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Abstract: We propose an automated algorithm based on Convolutional Neural Network (CNN) for the detec-
tion of peculiar objects in large databases using their spectral observations. A convolutional neural network
is a class of deep-learning algorithms which allows the detection of significant features/patterns in sequential
data like images, audio, time-series etc. by applying convolutional neurons (kernels) along the sequence. For
detecting unusual spectra, we use eight-layer deep convolutional network with autoencoder architecture on ∼
60,000 spectra collected from the Sloan Digital Sky Survey. The training of the network is done in an unsu-
pervised manner. We show that the trained network is able to retrieve the spectra of rare objects from a large
collection of spectra. Such algorithms can easily be rescaled to other surveys and therefore can serve as a po-
tential component of the data reduction pipelines for automatically detecting spectra with unusual features and
recovering defective spectra.
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1 Introduction
Large-scale spectroscopic surveys, such as the Sloan Digital Sky Survey (SDSS, York et al. 2000)
and LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope, Cui et al. 2012), con-
sist of an enormous number of imaging and spectroscopic observations. The latest data release from
SDSS, DR 15 (Aguado et al. 2019), contains about four million optical spectra for various astro-
nomical objects. Similarly, the LAMOST survey provides about 700,000 spectral observations in its
current data release 6. After obtaining these spectroscopic observations, one of the primary tasks is
to classify them. This is performed by the survey specific data-processing pipelines which broadly
classify spectra and assign a class (‘STAR’, ‘GALAXY’ or ‘QSO’) depending upon the type of object
which they belong to. These classes are referred to as primary classes. A further sub-classification
and spectral analysis is also performed in each class by these pipelines. However, the huge amount
of data generated by such survey programs prompts the application of machine-learning (ML) and
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deep-learning (DL) algorithms for analysing data more efficiently in lesser time. For example, Ball et
al. (2004) demonstrate the use of supervised Artificial Neural Network (ANN) for deriving morpho-
logical class, spectral type and redshift for the galaxy photometric data from SDSS DR1. Sánchez
Almeida et al. (2010) use unsupervised k-means clustering to classify SDSS DR7 galaxy spectra into
17 major classes. Similarly, Parks et al. (2018) have developed and applied a CNN model to de-
tect quasar spectra with strong Lyα absorption and characterize them. They have applied the trained
model on quasar spectra from SDSS DR5 and DR7. Busca & Balland (2018) use CNN for the clas-
sification and redshift estimation from quasar spectra obtained from the BOSS survey (Dawson et al.
2013) and achieve the human-level accuracy. The application of these algorithms does not only result
in a good classification and parameter estimation models but also provides the catalogue of interesting
objects from these surveys (Si et al. 2014; Brescia et al. 2015; Li et al. 2018; Barchi et al. 2019).

Since the scope of such surveys is not limited to any specific kind of object, therefore their
databases are a rich source for interesting peculiar objects. The observational signatures (e.g. photo-
metric images, spectra, light-curves) of such sources will drastically differ from the rest of the known
sources. These are also referred to as ‘outliers’ or anomalous objects. Discovery of outliers offers the
opportunity to explore the unknown phenomena and understand the science behind their characteris-
tic behaviour. Other than the applications mentioned in the previous paragraph, ML/DL techniques
prove to be very useful in mining outliers also from large databases.

Detection of outliers in astronomy has been done in various ways, e.g. probabilistic and statistical
approaches (Henrion et al. 2013), distance and dis-similarity in the feature space (Agnello 2017),
PCA based techniques (Dutta et al. 2007), and classification based (Nun et al. 2014) to name few. In
this work, we use the deep CNN (DCNN) with the autoencoder architecture for detecting anomalous
objects using optical stellar spectroscopic data from SDSS. DCNN is a type of unsupervised approach
which is trained to learn how to encode the input features into a smaller dimensional space and
reconstruct (decode) the input features from the data in the reduced dimensional space. Discrepancy
in the reconstruction is considered as a measure of outlierness and used to identify the outliers.

The paper is organized as follows: In Sect. 2, we describe the process of obtaining the data from
SDSS. In the next section, Sect. 3, we provide a brief overview of the technique used for detecting the
anomalous spectra. Finally, we present our results in Sect. 4 followed by a conclusion and discussion
in the last section, Sect. 5.

2 Data
For this work, the spectral observations are acquired from SDSS DR 13 (Albareti et al. 2017)
database. All the spectroscopic observations under the SDSS program are passed through a data
reduction (spec2d, Stoughton et al. 2002) and processing pipeline (spec1d, Bolton et al. 2012)
which associates each observation to the primary spectroscopic class, either ‘STAR’, ‘GALAXY’ or
‘QSO’ for star, galaxy and quasar respectively using template matching and χ2−minimization. The
pipeline also computes instrumental and astrophysical parameters like signal-to-noise ratio (SNR),
flux in different photometric bands, redshift, error and flag on redshift estimate etc. Each observation
labelled as ‘STAR’ is also supplemented with stellar sub-classification, effective temperature, surface
gravity, metallicity.

We query the SDSS DR13 database using Structured Query Language (SQL) for all spectra clas-
sified as ‘STAR’ by setting initial constraints on SNR (median SNR> 20) and redshift warning flag
(zWarning= 0 indicating a good confidence in the pipeline classification) to ensure that we get spec-
tra with good quality and reliable classification. This returns 61,627 individual stellar spectra with
SNR in the range 20-165. The majority of these spectra (∼99%) is classified as one of the seven MK
spectral classes (O, B, A, F, G, K, M) by the SDSS pipeline out of which more than half (∼34000)
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belong to the F-type class only. Assuming that the SDSS classification is done properly, we can
safely assume that our sample is dominated by MK type stellar spectra. A very small fraction of the
downloaded spectra do not belong to the canonical MK classification system like ‘CV’ (cataclysmic
variables) or ‘Carbon’ (carbon stars) etc.

3 Outlier Detection Methodology
We use convolutional neural network (CNN; LeCun & Bengio 1995), also referred to as ConvNet, for
outlier detection. CNNs is a class of deep-learning algorithms inspired by the structure of the visual
system (Hubel & Wiesel 1962; Fukushima 1980, Kuzovkin et al. 2018). The architecture of a deep
convolutional neural network includes multiple layers containing convolutional and max-pooling fil-
ters which are applied on the input one/two/three-dimensional data to extract local features and map
it to the output feature space. LeNet (LeCun et al. 1989), AlexNet (Krizhevsky 2014), GoogLeNet
(Szegedy et al. 2014) are few famous DCNN architectures. Primarily developed for the computer
vision (LeCun et al. 1989), CNNs have also been implemented for various other applications like doc-
ument recognition (LeCun et al. 1998, Ranzato & Tapporo 2007), audio/video classification (Amodei
et al. 2015; Zha et al. 2015), and speech recognition (Graves et al. 2013). In astronomy, CNNs
have been applied for star-galaxy classification (Kim & Brunner 2017), galaxy morphology studies
(Barchi et al. 2019), detecting transits in the light curves of exoplanet host stars (Pearson et al. 2018),
detecting bar-like structures in galaxies (Abraham et al. 2018), to name a few.

Another DCNN architecture which has been extensively applied for the task of anomaly detec-
tion is autoencoder (Rumelhart et al. 1986; Japkowicz et al. 1995; Chong & Tay 2017; Luo &
Nagarajan 2018). Deep autoencoder architecture (also called Stacked Autoencoder) is a combination
of two networks, each having typically four or five layers of neurons. The first set of layers, called
encoding layers, projects the high-dimensional input data to a lower-dimensional latent space (also
referred to as bottleneck). The second set of decoding layers maps the latent space representation
back to the original higher-dimensional space. Since the training of autoencoder does not require a
labelled dataset, therefore it comes under the category of unsupervised method of anomaly detection.
In our case, the input sample is dominated by ‘normal’ spectra, therefore while training, network
weights and biases are fine-tuned to learn the reconstruction only for ‘normal’ spectra. A well-trained
DCNN autoencoder will give higher reconstruction errors for any spectra with abnormal features like
emission lines, observations with defects like improper cosmic-ray correction, poor flux-calibration
etc.

For implementing deep convolutional autoencoder, we use KERAS API in Python with Tensor-
Flow (Abadi et al. 2015) at the backend. We build an autoencoder architecture with 4-layer deep
encoding and 4-layer deep decoding network (Fig. 1).

4 Results: Application on SDSS data
Before supplying SDSS spectra (Refer to Sect. 2) to the autoencoder model described in the previous
section, we normalize each spectrum to 1 at 5550 Å and resample the data every 5 Å wavelength step
to reduce the dimensionality. We use only the 4000 -7200 Å region of the spectrum to avoid the noisy
features at the blue and red ends of the wavelength range. This returns 640 wavelength points for each
spectrum.

We apply the autoencoder architecture shown in Fig. 1 on normalized and pre-processed SDSS
data. For unsupervised training of the network, we split the whole sample in three sets: training,
validation and test set. Out of 61,627 spectra, we keep 55000 for the training plus validation, leaving
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Figure 1: Schematic diagram representing the Deep autoencoder architecture used in this work. Each
operation (convolution/maxpooling/upsampling) is presented as a box. Convolutional layers in the
network uses filters of size 8 (or 8 × 1) with the Rectified Linear Unit (ReLU) activation (Nair &
Hinton 2010). The last convolutional layer after the decoder part uses sigmoid activation (Han &
Moraga 1995) and gives the reconstructed spectrum as the output. The output dimension from each
layer is indicated below the box representing the layer.

6627 spectra for testing the trained network. To minimize the presence of anomalous spectra in
the training, we visually inspect the complete training sample of 55000 spectra and identify 1044
cases with anomalous features. After removing these cases, we are left with 53,956 spectra in the
training sample out of which 15% (8094) are used for the validation, leaving 45,862 spectra for the
training. During each training epoch, we use a batch size of 256 spectra and set maximum number
of training epochs as 1000. For minimizing the loss function (mean squared error) between the input
and reconstructed spectra, we use the Adam optimizer (Kingma & Ba 2014). We also keep track of
the loss function for the validation set after each training epoch and set an early stopping condition
to prevent over-fitting of the model. For the early stopping, we put a condition on the validation loss
function such that if it does not improve beyond 0.0001 for 20 consecutive epochs, the training should
stop. To track the performance of the model, we also check the R2-Score (Glantz 1990; Draper 1998)
after each training epoch. The R2-Score can take values in the range 0-1 and is defined as:

R2 = 1 − SSres

SStot
, (1)

where SSres (sum of square of residuals) and SStot (total sum of squares) are defined as:

SSres =
∑
i

(xi − di)
2,

SStot =
∑
i

(xi − x̄)2.

Here xi and di denote the original and reconstructed flux values. x̄ denotes the mean of the original
flux values at a given wavelength point. For a perfect classification model, the value of R2-Score
should be equal to 1.
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We apply the trained model on 6627 spectra from the test sample. The original and reconstructed
spectra for the three test cases are shown in Fig. 2 with their respective classification provided by the
SDSS pipeline. Residuals between the two series of spectra in the lower panel of the figure show that
the reconstruction matches well the original spectra.
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Figure 2: Comparison between original and reconstructed spectra for three samples in the test set.
Top panel shows original and reconstructed spectra plotted on top of each other whereas the bottom
panel shows the residual (reconstructed−original) between the two. The title of each panel indicates
the classification provided in the SDSS database.

For the test set, we compute the statistics for three types of error, namely mean squared error
(MSE), root mean squared error (RMSE), and mean difference (Original-reconstructed). The statistics
is presented in Table 1. Since the errors are very small, we present the numbers up to 4th decimal
point. The very small average RMSE of 0.0222 ± 0.0079 is indicative of extremely good quality of
reconstruction. As indicated in the table, 75% of the spectra (75th percentile) have RMSE less than
0.0268. We also evaluate the influence of SNR on the RMSE by dividing the test sample in three
SNR bins such that equal number of test spectra (2209) lie in each bin. This exercise results in three
SNR-bins: 20-27, 27-38, and >38 with mean RMSE of 0.0299, 0.0239, and 0.0198 respectively in
each bin. This implies that the lower SNR spectra have larger reconstruction error, but the difference
is not significant as compared to the higher SNR spectra.

We further examine the distribution of these errors using histograms. Fig. 3 shows the histograms
for the three types of errors. The average value of difference, −0.0011, between the original and
reconstructed spectra is very close to zero and most of the spectra lie within ±3σ about the mean.
There are only 86 spectra (∼ 1%) which lie beyond −0.0011± 0.0050. Similarly in the middle panel,
we see that a large number of spectra (more than 5000) fall in the first histogram bin close to 0.00. In
the bottom panel of the figure, we present the RMSE distribution, where there are only nine spectra
which have RMSE > 0.075.

We check nine spectra which are extreme RMSE outliers and plot them in Fig. 4. According to
their SDSS classification, we notice that these spectra are actually peculiar and have been classified
as either cataclysmic variables with emission lines or carbon stars as indicated in the plots. We notice
that out of nine spectra, three show an unusually large spike which points at a possible glitch while
processing these spectra.
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Table 1: Statistical summary of different error estimates.

Statistics Mean squared error Root mean squared error Mean difference
Count 6627 6627 6627
Mean 0.0006 0.0222 -0.0011
Standard dev. 0.0007 0.0079 0.0017
Minimum 0.0000 0.0068 -0.0276
25th percentile 0.0003 0.0168 -0.0019
50th percentile 0.0005 0.0214 -0.0011
75th percentile 0.0007 0.0268 -0.0002
Maximum 0.0372 0.1928 0.0112

5 Conclusion and Discussion
In this work, we introduce a deep convolutional stacked autoencoder network which is capable of
retrieving spectra with peculiarity from SDSS without any supervised training. We show that the
spectra with the maximum reconstruction error are actually not ‘normal’. Network training takes
only 314 seconds for 57 epochs using a single GPU node equipped with three Tesla M 2050 GPU
cards and 24 GB RAM which proves to be very time-efficient. Due to the unsupervised nature of the
outlier detection algorithm, the algorithm is easily generalizable for other spectroscopic surveys, e.g.
LAMOST, and can be used for discovering objects with unusual spectra, for re-calibrating the flux
continuum, and recovering defective spectra. By choosing different thresholds on the reconstruction
error, it can also be used to pick spectra of specific type of objects (say quasar) as well.

Autoencoders are considered to be representation learning algorithms which can extract the im-
portant representative features from the input data and therefore are useful for various applications
other than detection of anomalies. One such important application of stacked autoencoder is in those
situations where the size of the labelled training data set is small and not sufficient enough to train a
supervised deep neural network. For such problems, autoencoder can be used as a semi-supervised
classifier in two phases. The first pre-training phase uses unlabelled large dataset for unsupervised
learning of the representation and adjusting the network weights and biases. In the second-phase,
the reduced representation in the latent space obtained from the encoder network is used for the
supervised classification by adding a new fully connected softmax layer (Goodfellow et al. 2016).
In another work which is under preparation, we demonstrate the potential of autoencoder as semi-
supervised classifier for the stellar spectral classification. Reduced representation can also be used for
regression and clustering analysis. Another variant of autoencoder, called denoising autoencoder can
be useful in cleaning the observed spectra and increasing the SNR.
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Figure 3: Histogram for three error estimates, MSE, RMSE and mean difference in top, middle and
bottom panels respectively.
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