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Abstract

We investigate the first cohomology space attached to the embedding of the
Lie superalgebra XC(1) of contact vector fields on the supercircle S!! in the Lie
Superalgebra of superpseudodifferential operators. Following the paper [11], we
show that this space is four-dimensional with only even cocycles and we calculate
explicitly four 1-cocycles representing non-trivial generating cohomology classes.
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1 Introduction

The classifications of multi-parameter deformations of homomorphisms of Lie algebras
and in particular representations have been studied in many recent papers [1,2, 10, 11].
The first cohomology space classify the infinitesimal deformations, while the obstruc-
tions are living in the second cohomology space. The study of multi-parameter de-
formations of the standard embedding of the Lie algebra Vect(S') of vector fields on
the circle S' inside the Lie algebra DO of pseudodifferential operators on S! was
carried out in [11]. In this paper we address ourselves to the computation of the first
cohomology space of the Lie superalgebra X(1) of contact vector fields on the super-
circle SY! with coefficients in the Lie superalgebra SUDQO of superpseudodifferential
operators on S, It is a first step towards that classification for the natural embed-
ding of £(1) inside SYDO. Namely, we first compute the first cohomology space of
the K(1)-module of tensor densities F = {Fa*, F € C=(S'M)}, where a = dz + 646
is the contact 1-form and the action of X(1) is given by Lie derivatives. The first
cohomology space of K(1) with coefficients in the Poisson superalgebra SP of su-
perpseudodifferential symbols of STDO will be a corollary of the later one, since, SP
has a decomposition to a direct sum of modules of tensor densities. After that we com-
pute the first cohomlogy space in the K(1)-module S¥DO, using the same method as
n [11]. The main result of this paper can be stated as follows (Theorem (6.1)): The
first cohomology space H'(K(1), S¥DO) is four-dimensional and it is generated by the
1-cocycles (6.1): ©g, 04,0, and ©;. In our approach to the proof of Theorem (6.1),
we follow the lines by [11]. That is we apply successive differentials of the spectral
sequences corresponding to the complex C*(K(1), SP)..

Acknowledgements It is a pleasure to thank Valentin Ovsienko who introduced us
to the question of cohomology computations in Lie superalgebras of vector fields. We
also thank Pierre Lecomte and Claude Roger for helpful discussions. The first author
thanks also Pierre Lecomte for his fruitful invitation to visit his service Geothalg at
University of Liege.

2 = Superpseudodifferential operators on S

2.1 Lie superalgebra structure

We first recall the definition of the algebra of superpseudodifferential operators on the
supercircle S'(cf, [4, 9]).
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The supercircle S/ is the superextention of the circle St with local coordinates

(z,0), where x € S* and 6% = 0. A C* function on S*! has the form F = f(z)+2g(z)#
with f,g € C®(S'). The vector field n = % + 95(?- on SU sends F to n(F) =
0
2g(z)+f'(2)6 so that n? = %fn N = 08 The usual Leibniz rule ﬁof =z )+f(x)%

on C*(SY), is replaced on C*(S') by:
noF=n(F)+o(Fy (2.1)

where the involution ¢ is the grading automorphism on C*(S), equal to 1 on the
even part and to —1 on the odd part (in other words, 7 is a superderivation).
The formula (2.1), generalises by induction on m to the graded Leibniz formula

nmoF = Z o R ) )™ (2.2)

for all integers m > 0. where the supersymmetric binomial coefficients (J'), are defined
bv:

%]

™) ;,3] ) if kis even or m is odd
ks = Rl
0. otherwise

with [z] is usual denoting the integral part of a real number z, and for [ € Z»p, the
binomial coefficient (J) = z(x —1)---(z —{+1). Let us introduce the superalgebra of
superpseudodifferential operators SYDO on S by:

SYDO={ > Fn** weZ FeCc>(sM),
keZyg

where the composition of superpseudodifferential operators is generated by the graded
Leibniz formula (2.2):

Fn™ o Gn™ = Z(Z’)SFT)’“(om‘k(G))nm‘Ln‘k, m,n € Zand F, G € C=(S'). (2.3)
k=0

As usual, the composition of operators induces a Lie superalgebra structure on STDO
with the super-commutator defined on homogeneous elements by:

[A,B]=AoB — (- )p(A)p(B)BA

where we let p denote the function of parity.

2.2 Symbols of superpseudodifferential operators on S

In this subsection, we will define the Poisson bracket of superpseudodifferential symbols.
We first list some definitions and notations from [11]. Let P(S?) be the ring of symbols
of pseudodifferential operators on $!

n
= Z a; (m)fzv
—00
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where a;(t) € C*(S'), and the variable £ corresponds to . The space P(S") is a

Poisson Lie algebra with the bracket given by
7]
¢

where the multiplication is naturally defined.
Analogously, we introduce in the super-case, the super-commutative ring

{A(5,€), B, 8} = 2 Az, 5 B(5€) ~ - Alw,€) 5 B(5, ),

23

SP =C=(S'" ® (Cl¢, €Y @ ClE, €7110)

of symbols of superpseudodifferential operators on S

S(@.6,¢) = Y Fule)e* + (3 Gula*)c,

where Fy, G), € C®(S'), ¢ = § + 8¢ corresponds to 7 and @ corresponds to %; with
7 = ¢(* =0and ¢ F¢™ = ¢(F)¢™¢, F € C®°(S™). Then, the multiplication of
symbols is obvious.

We define the Poisson bracket on SP by

(5.7} = g (S) 5 (1)~ 5 (S) ()= (1P (55(5)

where S, T € SP (cf, [7])

1)+ 2(5)55(T)), (24

Sl

3 The space of tensor densities on S

Let us first recall the Vect(S')-module of tensor densities on S!. Consider the one
parameter action of Vect(S') on C*(S*) given by

Lys(f(2)) = X(2)f'(z) + AX'(z) f (), (3.1)

where f € C*°(S') and A € R. Denote F, the Vect(Sh)-module structure on C*(S*)
given by (3.1). Note that the adjoint Vect(S!)-module is isomorphic to F.;. Geo-
metrically, F, is the space of tensor densities of degree A on S', i.e. the set of all
expressions: f(z)(dz)*, where f € C*(S!).

We have analogous definition of tensor densities in the super-case (see [9]). Let
o = dz + 6df be the contact 1-form on S and let k(1) be the Lie superalgebra
of vector fields on S preserving the 1-form . The Lie Superalgebra K(1) is also
known as the algebra of Neveu-Schwarz without central charge or the Lie superalgebra
of contact vector fields on S

Every vector field in K(1) has the form

v = S(F + o)) + n(F)y, F € C=(s™), (32)

We introduce a one parameter action of X(1) on C®(S*) by the rule:
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(—=1)PE)P(G)+) )
gy F) - 1(G) + M (F) - G, (3.3)

where F, G € C®(S%!). We denote this (1)-module by F.
Geometrically, The space §) is no other then the space of all tensor densities on
S of degree A:

£.(G)=F n*(G) +

= f(iL” 9)C¥>‘, f(xa0> € Ooo(gl}l)’ (3'4)

where the action (3.3) of K(1) is the Lie derivative action on tensor densities.

Remarks 3.1. 1) The action (8.3) of K(1) on §» is given explicitly by
1
£2,(G) = L£25(90) + 2bg1 + 2(L03* (1) + (b, 90))8 (3.5)
where F' = a + 20b, G = go + 209, and the operator J; is defined on F\ ® F,, by

S g)==Afg +ugf'.

As a Vect(S')-module (i.e. b= 0) the space of tensor densities F» is isomorphic
to Fr@ F, +1s which is the Zy-grading of §x. In particular, the Lie superalgebra
K(1) is isomorphic to F_1 & F_1 as Vect(S?)-module.

1
H
2) The adjoint K(1)-module is isomorphic to the module F_,. This isomorphism
induces a super Poisson bracket on C®(S!') given by:
(_1):0(F)(7D(G)+1)

{F,G}=£,(G)=FG' -FG+ 5

n(F) - n(G). (3.6)

4 The structure of SP as a £(1)-module

The natural embedding of K(1) inside S¥DO given by the expression (3.2) induces a
K(1)-module structure on S¥DO. Analogously, we have a K(1)-module structure on
SP given by the natural embedding of K(1):

T Up %(F—i— a(F)¢ +n(F)C. (4.1)

The Poisson super-algebra SP is Z-graded, where we give z, § the degree zero and &, ¢
the degree one.
Then we have

SP=p, 5P (42)

Where’ énez = (@n<0) @anﬂ and SP” = {Ff—n + Gé'—n—lg’ F) Ge COO(SHI.}} is
the homogeneous subspace of degree —n.

Each element of S¥YDQO can be written as

A= Z(Fk + G M,

kezZ
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where Fy, G € C®(S'). We define the order of A by
ord(A) = sup{k; F,, # 0 or Gy # 0}.

This definition of order equips S¥DO with a decreasing filtration as follows: let us set
F, = {A € S¥DO, ord(A) < —n}

where n € Z. So one has
LCF,,CF,C.... (4.3)

This filtration is compatible with the multiplication and the super Poisson bracket,
that is, for A € F, and B € F,,, one has Ao B € Fpr, and {4, B} € F,, 4,1, Where
we identify SP with SUDQ. This filtration makes STPO as an associative filtered
superalgebra. Moreover, this filtration is compatible with the natural action of K(1)
on SYDO. Indeed, if vp € K(1} and A € F,, then

vp.A = [UF,A] cF,.

The induced K(1)-module on the quotient F,/F,,; is isomorphic to the K(1)-
module 8P,. Therefore, the X(1)-module on the associated graded space of the filtra-
tion (4.3), is isomorphic to the graded K(1)-module SP, that is

SP ~ @nean /Fnt1.

Proposition 4.1. As a K(1)-module we have

SP =~ 69 (n © Bpes)

Proof. The lC(l)—module SP, of the grading (4.2) has the direct sum decompositionv
of the two K(1)-modules, SP,} and SP,2, defined by
SP) ={(F +o(F)ET+n(F)E™7¢, FeCX(S™)} - (44)

and
= {Fe¢( - 20F¢™, F € C®(S"M)}. (4.5)

The action of (1) on SP,! is induced by the embedding (4.1) as follows:

vr - (5(G+o(G)E™ +(G)E™0)

{r{vr), (G+o(@)ET™ +n(G)E1¢}
(£7(G) + o(Lr (GNET + 0L (G)ETIC.

i

I

The natural map ¢; : F, — SP,' defined by
Q1(F) = (F +a(F))" +n(F)E™,

provides us with an isomorphism of (1)-modules.
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The action of (1) on 8P, is given by
vp - (GETPTIC - 20GE™™) = {m(vp), GETI( — 20GE™}

1
n+z

= & G)Eic - b (G)e.
The natural map 7 : §, 1 — SP,? defined by:

p2(F) = FEI( ~ 20F€,

provides us with an isomorphism of X(1)-modules.

5 The first cohomology space H(K(1), SP)

In this section, we will compute the first cohomology space of K(1) with coefficients
in SP. To do this, we first recall some fundamental concepts from cohomology the-
ory ({6]).

Let g = go @ g1 be a Lie superalgebra acting on a super vector space V = Vy @ V.
The space Hom{g. V) is Zs-graded via

Hom(g. V), = @acz, Hom(ga, Vass); b € Za. (5.1)

Let Z'(g. V) = {c € Hom(g. V): ¢([g. h]) = g-c(h) — (—=1)P9PP h.c(g), Vg, h € g}
be the space of 1-cocycles for the Chevalley-Eilenberg differential. According to the
Zy-grading (5.1), each ¢ € Z'(g. V'), is broken to (c'.¢") € Hom(ge, V) ® Hom(g,, V)
subject to the following three equations:

i

(Ey) (91, 92}) — 91.¢'(g2) + g2.¢'(g1) 0, 91,92 € 9o

(B2)  "(lg-h] = g.¢"(R) + h.c'(g) = 0, g€ghem (5.2)
(E’J) Cl([hy hz] _ h}C”(hQ) - hQC”(hl) = O, hl, h2 [ g1.

In the sequel let us consider the Lie super algebra (1) acting on Fx. The first
cohomology space H*(K(1),5») inherits the Zo-grading from (5.1) and it decomposes
to a odd part and a even part as follows:

HYK(1),$) = H(K(1),$:)0 ® H' (K1), E)1.
We calculate each part independently. The following proposition is the main result of
this section:

Proposition 5.1. 1) The first cohomology space HY(K(1),Fx)o has the following

structure:
R24ifA=0
0 otherwise.

HC(), o = {
The space H'(IC(1),Fo)o is generated by the cohomology classes of the 1-cocycles

1 1
eolvr) = Z(F +o(F))+ §F and ¢ (vr) = 7*(F) {(5.3)
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2) The cohomology space

0 otherwise.

HYK(), 8o = { PA= 33

It is spanned by the non-trivial cohomology class corresponding to the 1-cocycle

afor) =(F) A =7, 6.4

and 5
cs(up) = n°(F) if A= 5 (5.5)

To prove this proposition, we will need the following-two results: -

Proposition 5.2. [6] The space of first cohomology of Vect(S') with coefficients in the
space of tensor densities § has the following sructure:

R?2 |, ifa=0
Hi(Vect(SH); F)=¢ R . ifA=1or2 (5.6)
0 , otherwise

It is spanned by the classes of the following non-trivial 1-cocycles:

;BG(f(x)zi—> — f{z) and 31(f\r)z—> — F(2), if A =0.
,:32(]"(9:)%) ~— fa). ifA=1and (5.7)
H(f@)w) = £/@), Fr=2

Moreover, we have the fellowing lemma

Lemma 5.3. Let Cy = (Coo.C11) be a even 1l-cocycle from K(1) to Fx. where Cog :
Vect(S') — Fy and O« Fi — Fyyy are given by the grading (5.1). Then, if Cqo
is a coboundary over Vect(Sl) then, Cy is a coboundary over K(1).

Proof Recall that a l-coboundary of Vect(S') with coefficients in F) has the form
cla(z)Z) = L’*(x) o (f) for some f € Fy. Now let Coo(vr) = [,’\(z) o {f) for some

fE€Frbea Coboundary where F = a(z) + 26b(x). If we apply the equatlons (E3) and
(Fs) from (5.2) to Cy, we will obtain Cy1 (F) = 20J1(b(x), f) and then, Co(vr) = £3.(f)
is a coboundary of K(1). O

Remark 5.4. We have the same Lemma for odd 1-cocycle Cy = (Cn, Cio), where
Cy & Vect(SH) — Fasl and Cyo: Fi — Fa.
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Proof of Preposition 5.1. Since the space of 1-cocycles from K(1) to F is Zo-graded,
we first assume that C is a even non-trivial 1-cocycle. According to the Zs-graduation
(5.1) of even cocycles , C = C’ + C” where the linear maps C’ : Vect(S!) — F, and
c” .7:% — Fyp 1 are the homogenous parts. The equation (E;) from (5.2), implies
that C’ is a 1-cocycle of Vect(S!) and the lemma (5.3) implies that C” is non-trivial.
By proposition (5.2), C' is cohomologous to one of the cocycles (5.7). To compute C”,
we apply the equations (E3) and (F;) from (5.2) to the cocycle C. We have solutions
only if " = By or C" = (3; and we obtain that C is one of the cocycles ¢p or ¢;.

Next, if C' is odd, the same arguments show that (F,) and (E3) are compatible if
and only if C' = 8y or ' = 33, and then we obtain ¢; and c3. O

The first cohomology space of K(1) with coefficients in the space of symbols §P
inherits the grading (4.2) of 8P, so it suffices to compute it in each degree. Combining
propositions (4.1} and (5.1), we obtain the main result of this section, that can be
stated as follows:

Theorem 5.5. The first cohomology space of K(1) with coefficients in the space of
symbols SP is four-dimensional with only even 1-cocycles. It is spanned by the classes
of the following non-trivial 1-cocycles

Colvr) = 3(F+o(F)+3F,
Cilor) = (P,

_ (5.8)
Colvp) = adi(n(vr))€™*C and
Ca(vp) = adi(m(vr))E~*C.
where ad¢(n(vp)) = {¢, 7(vF)} with m is the map (4.1) and { = 6 — 6¢ (22 =0).

Proof. According to propositions (4.1) and (5.1), the cohomology space of X(1) with
coeflicients in &P, has the following structure

R , ifn=0
CHYK(1),8P,)={ R , ifn=1 {(5.9)
0 , otherwise.

In the case n = 0, the cohomology space H'(K(1), 8P;) is generated by the non-trivial
cohomology classes of the cocycles Cp, Cy and Cy corresponding to the cocycles cg, ¢;
and ¢y of proposition (5.1) via the isomorphism in proposition (4.1). They are given
by
~ 1 ~1 1 -1
Cofvr) = 5(F+o(F)+n(F)E¢ ~ n(F - a(FE), |
Ci(vp) = ad;(m(vp))é~! and (5.10)
Calvr) = adi(m(vr))§~%.
In the case n = 1, the cohomology space H'(X(1), SP;) is generated by the non-
trivial cohomology class of the cocycle Cs corresponding to the 1-cocycle ¢; and it is
given by
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Cg('UF) = adg(’}T(UF))f_SZ. (511)

As a l-cocycle of SP, Gy is cohomologous to Cy. Indeed, Cy — Co = ad Log-3¢ (’R’(’UF))

and C, = C, + '21'02. This completes the proof of the theorem.
O

6 The first cohomology spéce HY(K(1), STDO)

In this section, we will compute the cohomology space of K(1) with coefficients in
the filtered module STDO. A straightforward but long computations, using spectral
sequences asscciated to Grad(SWDO) [8] and Theorem (5.5} leads to the following

theorem:

Theorem 6.1. The first cohomology space H}(K(1), SYDO) of K(1) with coefficients
in the space SYDO is four-dimensional with only even 1-cocycles. It is spanned by the
classes of the following non-trivial 1-cocycles

1 1
@0(’[117‘) Z(F+ O'(F)) + 'QfF,

©1(vr) = n(F),

o0
=2 __ =3 _
62(UF) — Z(_l)n - (2n+1(F)) 2n+l+z n—'—1,'727z—+-2(f;v),,7 2n7
n=1
o
\ PN e P _ _ .
Os(vp) = Z(—l) Tg(n2 +1 2n+1+z 2n+2(F)’)7 2n’
n=2 o n=2
6.1)
wheren— 96

Proof. Since the cohomology space H(K(1), S¥DO) is obviously upper-bounded by
HY(K(1), 8P), we have to find explicit expressions for the non trivial cocycles gener-
ating the former cohomology space. To construct these cocycles, we follow the lines
in [10] based on the computations of successive differentials of the spectral sequences
corresponding to the complex C*(K(1), SP). So, we consider a cocycle with values in
SP, but we compute its boundary as it was with values in SUDO and keep a sym-
bolic part of the result. This gives a new cocycle of degree equal to the degree of the
previous one plus one. We iterate this procedure, we establish a recurrent formula
between successive terms. The cocycles ¢g and ¢; survive in the same form, we will
denote them ©, and ©; when seen as cocycles with values in S¥DO. The previous

procedure applied to ¢y and c3 leads to the cocycles 85 and ©3.
|

Remark 6.2. The parts of ©; and ©3 which are maps from Vect(S!) to ¥D(SY) in
the grading (5.1) are a multiple by a coefficient of the 1-cocycles 62 and 03 in [10].
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