applied in these more precise settings, see [28].

Lemma 1. Lel f : R — R be a locally bounded function having discontinuities of the first kind on a
dense set of points. If xg € R then, let R = (rp)nen be a sequence of discontinuities of f converging to
zg; denote by s, the jump of f at rn. Then
log |s
hy(zg) < i%f liminf <A> , (4)

wes \ log ra — o]

where the first infimum is taken on all sequences of discontinuities R that converge to xg.
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Note that it is very easy to construct counterexamples where (4) is a strict inequality, at least for

pure jump functions: For instance, let f be the even function defined on (—~1,1) by
1 1 1

vn>1 — =}, z) = —; 5

w2l o [t 1 )

then h(0) = 1/2, whereas (4) only yields the upper bound 3/2. Beyond this simple example, classes

of pure jumps functions where the Holder exponent is given by (4) at some points but not everywhere,

have been constructed by J. Barral and S. Seuret in [4]. (These -examples are actually measures

constructed as series of Dirac masses at the rationals, but their distribution functions yield the required

examples.) Under which condition the Holder irregularity at every point comes only from the individual

contribution of each jump (in which case (4) is an equality), and not their accumulation, as in (5)?

2.2 Stochastic processes

If f is a stochastic process (or a random field, in the several dimensional case), then its the Holder
exponent also is a stochastic process; actually, in some cases, it is a deterministic function; a standard
example is supplied by the Brownian motion B(z) where

1

a.s. Vz, hg(z) = 3>

(6)

or, more generally, by the fractional Brownian motion of order H (0 < H < 1) for which a.s. Vz.
hp,(z) = H. Such functions for which the Holder exponent is a constant are called monohélder
functions. In the general case, the standard measurability problems which are tnet in the theory of
stochastic processes reappear in this context: Which hypotheses on a process X; imply that the process
hx(t) is indeed measurable? Is the mapping X — hyx measurable?

For other processes, problems are posed by the positions of quantifiers in (6); the comparison between
the Brownian motion and a Lévy process of upper index 3 without Brownian part is enlightening: The
sample paths of such a Lévy process satisfy V¢, a.s. hx(t) = 1/8, see [8]; but the a.s. and the quantifier
Yt cannot be commuted here, since the Hélder exponent is random, and takes all values in {0.1/0]
on sets of vanishing measure, see [26]; thus there is no almost sure Holder exponent valid Vt. FBMs
and Lévy processes share a common characteristic: The a.e. Holder exponent is deterministic. Does
this property hold under general, weak asssumptions on the process? Note that it cannot be true in
general: Consider for instance the (very artificial!) following process: Let 8 be a Bernouilli variable
(P(@ =1) = P(§ = 0) = 1/2), and let B, and B, be two Fractional Brownian Motions of different
indices. Let us further assume that 8, B; and B, are independent. The process X, is defined by:

If =0, then X, = Bi(t); else X, = Ba(t); (7)
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The a.e. Holder exponent of this process is random. Under which assumption is the Holder exponent
of a process almost surely a deterministic function? The case of Gaussian processes is particularly
important; if X, is Gaussian, then V¢, a.s. Hx/(t) is deterministic (this is a straightforward consequence
of general results concerning the 0-1 law for the oscillation of Gaussian processes, see [35] Section 7
Theorem 1). However, one cannot commute the Vz and the a.s. in this statement, as we now show.

We first need to recall the notion of pointwise regularity which is attached with a probability measure
p defined on RY. The lower pointwise dimension of p at zg is )

logu(B(l‘o,r)))

logr (8)

D,.(zo) = lim i(l)lf (

where B(zo,7) denotes the ball of center zg and radius 7. For measures, this quantity plays the role
played by the Holder exponent for functions; the spectrum of singularities of a measure is defined
in the same way as for functions: It is the Hausdorfl dimension of the level sets of D,. Let now
i be a deterministic probability measure supported by R*, and let f be its distribution function

f(z) = u([0,t]). The Brownian motion in time p is the Markov Gaussian process

Bu(t) = B(f(1)) (9)

where B(t) is a standard Brownian motion, see [38]. Uniform regularity results on the Holder regularity
of B(t) imply that
1
a.s. Vi, hg,(t)= E’D#(t). (10)
Thus a Gaussian Markov process can have essentially any deterministic Holder exponent. Is it possible
to construct Gaussian processes with random Holder exponent?
Finally, let us recall what is implied by the stationary increments assumption; if X, y,, — X, has
the same law as X, ~ X, then it follows that the law of hx(t) is invariant by translation; therefore if

X has an a.e. deterministic Holder exponent, then this Holder exponent is a.e. a constant.

2.3 Wavelet characterizations

Signals and images are more and more often stored trough their coefficients on orthonormal wavelet

bases. Therefore deriving regularity properties directly frcm the wavelet coefficients is important. We

use smooth, localized wavelets 1) (where (z) takes 24— 1 values) such that the 29/2¢() (212 —k), j € Z,

k € Z¢% form an orthonormal basis of L?(R9), see [39]. Therefore any L? function f can be written

f(z) = Zcﬂ (22 — k) where cglz =24 / f(z) ¥(Pz — k)dz. (We choose an L>® normalisation
ik
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for the wavelets.) We will use an alternative indexing by the dyadic cubes. Since  takes 2¢ — 1 values,

we can assume that it takes values in {0,1}¢ — (0,...,0); we will denote by A the cube

k 1

A(=XM40K) =5+ g

d
1 ; N
" [0‘ F) ,ev=ch @) = 9@z k).
The wavelet 1y is essentially localized near the cube A.
If f € L™, then |ey]| < 27 [|f(z)|[(2z - k)|dz < C || ¥ Il £ 1l oo the dx = supycy lex] are
thus finite; they are reffered to as the wavelet leaders, see (27]. We denote by Aj(z¢) the dyadic cube
of side 277 containing zp and :

dj(zo) = sup |[enl,
NC3A; (z0)

where 3)\;j(zp) denotes the cube of same center as A;j(zp), but three times wider. The wavelet char-
acterization of the Holder exponent requires a regularity hypothesis which is slightly stronger than
continuity: A function f is said to be uniform Hélder if 3¢ > 0 such that f € C¢(R%), i.e. 3C > 0 such
that Vz,y € RY, |f(z) — f(y)| < C|z — y|¢. The following theorem is a restatement of a result of [22]

and allows to characterize the pointwise regularity by a decay condition of the d;(zo) when j — +oo.

Theorem 1. Let o > 0. If f 1s C%(zg), then there ezists C > 0 such that
Vi >0, dj(zo) < c27%9, (11)

Conversely, if (11) holds and if f is uniform Holder, then 3C > 0 and o polynomial P satisfying
deg(P) < a and such that, in a neighbourhood of xo,

[f(z) = P(z — z0)| < Clz — zo|* log(1/|x — zol)-

In several applications, directional regularity plays an important role (analysis and synthesis of
clouds, of bones, or more generally, in medical image processing, see [1]).

Suppose that d > 1 and let 8 be a vector of modulus 1. A function f belongs to C§(zo) if the one-
dimensional function ¢t — f(zq + 6t) belongs to C*(0). One cannot expect directional regularity to be
characterized by conditions bearing on the moduli of the wavelet coefficients. However it might become
the case if one uses extensions of wavelet bases which can be “elongated” in particular directions.
Such systems include for instance the “ridgelets” introduced by E. Candes and D. Donoho, see [12],
or the “bandelets” introduced by S. Mallat, see [36]. Such characterizations might be a first step
towards constructing functions with a prescribed directional regularity. Actually, prescribing directional
regularity at one point is no problem; for instance, let g be a continuous positive function defined on the

unit sphere §9-1; write any point £ € R? in polar coordinates z = 78, with 8 € S%~!; then the function
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f(z) = 799 has the directional smoothness g(f) at the origin. Is it possible to impose arbitrary
directional smoothness at different points, or should these smoothnesses satisfy some compatibility
conditions? Constructing stochastic processes with rather flexible directional properties is also an

important issue in modelling (clouds, medical imaging,...), see [1, 9].

2.4  Weakenings of the Holder regularity condition

Substitutes of the pointwise Hélder regularity condition werc first iﬁt_roduced by Calderén and Zygmund
in 1961, see [11].

Definition 2. Let p > 1; a function f € L? (RY) belongs to TH(xo) if there exist R > 0 and o

loc

polynomial P, such that deg(P) < a, satisfying

1/p
vr <R (rld/ |f(z) — P(z - Io)pd.’l‘) < Cre. (12)
B(z.r)

The p-exponent of f at xg is
W (z0) = supfa : f € To(ao)}. (13)

Remarks: The usual Hdlder condition C%(zg) corresponds to p = oc; it follows that the oco-
exponent is the nsual Holder exponent. If f belongs to C°(zq), then, ¥p > 1, f belongs to TE(xg);
more generally, if o’ < p, then TZ(zp) — Tgl(.ro). The p-exponent can be characterized by conditions

on the wavelet coefficients, with the help of the local square function of f at xg: S;(j,x0)(x) =

<Z,\63/\j(10) |c,\|2],\(1)) 1/2. The following result is proved in [29].
Theorem 2. Let pe (1,oc) and u > —d/p; if f € T (zo), then 3C > 0 such that Vj > 0,
Il S50, wo) llp< €270/, (14)
Conversely, if (14) holds and if a ¢ N, then f € TE(x0).

Since the converse part of Theorem 2 does not require a uniform regularity assumption, it follows
that using the T4 (z¢) conditions allows to deal with discoﬁtinuous functions; a requirement which, as
previously mentioned, is mandatory in image analysis.

Of course, all problems that we raised for the the Holder exponent can be posed exactly in the
same way concerning the p-exponent. We won't list them here a second time. On the other hand,
an important problem which is specific to this setting is to understand the relationships between the
different p-exponents of a given, locally bounded function f. For instance, are there global assumptions

on f which allow for discontinuities but imply that these exponents are independent of p (at least for
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p < 00)? What of characteristic functions? The p-exponent of characteristic functions can take any
nonnegative value; therefore, it is interesting to determine which functions are the p-exponent of a
characteristic function.

The TZ(zo) condition expresses the fact that the pointwise Holder regularity conditions holds “on
the average” (in the LP sense). Another possible generalization can be obtained by imposing that it

holds “outside a small set”, see [10].

Definition 3. If E C R? is measurable, denote by Meas(E) its Lebesque measure. The lower density
of E at x is

o Meas(EN B(x,r))

N — £
UE, ) “L’L‘é‘ ( Meas(B(z,T))

The function f has an approximate Holder regularity o at xo (we write f € Cgy(x0)) if there exist a
set E of vanishing lower density at zo, a constant C > 0 and a polynomial P of degree less than a such
that

vz ¢ E, |f(z) - P(z - zo)| < Clz — z0|* (15)

Approximate continuity or differentiability can be defined in a similar manner. Approximate regu-
larity and T% conditions have beeen widely used to prove results of poinfwise regularity or irregularity
for functions having a certain global regularity (e.g. are countinuous, or belong to a Sobolev space) in
situations where Holder regularity is too strong to be expected.

If f € TE(z), then f has an approximate Holder regularity o at z9. However, one cannot recover
any regularity, or any estimate on the wavelet coefficients of f, from its approximate Hélder regularity,
because we miss information on how f behaves on the set E which has been excluded. However, T%
regularity can be recovered from approximate regularity under two types of additional conditions: If
an a priori global regularity assumption is available and if the control on the size of the “bad set” F is
stronger than in the definition of approximate regularity. The control needed is given by an assumption
on the lower pointwise dimension at zg of the measure p of density du = 1gdz. Recall that the lower
pointwise dimension of a measure g is given by (8); by extension, the lower pointwise dimension of a
set E at zg is the lower pointwise dimension of the measure u of density du = 1gdz.

The lower pointwise dimension of a set E at a point x is always bounded from below by d. We can
now give a simple example, motivated by the mathematical modelling of images, where this setting is
pertinent. Images are grey-level, so that it is natural to model them by bounded functions; this will be

our a priori global assumption. The following result is straightforward.

Lemma 2. Let f be u bounded function; if there ezist a set E of lower pointwise dimension at zq larger
than 6 = d + ap and a polynomial P of degree less than « such that (15) holds, then f € TE(zo).
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It would be interesting to extend this lemma and study functions which satisfy near x4 the following

type of conditions (which depend on parameters that can be tuned arbitrarily):
e A T}(xp) condition outside a “small” set £ of given lower pointwise dimension at zg.

e A uniform regularity assumption of Besov or Holder type.

2.5 The abstract function space setting

The condition f € C®(zg) can be rewritten as follows: There exists a polynomial P and constants
C, RO such that
Vr <R | (f = P)lp(zen) lleo< CT2 (16)

Therefore, it can be interpreted as a local condition bearing on the L® norm. It can be generalized
simply by replacing the L® norm by another one. Note that the 7% (zg) condition can clearly be
rewritten || (f — P)1g(zo) lp< Crt4/P, so that it is of this form.

Let E be a vector space of distributions eventually defined modulo Py, the vector space of poly-
nomials of degree less than N and satisfying S — E — &'; we assume that E is endowed with a

semi-norm, which becomes a norm on £/Pyn. Thus, if B is a ball of R4, we note
= inf ol 17
I flles . lglle 17
recall that the notation f = g on B means that the distributions f and ¢ coincide on B, i.e.

Vi € D(RY), supp(p) C B == (fle) = (gl¢).

Note that (17) may be defined even when f does not belong to E; when (17) is well defined, we say
that f belongs locally to E.

Definition 4. If E is a space of distributions satisfying the above assumptions, we call two-microlocal

space of order o associated with E the space C§ defined by the condition
3P polynomial 3R,C >0, ¥r <R | f—Plgp< Cr®.

Another generalization of pointwise regularity in an abstract Banach space framework was proposed
by Y. Meyer in Chapter 1.2 of [40]. What are the relationships between both points of view?

Note that the two-microlocal spaces associated with L™ is C%*(zg). Yves Meyer showed that,
E = CP(R?), then the corresponding two-microlocal spaces are the spaces C*t#~(z4) which were

previously introduced by Jean-Michel Bony.
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In the general case, the pointwise exponent of f at zp with respect to E is
th(xo) =sup{a: f€ Cg(zo)}.

When E = L* (respectively E = LP), we obtain the Holder exponent (respectively the p-exponent
shifted by d/p). Does the set {h}5 . f € Ejc} depend on E? We are now interested in the wavelet

characterization of such conditions. We use the following notions.

Definition 5. Let E be a Banach space; o sequence ey is an uncondifional basis of E if the two following

conditions are satisfied:
o For any f € E, there exrists a unique sequence ¢, such that the partial sums ZnSN Cn€n cONvErge
to f in E.
o There exists C > 0 such that, for any sequence e, satisfying |en| < 1, and for any sequence ¢y,

IS caenen |2< C IS cntnen 5 -

If E is not separable (but is the dual of a separable space F'), then E cannot have an unconditional
basis, and one uses instead weak-unconditional bases, introduced by Y. Meyer, where the first condition

is replaced by the two weaker statements:

¢ 3C > Osuch that, Vf € E, there exists a unique sequence ¢, such that the partial sums Zn.gN Cnén
converge to f in the weak-star topology, and || . cnen < f || £

and the second statement of Definition 5 is kept.

If the wavelets form an unconditional basis (or a weak-unconditional basis) of E, one easily deduces
a condition satisfied by the elements of C%(zp); indeed the condition of membership to E under the
form AE({|cal}rer) < C, we denote by A]E(aro) the condition AZ({|dx|}xea) where the sequence dy is
defined by dy = ¢y if A C 3)\;(zg) and dy = 0 else. Clearly, if f € C%(xo), then

Vi >0, AF(zq) <27, (18)

Under which additional conditions is the converse true?

3 Spectrum of singularities

It often happens that one is not so much interested by the exact value of the Holder exponent at a
given point as by a more qualitative information: Which nonnegative numbers H are values attained
by the Holder exponent ? What is the size of the isohélder sets Ey = {z : hy{z) = H}? Usually, this

size is measured by the Hausdorff dimension, the definition of which we now recall.
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Definition 6. Let A CR?. Ife > 0 and § € [0,d], we denote

M = inf (Z |A,|°'> ,
1

where R is an e-covering of A, i.e. a covering of A by bounded sets {A;}ien of diameters |Ai| < € (the
infimum is therefore taken on all e-coverings). For any 6 € |0,d], the §-dimensional Hausdorff measure
of A is mess(A) = 1irr(1) Mf. Let A C RY, then there ezists 8o € [0,d] such that

— ,

Vo < 6y, mess(A) =+o0 and V6> b6y, mess(A) =0.
Thas critical 8 is called the Hausdorff dimension of A.

Definition 7. Let f be o locally bounded function f : R — R. The spectrum of singularities of f
(denoted by dg(H)) is the Hausdorff dimension of Ey. (By convention, dim(0) = —oc.)

To perform the multifractal analysis of a function means to determine its spectrum of singularities.
The terminology “multifractal” refers to the fact that we have to deal with an infinite number of
(potentially) fractal sets, the (En)gyes+; however, there is no precisc mathematical definition of what
a multifractal function is; a common view is that a function is multifractal if the support of dy. which
is {H : Ey # 0}, contains at least one interval [a,b] with a < b. By contrast, a function f is called
monofractal if Supp(dy) is reduced to one point. A simple example of monofractal function is given by
the devil's staircase associated with the triadic Cantor set, see [17].

The basic problems that we raised concerning the Holder exponent can also be raised for the
spectrum of singularities, for which much less is known. For instance, even if f is assumed to be
uniform Hoélder, we do not know the most general form taken by a spectrum of singularities; very
partial results can be found in [24].

Another collection of problems is raised by the relationships between the smoothness of the Holder
exponent and the possible shapes of the spectrums of singularities; for the sake of simplicity, assume
in the following that d = 1. If f: R — R is a Lipschitz function, then its level sets Ey will either be
empty, or of dimension 0 (as a consequence, for instance, of Theorem 10 in Chapter 6 of [33]) therefore

leading to poor possibilities for the spectrums of singularities:

df(H) =0  on [a‘b]} (19)

= —00 else,

where [a, b] is the range of f. If hy belongs to CB3(R) for 0 < B < 1, then the same theorem implies that
YH, dg(H) < 1— 8. Is this the only a priori condition satisfied by the spectrum of functions whose
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Holder exponent belongs to a Holder class? It would be interesting to obtain precise results relating
the exact smoothness of hy with the possible corresponding spectra.
Two generic results (in the sense of Baire categories) are interesting in this context, see (34] and

references therein:
e Quasi every continuous bounded function satisfies: Yy € Im(f), dim(f~')(y) = 0.
e Quasi every approximately continuous bounded function satisfies: Yy € Im(f), dim(f~!)(y) = 1.

If one picks such functions as Hoélder exponents then the first case leads to the same spectra as (19).
The second case would lead to “full spectra” (satisfying ds(H) = 1 on the range of hy) but only after
checking that approximately continuous functions are admissible Hélder exponents.

It often happens that spectra of singularities have concave shapes. It would be important to de-
termine general conditions under which this property holds; indeed, the multifractal formalism, which
will be described in the next section, is expected to yield the spectrum but, by construction, it can, at
best, only yield its concave hull (since it is obtained as a Legendre transform). Therefore knowing a
priori that the spectrum of a function is concave would be an additional guarantee that the multifractal
formalism can be applied.

Another common shape adopted by spectra is a straight line; for instance, up to now, all examples
of functions having a dense set of discontinuities of the first kind and for which the Holder exponent is

given at every point by (4) have a spectrum of the form
dg(H) = Ah if he[0,1/A], and df(H)= —oco else;

Is this result true in all generality? Or under an additional equidistribution hypothesis of the jumps?
Or for normally convergent Davenport series? A very explicit example that should be checked is the

case of Hecke's functions (3) when s € (1,2), for which the spectrum is only partly known, see [28].

3.1 Recent generalizations

One defines the p-spectrum of a function as the Hausdorff dimension of the level sets of the p-exponent.
Considering the p-spectrum rather that the usual spectrum of singularities is often the right setting when
one considers discontinuous functions; indeed, no a-priori upper bound for the spectrum of singularities
is available for discontinuous functions; but upper bounds for the p-spectrum are available without any
uniform regularity assumption, see (29]. We will see a consequence of this remark in Section 3.5. All
the problems that we mentioned concerning the spectra of singularities can also be considered for the

p-spectrum. It would be important to understand the relationships between the different p-spectra of
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a given, locally bounded function f. For instance, are there global assumptions on f which imply that
these p-spectra are independent of p (at least for p < 00)? The special case where f is a characteristic
function 1q is of particular importance. Another relevant problem is to determine which functions are
the p-spectrum of a characteristic function.

We can define a spectrum of singularities in the abstract setting which we introduced in Section

2.5. As expected, the E-spectrum, which is denoted as d€(H) is simply defined by
dB(H) = dim({z : K (z) = HY). (20)

We do not know if changing the function space E can alter the class of possible pointwise exponents, or
of possible spectra. We would also like to understand which functions have a spectrum which changes
a lot when the underlying space E is changed (we saw that it is the case for characteristic functions)
and which functions have a “robust” spectrum with respect to changes of E. How can one interpret

such differences?

3.2 Stochastic processes

The same measurability problems as for the Holder exponent can be raised for the spectrum of singu-
larities: Under which conditions is dx (H) a measurable stochastic process? Is the mapping X - dx
measurable? However, the situation concerning deterministic spectra is slightly different; indeed, many
processes (or random measures) which have a random Holder exponent turn out to have a determin-
istic spectrum. Here again, this property does not hold in all generality; indeed, the counterexample
(7) also yields a process with a random spectrum. Nonetheless, it would be interesting to obtain weak
general conditions under which a stochastic process has a deterministic spectrum.

The problem of the commutation of the a.s. and the VH seems even more pertinent here: In the
case where dy(H) is a deterministic function D(H), one obtains the spectrume of a.e. sample path if
one shows that a.s. VH, dx(H)= D(H). It is usually much easier to prove that VH a.s., dx(H) =
D(H); of course, this is not sufficient to obtain the spectrum of almost every sample path; it only
yieds the value of dx (H) for almost every H. Nonetheless, I do not know of any example of stochastic
process where one cannot commute the a.s. and the VH in this setting. This commutation is therefore
probably licit under very weak hypotheses. Finding out which ones would spare a lot of pains to
the multifractalists’ community! A more conventional way to tackle this problem is to start with a
standard stochastic process as Holdere exponent; here is a simple example: Let B(t) be a Brownian

motion, a > 0, and B%(t) = sup(a, B(t)); let X, be a random process of Hblder exponent B%(t); then

as. VH >a, dim(Ey)=1/2, (21)
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as a consequence of uniform dimension estimates on the level sets of the Brownian motion, see [43].
However, in most cases, such results are not uniform and only give, for each y, the a.s. dimension of
the set {t : X, = y}. For which processes is the uniform formulation of the result valid? Note that
we are led back here to an old problem concerning the fractal properties of the level sets of stochastic

processes, which was already raised by S. J. Taylor in 1973, see [47].

3.3 Additional properties of Isohdélder sets

In practice, most examples of deterministic functions, or of stochastic processes, which turn out to
be multifractal, share an important additional “universality” property: If Q is an open nonempty set,

denote by d;(H,Q) the spectrum of singularities of f restricted to Q, i.e.
df(H Q) =dim({z € Q: hs(z)=H}).

A multifractal function is universalif d;(H, Q) is independent of 2. It would be important to determine
what is the most general spectrum that can be taken by a universal function. The juxtaposition
argument of [24] cannot be applied in this setting so that no general result is available. One way could
be to construct generic functions in some function space settings and obtain universality properties as
a consequence of genericity. Many stochastic processes which have been studied a.s. have universal
sample paths; is it the consequence of a simple probabilistic property? (One should however keep in
mind the particularly simple counterexample supplied by Poisson processes.)

Additional properties of the isoh&lder sets, and related sets, would be interesting to determine.
In the multifractal analysis of measures (in which one determines the dimensions of the sets where a
measure has a given pointwise dimension), packing dimensions are also determined. In the setting of
functions, very few results have been obtained for packing dimensions (we will mention a few in the
following).

Very often, the sets Fj, = {x : hj(z) < H} have a remarkable property which was discovered
and studied by K. Falconer: They are sets with large intersection, see [18]. It would be important to

understand why the sets Fjr so often have this very remarkable property.

3.4 Spectrum of composed functions

In Section 2.2, we considered the Brownian motion in time p, where p is a measure carried by R*.
More generaly, one can start with a Fractional Brownian motion B (t), and change its time through
the distribution function f of a multifractal measure p. If p is deterministic, then one obtains Gaussian

processes with a deterministic Holder exponent Bf(t) = BY(f(t)). If u is random, then the process
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needs not be Gaussian any longer. These models have been used as models in finance, see [38] and
references therein. In this case, (10) still holds, but the factor 1/2 is replaced by the order H of the
Fractional Brownian motion. Thus, the spectrum of singularities of Bﬁ’ is given by daﬁq(h) =dp, (h/H).

These models can be complicated by composing a multifractal function (or process) g(¢t) with a
multifractal time-change f(t). In this case there is no general formula for the spectrum of singularities
of go f in terms of the spectra of f and g, because it depends on how the singularities of the two functions
combine. Important subcases are supplied by subordinator time éh_anges (which are increasing processes
with independent and stationary increments, see {5, 6]); for instance, if f is a subordinator and g an
arbitrary Lévy process then an explicit formula for the characteristic function of the composed process
is available, from which one can derive its lower exponent, and thus its spectrum, see [5. 6]. Several
other examples have been worked out by R. Riedi in [44]. However the understanding of the multifractal

properties of composed functions is now at its very beginnings.

3.5 Solutions of partial differential equations

Another problem brings us back to the very initial motivation of multifractal analysis: Recall that it
was introduced in order to determine if the velocity of turbulent flows is multifractal. Therefore an
important mathematical problem is to determine if some PDEs develop multifractal solutions. Right
now, to our knowledge, there is just one such result: Consider the non-viscid Burgers equation in one
space dimension

ou 0 (UQ

g — | — | = = . >
2 2) 0, u(r,0) = uola) (z€R, t30),

which is understood in the limit of vanishing viscosity; assume that the initial condition up(z) is a
Brownian motion; then the solution at time 7" > 0 is a Lévy process without Brownian part of lower
index 1/2, see [7]; therefore Burgers equation is an example of a PDE which, for some monohélder
initial data, develops Holder singularities in such a way that the solution becomes multifractal, see
(26]. This beautiful result is frustrating because of its singleness; as soon as we slightly change the
setting, nothing is known; if we stick to Burgers equation, very natural question are: What happens if
the Brownian motion is replaced by a fractional Brownian motion? (There is numerical evidence that
solutions are still multifractal, see [46], but no mathematical result is available.) One could also consider
deterministic initial values; the Weierstrass functions come to mind as the natural substitutes of the
Brownian motion. One could also investigate generic results in this context: For instance, let us assume
that the initial value is a “generic” function in C*(R) for an s € (0,1) (generic being defined in the
sense of Baire’s categories, or in some of its extensions, see [13, 19, 21]); then, is it true that the solution

of Burgers equation at time T > 0 is generically multifractal? Note however that Burgers equation
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develops discontinuous solutions (shocks) even if the initial condition is smooth. Therefore, in this
case, determining the p-spectrum may be easier than determining the Holder spectrum. The following
a priori Besov regularity estimates were obtained by R. Devore and B. Lucier in [15, 16]: Assume that
ug € L', and that supp(ug) C [0, 1], and let o be an arbitrary positive number and q = 1/(a + 1); if
ug € Bg? then Vt > 0, u(.,t) € By"9. Note however that no conservation law can hold in a Sobolev
or Besov space embedded in C(R); therefore no upper bound for the spectrum of singularities can be
deduced from conservation laws; by contrast, it is the case if the spectrum of singularities is replaced
by the p-spectrum, see |31]. '

Nothing is known either for other PDEs; the most straightforward generalization is the 3-dimensional
Burgers equation which is important because it models the evolution of the repartition of the mass in
the universe, see [48]. Here again, there is strong numerical evidence that monohdlder initial data

(Brownian fields) develop multifractal solution, but no mathematical results are available.

3.6 Other functions

The following remarkable trigonometric series
R(z) = 3 Snrn’s)
n=1
has been proposed by Riemann as a possible example of continous nowhere differentiable function. J.
Gerver proved in 1970 that it is differentiable at some rational points. Since then it has been shown to
be a multifractal function, see [32] and references therein for many additional fascinating properties of

this function. The trigonometric series R can be generalized in 2 dimensions by
1 .
Ralz) = ———sin(mn’z + m%y).
0( ) Z (nQ +m2)a ( y)

Multifractal properties of this function have been investigated by H. Oppenheim, see [41]. However its
spectrum of singularities is not completely known yet. It would be important to investigate simple gen-
eralizations of this Riemann'’s function. For instance, let P(n) be a polynomial with integer coefficients
and Q(n) be an arbitrary polynomial, P(n) and Q(n) being of degree at least 2. What can be said of
the trigonometric series
« sin(mP(n)z)
X Tom
(where 5" means that the sum is taken only on the frequencies n which are not a rooot of Q)7 It
seems that, apart from Riemann’s function, the only results available concern points of differentiablity.
Other trigonometric series (where P(n) and Q(n) are arithmetic functions) are considererd in analytic

number theory; their multifractal properties should also be investigated.
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Another intriguing function for which there is strong evidence that it is multifractal is Minkowski’s
function ?(z), which is a strictly increasing function that maps [0,1] on [0,1] and can be defined as
follows, see (37, 45]: If z € [0,1] is developed as a regular continued fraction

_ 1 1 1
- 2a;~1 - Dai+ar—1 + 9a1+az+az—1 -

z = [0;a1,a2,...,an,...], then ?(z)

4  The multifractal formalisms

4.1 Derivation of the formalism

Multifractal formalisms are meant to allow a derivation of the spectrum of singularities from global
quantities that should, in practice, be computable on signals. Such formulas were first derived by Parisi
and Frisch, see [42]. Afterwards, Arneodo and his collaborators proposed a reformulation using the
continuous wavelet transform, see [3]. Let us present the standard derivation in the context of wavelet
bases.

If f is compactly supported and if p # 0, then the wavelet structure function of f is

i) =27 |l

AEN;
The wavelet scaling function of f is defined, for p # 0 by

<log(>31(psj>)) ‘

7s(p) = liminf og(2-7)

j—+oc

In the past, Theorem 1 has loosely been interpreted as stating that, if the Holder exponent of f is
H, theu the wavelet coefficient of f corresponding to A = A;(zo) will have size |cy| ~ 2757 (it is the case
for cusp-like singularities which behave like A + Blz — 20| near zo) under this assumption, the points
of Holder exponent H brings a contribution ~ 2772~ fP124s(5)i t5 5 (p, §); since X (p, j) ~ 271 P a

standard steepest descent argument yields
7y (p) = inf(d — d;(H) + Hp).
If the spectrum is concave, then this Legendre transform can be inverted and
dg(H) = ;;g(d —ny(p) + Hp), (22)

which is the standard statement of the multifractal formalism used for wavelet-based computations.
However, there are also counterexamples to the assumption that [cy| ~ 272s{z)7 for A = Xj(zo);

the most famous ones being chirps of the form |z — zo|®sin (1/|z — 1015), with &, 8 > 0 for which, if
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A= \j(xo) then ¢y = 0(27) Vy > 0, see {2, 30]. Thus a safer way to derive the multifractal formalism
(since it does not make any assumption on the nature of the Holder singularities) is to base the structure
function on the wavelet leaders instead of the wavelet coefficients. Therefore, we define, for p # 0, the
leaders’structure function and the corresponding leaders’scaling function as, respectively

(o221

Ag(p,g) =2 Z[dﬂ, and 7s(p) = liminf og(2-7)

AEA; oo
The same argument as above yields a multifractal formalism based on the wavelet leaders

df(H) = inf(d — 74(p) + Hp). (23)

inf
p#0
The heuristic argument used in the derivation of the multifractal formalism is backed by several math-

ematical results: For instance, one can prove that, for any uniform Hoélder function,

dy(H) < inf (d = 77(») + Hp), (24)
peEX
see [27] (there exists a similar bound using 7y (p), but it is far from being as sharp, and, in particular, the
infimum there does not bear on all values of p see [24]); (23) can be shown to hold in many situations
where (22) is wrong; apart from cases where chirps come up, a striking example in dimension 1 is
supplied by the FBM of order a where (22) yields a wrong spectrum

dH) =1-H+a if Hela,a+1],

= - else;
whereas (23) yields a.s. the right spectrum

dH) =1 if H=a,

= -0 else.

It would be interesting to check this difference on other multifractal processes such as Lévy processes,
random wavelet series and more general Gaussian processes.

The use of dy is reminiscent of the wavelet mazima method initially introduced by S. Mallat and
used by A. Arneodo E. Bacry and J.-F. Muzy in the context of multifractal analysis, see (3]: One

computes the continuous wavelet tranform of f

Cylab) = a/f(t)w (%) dt

which is a function defined in the upper half plane {(a,b): a > 0, b € R}. For each scale a, one spots
the local maxima of the functions b — |Cy(a, b)| and the partition function is based on the values of the
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continuous wavelet transform at these local maxima. The main differences between these two methods
are the following: In the wavelet maxima method, the spacing between the local maxima need not be
of the order of magnitude of the scale a or even be regularly spaced; therefore, the scaling function
thus obtained can differ from 74(p) (see [24] for counterexamples). It follows that no mathematical
result similar to (24) is expected to hold for the wavelet maxima method. However the wavelet maxima
method has been successfully used in many situations, see |1, 3]. Obtaining mathematical results
concerning the validity of the multifractal formalism in this setting is an important challenge. Note
that, if one is interested in the p-spectrum, using Theorem 2, the multifractal formalism can be based
on the || Sy(j,xa) ||p instead of dy. More generally, if (18) is shown to be a characterization of the
condition C%(xzg), then the multifractal formalism can be based on the Af(z‘o) in order to recover
the E-spectrum. Upper bounds for spectra can be recoverd by the same argument as in the Holder
exponent setting, see [27] for instance; all other questions concerning the spectrum of singularitie can

be raised in this setting.

4.2  Stochastic processes

The multifractal formalism can be tested on arbitrary functions and, in particular on sample paths of
stochastic processes {or random fields for d > 1). However. in this case, a variant is often used; indeed
the quantities ¥y (p, J) and As(p, J) can be replaced by E(Jca”) and E(]dx|?), assuming of course that
these quantities do not depend on the choice of A € Ay, which is expected to be true under some
ergodicity assumption on the stochastic process considered. Of course, a multifractal formalism based
on such quantities yields a deterministic spectrum, so that their use is connected with the problem
already mentioned of understanding when the spectrum of singularities of a process is deterministic.
What are the relationships between the multifractal formalism based on cxpectations and the standard
one based on sample paths? Can one obtain, in the context of expectations, the same results as above

(upper bounds for the spectra, conditions of validity for the multifractal formalism).

5 Generic results

Multifractal formalisms are not expected to hold without additional assumptions, since many types of
counterexamples are easily constructed. However, a key question is to determine if their validity is a
consequence of additional properties of the function considered (and therefore is quite exceptional) or
if it is a “generic” property which holds for “most” functions in some sense.

Up to now, the mathematical results mostly pointed in the first direction; the validity of the multi-

fractal formalisms was shown to hold for specific models; in most situations, the additional properties
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were a kind of selfsimilarity (being understood in a very loose way: It could be exact or approximate,
deterministic or stochastic). Recently, the second path started to be explored and several generic results
of validity of the multifractal formalisms were obtained. In order to explain in which settings, we first

have to give the “function space interpretation” for the scaling function.

Definition 8. Let s > 0 and p > 0; 4 function f: R? — R belongs to O;(Rd) if and only if f belongs
to LP (or to the real Hardy space HP when p < 1) and if 3¢ such that

Vi>0, 279 ) jdyP < C27 (25)
AEA;

When p > 0, the information given by the scaling function n(p) for p > 0 implies that Ye > 0,

Vp > 0, f € O0P)=9/pp  therefore f belongs to the function space ﬂp‘ooO("(”)“‘)/”“" Since this
function space can be written as a countable intersection of quasi-Banach spaces, it is a complete
quasi-metric vector space. Several notions of genericity have been introduced in such spaces and the
problem of the generic validity of the multifractal formalism can be raised for each of these settings.
The first notion of genericity that was investigated (both historically and in this context) is supplied
by Baire categories. Recall that Baire’s category theorem states that, if E is a complete metric (or
quasi-metric) space, every countable intersection of open dense sets is dense. If a property P(z) holds
(at least) on a countable intersection of open dense sets, it is said to hold quasi-surely. Note that
a quasi-sure property P does not necessarily hold on a large set; indeed, in R¢ a quasi-sure property
may hold only on a set of vanishing measure (and even of vanishing dimension). In R?, the notion of
“Lebesgue almost everywhere” offers a much more natural framework for generic properties; indeed,
the generic sets are obtained as the complements of the measure-zero sets, for a “canonical” measure
which is both o-finite and shift-invariant: The Lebesgue measure. Therefore, a natural question is to
wonder if such a measure also exists in an infinite dimensional Banach spaces. Unfortunately, the answer
is negative: There does not exist a o-finite translation-invariant measure in any infinite dimensional
normed space. However, this remark does not kill any hope for an infinite-dimensional extension of the
notion of translation-invariant “Lebesgue measure zero”; indeed, let us consider the following standard

characterization of the Lebesgue measure, see (13, 21].

Lemma 3. In RY, a Borel set S has Lebesque measure zero if and only if there ezists a compactly

supported probubility measure p such that Vz € R?  pu(x + S) = 0.

The characterization of the sets of vanishing Lebesgue measure supplied by Lemma 3 does not refer
explicitely to the Lebesgue measure; therefore it can be turned into a definition in infinite dimension
spaces; the sets thus defined are called Hear-null, and the notion of genericity that it yields is called

prevalence. The following definition was introduced by J. Christenssen [13].
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Definition 9. Let E be a complete metric space. A Borel set A C E is Haar-null if there ezists a
compactly supported probability measure p on E such that

Ve e R pulz+ A)=0. (26)

A subset A of E is Haar-null if 4t 4s included in a Haar-null Borel set. The complement of a Haar-null
set is called a prevalent set. If (26) holds, the measure u is said to be transverse to A. Almost every
element of E satisfies a property P if the set of elements satisfyir'ig‘ P is a prevalent set; equivalently,

we will say that P holds almost everywhere in E.

The basic properties of prevalence and several applications are detailed in [13, 21| and we refer
to them for additional information. The following result describes the prevalent Holder regularity of

functions of OF when s > d/p (which coincides which the space B,™ in this case).

Theorem 3. Let s > d/p; the Hélder exponent of almost every function f of the space Oy takes values
inls—d/p,s] end VH € [s — d/p, s], dj(H) = Hp— sp+d; furthermore, for almost every x, hy(z) = s.

Let o be an arbitrary given point in RY, then, for almost every function in O3, hy(xo) = s —d/p.

Several extensions of this result have been proved, see {19]. However no result exists for “true”
oscillation spaces (i.e. when they do not coincide with Besov spaces) or, a fortiori for intersections of
oscillation spaces. Therefore, the problem of the generic validity of the multifractal formalism for p > 0
remains open, either in the Baire setting or in the prevalence setting. Of course the same problems can
be raised for the p-spectrum, or in the more abstract se.tting of (20).

One drawback of prevalence is that it is adapted only to a vector space setting (or, at least, a group
setting). Sometimes, the natural setting is not a vector space: One would like generic properties for
characteristic functions; in that case, the same problems as above can be raised, but only for Baire
genericity. In worse cases, the natural formulation of the problem does not supply a topology; here is
an example: Can one obtain generic results of multifractality if the a priori information available is the

scaling function including the negative values of p 7
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