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AsstracT.! Let A(X) be a closed subspace of the space of all scalar functions on a
Hausdorff space X which are bounded on all compact sets, endowed with the compact-
open topology. Our main result — with a simple, short proof — is that, for a mapping
f from X into a locally convex space E which has the property that the image f(K)
of each compact set K C X is contained in an absolutely convex weakly compact set,
éof € A(X) for each ¢ in a separating set § C E’ implies €/of € A(X) for each &’ € E'.
This is related to results of Grosse-Erdmann [7], [8] and Arendt, Nikolski [2] for vector
valued holomorphic functions.

Weak conditions for holomorphy of a vector valued function have recently found renewed inter-
est. In his Habilitationsschrift [7], K.-G. Grosse-Erdmann showed that it suffices to test weak
holomorphy of a locally bounded function with values in a locally complete locally convex space
on the elements of a separating subset in the dual of the range space; his proof was completely
elementary, but rather lengthy. The result was utilized quite prominently (at two different
points) in our article [5].

More recently, W. Arendt and N. Nikelski [2] gave a short proof of Grosse-Erdmann’s result
for functions with values in Fréchet spaces, using the theorem of Krein-Smulian; also see the
appendix of [1]. Finally, K.-G. Grosse-Erdmann [8] presented a new approach, based. on the
principal idea of [7], but making use of functional analytic tools to shorten the proof.

In the present short note we show with a very simple proof that, for a vector function with
the property that the range of each compact set is contained in an absolutely convex weakly
compact set, it suffices to test holomorphy on the elements of a separating subset of the dual
of the (locally complete locally convex) range space. That is, we have a somewhat stronger
hypothesis on the mapping to start with and do not recover Grosse-Erdmann’s result unless
the range space is semireflexive. Moreover, contrary to Grosse-Erdmann we also make use (as
Arendt and Nikolski did) of the Dunford-Grothendieck theorem on the equivalence of holomor-
phy and weak holomorphy. But our present theorem really reads as follows:

1Keywords: weak holomorphy, separating subset, locally complete, kg-space.
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Let A(X) e a closed subspace of the space of all those scalar functions on a Housdorff space
X which are bounded on each compact set, endowed with the compact-open topology. If E is a
locally conver space and f : X — E is a function such that for each compact subset K of X
there ezists an absolutely convez o(E, E')-compact subset C = C(K) of E with f{K) C C and
for which esf € A(X) holds for all € in a separating subset S of E', then €'of € A(X) holds
for each e’ € E'.

Thus, our theorem applies not only to holomorphic functions, but also to harmonic functions,
to solution spaces of hypoelliptic linear partial differential operators etc. The short proof relies
on the method of linearizing non-linear vector valued functions which is related to Schwartz’s
e-product and to the use of preduals in infinite dimensional holomorphy. In our applications
of Grosse-Erdmann’s theorem in [5] it was already known that the vector valued function was
better than just locally bounded, and we believe that in many applications it is clear that the
function satisfies the stronger hypothesis of our theorem.

The theorem and its proof

In the sequel, X will always be a Hausdorff topological space and E a locally convex space
(which is by definition Hausdorff). FB(X, E) resp. FP(X, E) denotes the linear space of all
the mmappings f : X — E such that f(K) is bounded resp. precompact in E for each com-
pact subset K of X. FR(X, E) is the linear subspace of FB(X, E) of all mappings with the
property that for each compact K C X there exists an absolutely convex o(E, E')-compact
subset C = C(K) of E such that f(K) is contained in C. Note that if £ is quasicomplete,
FR(X,E) is precisely the space of all functions f from X to E for which f(K) is relatively
o(E. E')-compact for each compact K C X; in this case, any function f from X to E with
the property that ¢/of is continuous for each ¢’ € E' belongs to FR(X, E). If E is the scalar
field (of the real or complex numbers), we write FB(X) instead of FB(X, E). This space will
always be endowed with the topology of uniform convergence on the compact subsets of X.

Lemma. (a) Fiz an arbitrary f € FB(X, E). Then the linear mapping I(f), defined by
(IO = éof Ve eF,

is continuous from the strong dual E; into FB(X). Moreover, the transposed mapping ‘[I(f)]

of I(f) is continuous from FB(X), into the strong bidual E" = (Ep), of E and satisfies

HI(A)(8z) = f(z) € E for each x € X, where §; € FB(X) is the evaluation at the point

I

(b) If f € FR(X, E) resp. FP(X,E), then I(f) is also continuous from E, = E', endowed

with the Mackey topology 7(E', E) (of uniform convergence on the absolutely convez o(E, E')-

compact subsets of E), resp. E}, = E', endowed with the topology of uniform convergence on

the precompact subsets of E, into FB(X).

PRrROOF of (a). It is clear that €/of € FB(X) for each ¢ € E' and that I(f) is a linear map

from E' into FB(X). To show that I(f) is continuous with respect to the topologies mentioned

above, fix £ > 0 and a compact set K C X, and let

U= {g € FB(X); sup|g(z)| < ¢}
2€K
denote the corresponding O-neighborhood in FB(X) for the compact-open topology. By hy-

pothesis on f, f(K) is bounded in E so that V = ¢[f(K)]° is a 0-neighborhood in Ej for which
obviously [I(f){V) C U holds.

To see the formula, fix z € X, f € FB(X, E), and let ¢ € E’ be arbitrary. Then we have
¢ (1(NG:)) = Bl (NI(E) = € (£ (),
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and the formula follows since ¢’ was arbitrary.

A simple modification of the first part of the proof of (a) covers the two cases in (b). O

We mention in passing that much more than the second case in part (b) of the lemma is known.

If FP(X, E) is also equipped with the topology of uniform convergence on the compact subsets

of X and if F is quasicomplete, then the map I : f — I(f) yields a topological isomorphism
FP(X,E) = EzFB(X) = L(E]

pe?

FB(X)),

ef. [3], Corollary 15. Here ¢ indicates Schwartz’s e-product; the subindex e denotes the topology
of uniform convergence on the equicontinuous subsets of E’. If E is even complete, there is
topological equality with the complete z-tensor product EQ.FB{X).

The setting of our main theorem is as follows. Let A(X) be a closed linear subspace of FB(X).
The corresponding space A(X, E) of E-valued functions consists of all mappings f € FR(X, E)
which belong to A(X) weakly; that is, which satisfy ¢/of € A(X) for each ¢’ € E'. In this situ-
ation A(X, E) is automatically a closed subspace of FR(X, E) under the topology of uniform
convergence on the compact subsets of X. Clearly, if A(X) is a subspace of the space C(X)
of all continuous functions on X, then any f € A{X, E) must be continuous from X into

(E.o(E. E").

A subset S of E' is called separating if it separates the points of F or, equivalently, if

ecE, dle)=0VeelS = e=0

Theorem. Let f € FR(X.E) be arbitrary. If €of € A(X) holds for all ¢ in a separating
subset S of E', then f must already be an element of A(X, E).

PROOF. We have to show that €'of € A(X) holds for each ¢ € E'. By the lemma, the linear
mapping I{f) : ¢ — €of is continuous from E. into FB(X), and by hypothesis we have
(H](S) C A(X). With a linear space A{X) we can always pass from S to its linear span, and
hence we may assume without loss of generality that S is a linear subspace. Now by the Hahn-
Banach theorem S separating implies S ¢(E’, E)-dense in E’. But a simple consequence of the
Hahn-Banach theorem shows that then S is also dense in F’, equipped with any topology which
respects the duality of £ and F’. and thus in particular in E.. Hence from {I(f)](S) € A(X)
it clearly follows that [I{F)}(E") C A(X) as A(X) is closed in FR(X). O

The preceding proof does not work for functions f which are only bounded on compact sets
unless F is semireflexive, in which case one can indeed use the strong dual Fj instead of £].

Note that by the theorem, in particular,
AXE) ={f: X — E'; 2 — [f(2)](e) belongs to A(X) Ve € E}

since E is a separating subset of its bidual E”. (Compare with the definition of A(X, E}) on

page 14 of [5].)

We recall that a completely regular Hausdorff space X is called a kg-space if a scalar function

g on X is continuous whenever the restriction of g to each compact subset of X is continuous.

If X is a kgp-space and f is a mapping of X into some completely regular Hausdorff space (e.g.,

into a locally convex space), then f must be continuous whenever the restriction of f to any
compact subset of X is continuous.

Remark. If A(X) € C(X), X is a kg-space and f € FP(X, E) satisfies ¢of € A(X) for all
e’ in a separating subset S of E', then f must already be continuous from X into E.
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To see this, one can use the theorem and [3], Remark 18. Here is a direct argument in which the
theorem is not needed: By the hypotheses, f is clearly continuous from X into (E,0(E,S)).
Note that ¢(F, S) is a Hausdoril topology because S is separating. Now the restriction of f to
each compact set K C X is continuous into E since the topology of E and a(E,S) coincide on
the precompact set f(K) C E. In view of the kp-assumption on X, this implies f continuous
on X.

Concluding notes

Usually some completeness assumption on the range space E is necessary in the applications
of our theorem. E.g., holomorphy and weak holomorphy (in an arbitrary number of variables,
which means including infinite dimensional holomorphy, where ‘locally bounded’ has to be
replaced by ‘amply bounded’ in general) are only equivalent when E is a locally complete space;
ie., when for each closed absolutely convex bounded subset B of E the space Eg = span(B),
endowed with the Minkowski functional of B as norm, is complete, cf. Grosse-Erdmann [8],
Corollary 1. We also refer to [8] for a discussion of the history of results of the type of his
theorem and for applications (e.g., to holomorphic functions with values in sequence spaces,
function spaces and spaces of operators).

Moreover, in most examples A(X) C C'(X) holds. and then one would usually define A(X, E)
in a different way than we have done here, viz. as the intersection of our A(X, E) with the space
C(X, E) of all continuous mappings from X to £. (Our remark singles out a case where this
is not necessary.) This usual definition occurs for instance in [3], [4] and [5]. We refer to [4] for
examples of spaces A(X) to which our theorem applies. The examples include harmenic and
polyharmonic functions as well as spaces of zero solutions of hypoelliptic differential operators
with C'*-coefficients.

It is clear that we have not dealt in this note with the question if f € FB(X. E) must be
continuous if e'of is an element of A(X) C C(X) for each ¢ € E’ (however, cf. the remark).
If the space of vector valued functions can be represented as an e-product. this is a simple
consequence of the formula C(X, E) = EzC(X) (for a kp-space X and quasicomplete E) and
of the fact that the e-product respects subspaces. In case A(X) is a complete nuclear space and
E is complete, the continuity (and usually much more than that) follows from Grothendieck’s
famous “weak-strong principle’ ([9], Chapitre 11, page 80). We refer to Gramsch [6] for a
discussion of related questions. In fact, [6] contains very similar ideas and methods as the
present paper, but it appears that our theorem is not implied directly by the results of [6]. -
Also note that Grosse-Erdmann [8], Proof of Theorem 1, Part (B) pointed out that it suffices
to prove his theorem for Banach range spaces E because then the general case (that F is locally
complete) follows very easily.
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