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Abstract 

Urbanization is a phenomenon that is driven by humans. It has significantly influenced 
biodiversity, ecosystem processes and regional climate. This work explores the relationship 
between seven biophysical variables (NDVI, SAVI, Greenness, Albedo, DBI, NDBI, and 
NDBaI indices), and LST over a period of 30 years (1990–2020), based on remote sensing & 
GIS. A time-series of Landsat images TM, ETM+ and OLI/TIRS data as well as various 
geospatial approaches were used to facilitate the analysis. The findings have revealed that 
urban/built-up areas of Guelma city have increased by (20.76 km2), in contrast to the 
agricultural and forest areas, which have been reduced by (138.26 km2 and 2.7 km2). The 
average temperature of urban setting was (31,43 C°) in 1990, whereas it reached (41,90 C°) in 
2020. The lowest temperature values were observed in forest bodies with (26,55 C°) in 1990 
and (37,78 C°) in 2020. There is a possible rise in LST over time scale owing to the substitution 
of green cover by urban soil areas. Generally, there was a noticeable increase in mean LST of 
10,47 C° for urban areas. The coefficient of correlation between the biophysical indices and 
LST shows that a strong negative correlation exists between vegetation biophysical indices 
(NDVI, SAVI and Greenness) and LST. In addition to this, the urban biophysical indices 
(Albedo, DBI, NDBI, and NDBaI) can effectively retrieve the LST. They were positively 
correlated in all years. DBI and LST have the highest consistently rising positive relationship 
(R = 0,62). This investigation provides us with clear understanding of the impacts that the 
urbanization and biophysical indices have on LST. 

Keywords: Land uses land cover, Biophysical indices, LST, remote sensing & GIS, Guelma. 

1. Introduction 

Urbanization is one of the most important factors triggering a transition in Land Use and Land 

Cover (LULC) (Pal et al., 2017). Change in LULC has been shown to have a major impact on 

climate through various pathways. Those pathways are found to modulate the surface energy 

balance which in turn affects the land surface temperature (LST) leading to changes in the 

region’s micro-climate (Wang et al., 2018; Gogoi et al., 2019; Jain et al., 2017). The Land 

surface temperature (LST) is one of the major biophysical parameters for urban health analysis. 

(Xiao and Weng 2007). The temperature in urban environments and the increasing areas of 
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built-up surfaces is higher than in areas covered by vegetation and water (Carleton et al., 2016; 

Tan et al., 2020). In addition, the surface climate can be affected by changes in urban space and 

removal of vegetation due to urbanization (Oke., 1987; Das et al., 2020). al., 2016; Tan et al., 

2020). This local temperature variation has a negative effect on both people and environment 

as it hinders air quality, increases energy consumption, affects biological control and human 

health (Kikegawa et al., 2003; Grimmond, 2007; Meineke et al, 2014; Plocoste et al, 2014). 

Compared to conventional observation methods which are used at meteorological stations, 

remote sensing tracking of LST provides wide range measurements and good spatial 

consistency. This technique has therefore grown rapidly in thermal environment research (Liu 

et al., 2016; Wang et al., 2018). The use of remote sensing data in conjunction with Geographic 

Information Systems (GIS) is effective in mapping urban areas, modeling urban growth, 

monitoring LULC's dynamic changes; estimating LST (Bhagyanagar et al., 2012; Kimuku et 

al., 2017) and extracting biophysical components (Subrata et al., 2018; Firozjaei et al., 2019). 

In many studies estimating land surface temperature (LST) and urban heat island (UHI) 

phenomena over urban ecosystems, remote sensing methods have been shown to be fruitful 

(Asgarian et al., 2015; Guo et al., 2015; Mohan and Kandya, 2015; Carleton et al., 2016; Das 

et al., 2020).  

Several research have been published to study the relationship between LST / LULC in which 

an increase in land surface temperatures (LST) is considered one of the main effects of LULC 

changes) especially in urban centers (Aboelnour and Engel, 2018; Pal and Ziaul, 2017; Weng 

et al., 2004). The relationships between LST, Normalized Difference built-up Index (NDBI), 

and Normalized Difference Vegetation Index (NDVI) were established using Linear Regression 

(Guha et al., 2018; Ferrelli et al., 2018). Other studies examined the impact of urban biophysical 

composition on LST based on the determination of such biophysical indices as the normalized 

difference vegetation index (NDVI), normalized difference built-up index (NDBI), Normalized 

Difference Water Index (NDWI), Normalized Difference Bareness Index (NDBal), Modified 

Normalized and Difference Water Index (MNDWI), etc. (Sharma et al. 2013; Li and Liu 2009). 

The present study will provide a deep analysis on the relationship between the biophysical 

indices such as (NDVI, SAVI, Greenness, NDBI, NDBal, DBI and Albedo) and LST by the 

integration of Remote sensing data and statistical analysis. For the last 30 years (1990-2020), 

the LULC and LST transformation pattern of Guelma has been analyzed using the temporal 

Landsat TM, ETM+ and OLI 8 data to determine the trend and degree of anthropogenic impact 

on climate due to urbanization. 

Guelma is affected by rapid and massive urban growth which has strongly disrupted the space, 

thus generating profound spatial and environmental transformations (Guechi et al., 2017). The 

local authorities of Guelma have revised the Master Plan for Development and Urban Planning 

(PDAU) in 2013 so as to provide solutions for land availability for the future urbanization of 

Guelma municipality. They have recourse to the inter-communal group of Guelma as part of 

the postponement of urban growth from the municipality of Guelma to neighboring 

municipalities. It included the chief city of Guelma, and the three neighboring communes 

including El Fdjouj; Belkhair and Ben Djarah. The position of Guelma in the center, places 

these communes in its field of attraction. It suffers from the weight of the communes of the 

wilaya in general and the neighboring communes in particular. Due to their proximity to the 

large urban center and containing land with high agricultural potential, the towns of Belkheir; 
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El Fedjoudj and Bendjerrah have not experienced the desired growth. This raises the potential 

to exploit agricultural land and forest for urban purposes. Reducing vegetation and replacing it 

with impermeable surfaces, such as asphalt and concrete, are directly related to urbanization 

factors that have environmental and social consequences (Mitchell., 2011). 

This research objective is to determine and analyze the relationship between urban and green 

biophysical parameters and land surface temperature (LST) variation in the context of 

urbanization from 1990 to 2020 in Guelma, using remote sensing & GIS. 

2. Study Area and Dataset used 

Our case study (Guelma inter-municipal grouping) is situated in the center of Guelma province, 

northeast Algeria, approximately 60 km south of the Mediterranean Sea (36°27′43″N - 

7°25′33″E) and 305 m above sea level (Figure 1). This region occupies a total area of 282,11 

km2 and has a semi-arid climate with cool winters, an average annual temperature of 21.5 ° C 

and an average annual rainfall of 150.3 mm (Aouissi, 2010.). It is possible to distinguish two 

periods in the year, eight months of cold and wet weather from October to May and four months 

of hot and dry weather from June to September. It is a group of four municipalities (the chief 

town of the Wilaya; the municipality of Bendjarah; the municipality of Belkhair and the 

municipality of el Fdjouj). They have a context with an agricultural vocation par excellence. 

The position of Guelma in the center, places these municipalities in its field of attraction. It is 

subjected to the pressure of the municipalities of the province in general and the bordering 

municipalities in particular. 

Figure 1: Location map of Guelma and inter-communal grouping 

The main data sets in this analysis were time series of Landsat images captured by Landsat TM, 

Landsat ETM+ and Landsat Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) 

sensors. The data are presented in Table 1. The selected satellite data was cloud-free. All 
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datasets have been downloaded as a georeferenced data set from the website of the United States 

Geological Survey (USGS) (https:/earthexplorer.usgs.gov). Satellite images were acquired at 

an interval of 10 years and during the same season (the dry season) to prevent phenological 

variability. The Image processing software ArcGIS Spatial Analyst (version 10.5), 

Environment for Visualizing Images (ENVI) version 5.0, and SPSS 22 were used for 

conducting the statistical analysis. 

In this research, after using a radiometric calibration, the fast line-of-sight atmospheric analysis 

of hypercube (FLAASH) was utilized for atmospheric correction in ENVI5.1 software.  Some 

parameters are considered for running FLAASH including satellite overpass time, sensor 

altitude, geographical location, region-related specific atmospheric model, and solar zenith 

angle at satellite pass (Landsat 5, 7 and 8). 

Table 1: Landsat data specification used in the study 

LANDSAT_SCENE_ID SPACECRAFT_ID 
Acquisition 

Date 
UTM_ZONE 

Spatial 

Resolution 

LT51930351990159FUI00 L5_TM 08/06/1990 32 30 

LE71930352000179FUI00 L7_ETM 27/06/2000 32 30 

LE71930352010174EDC00 L7_ETM 23/06/2010 32 30 

LC81930352020159LGN00 LANDSAT_8 19/06/2020 32 30 

3. Research methods 

Figure 2: Flowchart of the research methodology incorporated in the study 

3.1. Land Cover Classification and land use change 
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Remotely sensed data are commonly used for mapping land use / cover maps. Supervised 

technique for classification of Maximum Likelihood (MLC) is employed in this study. MLC is 

the most generally used supervised classification and it is used in a variety of applications 

(Pushpendra, et al., 2014). MLC doesn’t only perform better than the other defined parametric 

classifications but it also considers the variance-covariance within the class distributions 

(Erdas, 1999). Images of the years 1990, 2000, 2010 and 2020 were classified with the software 

ENVI 5.1 so as to obtain land cover distribution. Composite imagery with false color band 

combination of bands (RGB = 543 for Landsat 8, RGB = 432 for Landsat 5TM and Landsat 7 

ETM+) was utilized to obtain better visualization of the urban environments. Four signature 

classes were selected for classification like urban area, forest, agricultural land and bare land. 

Residential buildings, highways, industries, commercial buildings, ands… illustrate the urban 

area. The bare land represents the soil and unused land. The agricultural land represents both 

the areas with and without vegetation. Training areas have been developed by selecting one or 

more polygons for each class. Pixels were taken to be the training pixels for a specific class 

within the training area. Then, Confusion Matrix Using Ground Truth ROIs in ENVI5.0 was 

utilized in this analysis to test the accuracy of the classification of maximum likelihood. The 

Kappa coefficient was also obtained for each year. 

3.2. LST Estimation 

The thermal infrared bands of different Landsat image types (band 6 of Landsat 5 TM, Landsat 

7 ETM+ and band 10 of Landsat 8) (Landsat (7), 2011; Landsat (8), 2015) were utilized to 

estimate LST of the inter-municipal grouping of Guelma. Landsat OLI-TIRS had two thermal 

bands, which are band 10 and band 11. However, band 11 displays striping so only band 10 

was used here. A single window algorithm based on NDVI (Xiaolei et al., 2014) was utilized 

to extract land surface emissivity (LSE). The steps below are employed to retrieve LST from 

thermal images and NDVI images. 

3.2.1. Radiance image calculation

The raw digital number (DN) values of TM and ETM+ have been converted to luminance 

radiation or top-of-atmospheric (TOA) radiance by means of equation (1) (Chander & 

Markham, 2003). 

Where, DN:  is the pixel digital number for band 6, Lmax = 17.04 (mW/(cm2sr·m)) is spectral 

at-sensor radiance that is scaled to QCALmax, Lmin = 0 (mW/(cm2sr·m)) is spectral at-sensor 

radiance that is scaled to QCALmin, QCALmax = 255 is Maximum quantized calibrated pixel 

value corresponding to Lmax, QCALmin = 0 is Minimum quantized calibrated pixel value 

corresponding to Lmin. 

For Landsat OLI-TIRS the equation (2) is used (USGS, 2014). 
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Where, ML, is band specific multiplicative rescaling factor; DN is the pixel digital number for 

band 10; AL is the band specific additive rescaling factor from the metadata. 

3.2.2. Radiant temperature calculation

The following equation (3) was used to calculate radiant temperature using radiance images 

which are obtained from thermal bands (Chander et al., 2009). 

Where, TK, is the temperature in Kelvin (K), K1 is the prelaunch calibration of constant 1 in 

unit of W/ (m2sr·m), K2: is the prelaunch calibration constant 2 in Kelvin. 

3.2.3. NDVI image creation

The NDVI index is a measure of the surface vegetation quantity and vigor. Given that 

vegetation is well reflected in the near infrared part of the spectrum, NDVI has become a simple 

graphical indicator for assessing target vegetation coverage. Several researches focused on 

understanding the LST-NDVI relationship (Lo et al., 1997). The NDVI images were calculated 

with the equation (4). 

Where, NIR and Red are the spectral reflectance of vegetation in the near infrared and Red bands. 

3.2.4. Emissivity calculation

The emissivity is calculated with the following equation: 

Where, ��   is the vegetation proportion which can be derived from the NDVI image based on 

the equation (6) (Xiaolei et al., 2014). 

3.2.5. LST Calculation
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Outputs derived from (3) and (5) were then used as inputs to estimate the LST using the equation 

below. (Jeevalakshmi et al., 2017) 

LST= Tk / (1+ ((λTk)/p) ln ε)  (7) 

Where, λ: is central wavelength (in μm) of the Landsat thermal band, � = 1.438 ∗ 10�� ��

3.3 Biophysical indices extraction  

In order to derive surface biophysical parameters based on Landsat 5, 7, and 8 imagery, separate 

spectral indices were calculated. The biophysical indices were represented in this analysis by 

the normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI), 

the greenness, the normalized difference built‑up index (NDBI), the normalized difference 

bareness index (NDBal), the dry built-up index (DBI) and albedo (Table 2, Fairouz 2019) 

Table 2: Description of the biophysical indices. 

Biophysical indices Formula Source 

NDVI NIR- Red / NIR+ Red Liu et al. (2018), 

SAVI (1+L) (NIR- Red) / NIR+ Red + L Huete, A.R., 1988 

Greenness -0.2941Blue -0.243Green -0.5424Red + 0.7276NIR 

+(For Landsat 8) 0.0713SWIR1 - 0.1608SWIR2 
Liu, Q., 2014 

NDBI SWIR – NIR / SWIR+ NIR Zha et al., 2003 

NDBal SWIR – TIRS1 / SWIR+ TIRS1 Sarma et al.,2015 

DBI (Blue – TIRS1/ Blue + TIRS1)- NDVI Rasul et al.,2018 

Albedo ((0.356*B1) + (0.130*B2) + (0.373*B3) + 

(0.085*B4) + (0.072*B5) -0.018) / 1.016 
Liang, S. 2000 

4. Results 

4.1 Urban LC Classification

The urban land cover classification results in inter-municipal grouping of Guelma from 1990 

to 2020 are shown in Figure 3. The confusion matrices of the classification (Maximum 

Likelihood) were obtained to evaluate the classification accuracy. The details of the accuracy 

assessment are summarized in Table 3. From 1990 to 2020, overall accuracy was higher than 

90%. As stated by (Lea and Curtis., 2010), accuracy-assessment reporting requires the overall 

accuracy to be above 0.9. In this study, it was successfully achieved. The Kappa coefficient was 

also higher than 0.77. Since the accuracy of the classifications was adequate, this was used to 

further analytic studies. 

Table 3: The details of the classification accuracy assessment 
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Year Overall Accuracy 
Kappa 

Coefficients 

08/06/1990 90.88% 0.82 

27/06/2000 95.99% 0.91 

23/06/2010 90.23% 0,78 

19/06/2020 95.12% 0.91 

The spatial LU/LC maps of inter-municipal grouping of Guelma are shown in Figure n°3. It is 

clear that there has been an urban expansion in the inter-municipal grouping of Guelma in the 

last 30 years. This growth is concentrated in the Guelma municipality which is very significant 

compared to the other municipalities. Guelma is regarded as one of the Algerian cities which 

fulfills very important urban functions. Those functions exert an influence on both the adjacent 

communes and even on the rest of the communes of the province. As indicated in the (PDAU 

2013). 

Figure 3: Spatial LU/LC maps (urban, forest, agricultural lands, and bare lands class) of inter-

municipal grouping of Guelma between 1990 and 2020 

To further explain urbanization during the study period in Guelma's inter-municipal 

classification, the areas of different land cover and their changes were calculated and are 

presented in Table n° 4 and Figure n°4. 
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Table 3: Land cover change in inter-municipal grouping of Guelma from 1990 to 2020. 

(Units: km2) 

Figure 4: Urban land cover change in inter-municipal grouping of Guelma from 1990 to 2020 

According to it can be concluded that from 1990 to 2020 there is a rising trend in the urban area 

from 10.06 km2 to 40.88 km2 respectively. However, the area of bare land, agriculture land and 

the forest has decreased. For the bare lands, the area decreases from 12.06 km2 in 2000 to 5.98 

km2 in 2020. For the agricultural land, the surface has decreased from 170.02 km2 in 1990 to 

154.14 km2 in 2020. For the forest, it has decreased from 70.04 km2 in 2000 to 67.34 km2 in 

2020. Based on these findings, we conclude that the urban land cover increase is directly 

proportional to the reduction in green cover especially in the last period. The result of analysis 

is consistent with (Guechi et al., 2017). 

4.2 Relationship between LC class and LST

The LSTs estimated from Landsat images are shown in figure 5, which shows a clear gradient 

between urban areas; bare land; agriculture land and forests from 1990to 2020. It illustrates the 

temperature increase in urban setting in the 1990.This is principally owing to higher radiant 

temperatures in urban surface materials. The results of this analysis are consistent with other 

studies related to rise in LST due to the changing of LULC (Carleton et al., 2016; Tan et al., 
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2020; Das et al., 2020). In contrast, for the years: 2000 and 2010, agricultural land has the 

highest temperature owing to the absence of vegetation. 

The mean temperature values of LST for each class are presented in table 4. 

Figure 5: Mean land surface temperature in inter-municipal grouping of Guelma for 

corresponding years to land cover classification 

Table 4: Mean LST (C°) for corresponding urban land cover 

In 1990, the average temperature of urban settings was 31.43 °C, whereas, in 2020 it has reached 

41.90 °C. Calculating the average of the temperature values for every class has revealed that 

the lowest temperature values were observed in forest bodies with 26.55 °C° in 1990 and 37.78 

°C in 2020. It is found to be the same result of (Aboelnour and Engel, 2018; Pal and Ziaul,2017; 

Weng et al., 2004). 

1990 2000 2010 2020 

Urban 31,43 35,61 33,33 41,90 

Forest 26,55 31,17 27,46 37,78 

Agricultural land 29,75 36,53 33,46 40,80 

bare lands 30,79 37,53 32,83 40,07 
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Figure 6: Mean LST (°C) for corresponding urban land cover 

4.3 Biophysical indices Dynamics

4.3.1 Urban biophysical indices

The spatiotemporal variation of some biophysical indices has been analyzed from1990 to 

2020.The biophysical indices are more dynamic and the changes are visible over the built-up 

area.  

According to figure 7, maximum values of NDBI varied between 509 in 1990 and 125684 in 

2020, while the minimum values varied between 40 in 1990 and 24493.9 in 2020. Also, 

maximum values of NDBal varied between 0.25 in 1990 and 0.35 in 2020, while the minimum 

values varied between -0.68 in 1990 and -0.62 in 2020. For the DBI index, the maximum values 

varied between -0.14 in 1990 and 0.3 in 2020. Finally, the maximum values of Albedo of our 

study area varied between 240 in 1990 and 47905.8 in 2020. 

The analysis of those results indicates that we have recorded an increase in the urban 

biophysical indices; the increase of the urban area generates an increase of the biophysical 

indices values. 
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Figure 7: Composition of urban biophysical indices and their spatio-temporal dynamics 
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4.3.2 Vegetation biophysical indices

Figure 8: Composition of vegetation biophysical indices and their spatio-temporal dynamics 

According to figure 8, the maximum values of NDVI varied between 0.75 in 1990 and 0.59 in 

2020, also the highest values of greenness index varied between 83.17 in 1990 and 72.28 in 

2020. Furthermore, the maximum values of SAVI index varied between 1.12 in 1990 and 0.89 

in 2020.The recorded results indicate that there is a decrease in all the values of the vegetation 

biophysical indices; the decrease of the green cover of our study area from 1990 to 2020 

generates a decrease in the values of those indices. 

It is seen that the urban biophysical indices such as (NDBI, NDBal, DBI and Albedo) which 

designates the built-up area is gradually increasing with different time periods. Consequently, 

the vegetation biophysical indices such as (NDVI, SAVI and Greenness) are gradually 

decreasing in response to built-up expansion. The increasing and decreasing pattern of 

biophysical indices are evidently identified by the maps in Figures 7 and 8, in the period 

between 1990 and 2020. (Subrata et al., 2018) found similar results. 
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4.4 Relationship between Biophysical indices and LST 

In order to determine the relationship between Biophysical indices and LST; 168 sample points 

which were randomly collected from LST, NDBI, NDBal, DBI, Albedo, NDVI, SAVI and 

Greenness images were utilized to perform the appropriate regression and represented in a 

graphic form with a 2D scatterplot in figures 9 and 10. The coefficients of Pearson correlation 

and P values were calculated and presented in Tables 5 and 6. 

Table 5: LST- Urban Biophysical indices relationships from 1990 to 2020 

1990 2000 2010 2020 

R P R P R P R P 

Albedo 0,352** 0,000003 0,192* 0,013 0,308** 0,000049 0,212** 0,007 

DBI 0,651** 1.2786E-21 0,376** 4.9718E-7 0,629** 2,2686E-19 0,629** 2,266E-19 

NDBal 0,504** 3.3512E-12 0,270** 0,000414 0,356** 0,000002 0,587** 1,902E-16 

NDBI 0,651** 2.3477E-22 0,338** 0,000007 0,217** 0,005 0,372** 0,000001 

** The correlation is significant at the 0.01 level (bilateral). N= 168

Table 6: LST- Vegetation Biophysical indices relationships from 1990 to 2020 

1990 2000 2010 2020 

R P R P R P R P 

Greenness -0,728** 5.322E-29 -0,348** 0,000004 -,682** 1,2234E-23 -0, 517** 7,148E-13 

NDVI -0,722** 2.1063E-28 -0,600** 0,024E-18 -0,562** 2,2958E-15 -0,363** 0,000002 

SAVI -0,723** 2.0763E-28 -0,352** 0,000003 -0,562** 2,3197E-15 -0,703** 1,218E-25 

** The correlation is significant at the 0.01 level (bilateral). N= 168 

The impacts of biophysical indices on LST was statistically significant at the P < 0.01 

significance level. Tables 5 and 6.
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Figure 9: LST- Urban biophysical indices correlation from 1990 to 2020 
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Figure 10: LST- Vegetation biophysical indices correlation from 1990 to 2020 

The data utilized in the regression model is represented in a graphic form with a 2D scatter plot 

in figures 9 and 10. According to figure 10, it can be concluded that from 1990 to 2020, the 

vegetation biophysical indices is negatively correlated with LST. Thus, the areas with least 

vegetation are experiencing higher LST. On the other hand, figure 9, the urban biophysical 

indices and the LST are positively correlated. 

The medium and low correlation between LST and vegetal biophysical indices in 2000, 2010 

and 2020 could be related to vegetation density especially in 1990 where vegetation density is 

increasing, LST and plant biophysical indices are strongly correlated.  

This analysis concluded that the LST increases with the increasing urban biophysical indices 

and the reduction of vegetal biophysical indices on the surface, and vice versa. 

5. Discussions 

5.1 Urban expansion: A mutation of LU / LC and its impact on LST 

Like all medium-sized cities in Algeria, Guelma is affected by rapid and massive urban growth, 

which has strongly disrupted the space, (Figure 03; Figure 05) thus generating profound spatial 

and environmental transformations. The position of Guelma in the center, places these 

communes in its field of attraction (Guechi et al., 2017; PDAU., 2013). Because of its 
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environmental attraction, the city has undergone explosive growth in the form of residential, 

commercial, retail, transit networks, parking lots. This growth was at the expense of 

transforming LU/LC classes such as urban land, agriculture land, forests and bare land. This 

modification pattern in LU/LC dynamics has significantly altered the scenario of the LST 

distribution (Wang et al., 2018; Gogoi et al., 2019; Zhao et al.,2013; Li et al., 2018; Pal and 

Ziaul, 2017; Weng et al., 2004). 

Vegetation also displays lower temperatures compared to urban areas along the time scale. This 

can be best explained by the fact that through the transpiration process, forest or vegetation can 

refresh land surface. Compared to vegetation areas, higher temperature values are shown in 

both urban and bare land, in line with the actual studies (Fonseka et al., 2019; Gong et al., 

2006). Urban areas experience higher temperatures principally owing to the construction 

materials used. One reason for having high temperature values for bare land is that the majority 

of bare fields are in areas where there is a reduction in vegetation cover. This leads to an increase 

in the quantity of thermal energy emitted by the land bare ground and therefore an increase in 

temperature. (Fonseka et al., 2019). Green spaces in urban areas have a positive effect on the 

urban climate and microclimate. They help regulate the urban climate and mitigate the urban 

heat island (UHI) by creating a cooling effect through shade and evapotranspiration. (Gherraz 

et al., 2020). 

In this analysis, Figure 5 and Table 4 which represent the years: 2000 and 2010, agricultural 

land has the highest temperature owing to the absence of vegetation. The period of last June in 

Guelma is known as the time of barley and wheat harvest. However, in 2020, LST of the urban 

space presents the most important value compared to LST of the agricultural land, the forest 

and the bare land although the agricultural land presents land without vegetations. The results 

confirm that the strong urbanization which marked the last years accompanied by the increase 

in the air temperature (28°C in June 1990 to 39°C in June 2020) and the decrease in precipitation 

values (16.2mm in June 1990 to 14.3mm in 2020) which influence the abundance of green 

cover led to an increase in LST values (Das et al., 2020; Zhao et al.,2013; Li et al., 2018).There 

is a possible rise in LST over time scale due to the substitution of green cover by urban soil 

areas. Generally, there was a noticeable increase in the mean LST of 10,47 °C° see table 4 for 

urban areas. In this research, the majority the urban expansion is resulted from the conversion 

of green cover. 

5.2 Biophysical indices effect on LST 

The findings of this study indicate that both LULC and biophysical indices are equally 

important in resolving the variability of urban landscape estimation of UHI and LST.  In 

addition, they have the potential to better understand the nonlinear impact of anthropogenic 

activities on the urban environment. More recent studies have shown similar findings (Subrata 

et al., 2018; Sannigrahi et al., 2017). Therefore, NDVI and NDBI are not sufficient indices for 

the analysis of LST in towns dominated by barren land, which absorbs a significant volume of 

solar radiation. (Mathew et al.,2018) also demonstrated the ineffectiveness of NDBI in Surface 

LST Intensity studies because bare soils and dry vegetation covers show high spectral reflection 

in the SWIR band resulting in positive NDBI values for drier plants and low NDBI values for 

barren soil compared to built-up areas. It is the same for GUELMA, especially in the summer. 



Bulletin de la Société Royale des Sciences de Liège, Vol. 90, articles, 2021, p. 158 - 180

175 

A negative relationship was found between vegetation indices and LST (Table 6), which was 

most likely owing to the impact of surface thermal inertia and evapotranspiration. Moreover, 

the relationship between the LST variations and NDVI variations is supposed to be direct. 

6. Conclusion

The study highlights the change in LULC over the last three decades in the inter-municipal 

Grouping of Guelma. An integrated approach of remote sensing and GIS has been successfully 

employed for determining LULC and LST relations using satellite images. The results indicate 

that urban/built-up areas of Guelma city have dramatically expanded, while green cover has 

declined. Changes to LULC have been followed by changes in LST. Knowing that the region 

of Guelma is characterized by a semi-arid climate and taking into consideration the climate 

changes in the period of study (the changes in air temperature values from 28°C in June 1990 

to 39°C in June 2020, and the changes in precipitation values from 16.2mm in June 1990 to 

14.3mm in 2020). We have recorded the highest values of vegetation biophysical indices 

(NDVI, SAVI, Greenness index), the lowest values of urban biophysical indices (Albedo, 

NDBI, NDBal, DBI) and the lowest values of LST (31.43°C in urban area and 26.5°C in forest) 

in 1990 due to the important area of the green cover, whereas we have recorded the highest 

values of the urban biophysical indices, the highest values of LST (41.90°C in urban area and 

37.7 °C in forest)  and the lowest values of vegetation biophysical indices in 2020 due to the 

expansion of the urban area on one side, and on the other side the increase of precipitation 

values which influence the green cover. Consequently, the increase in vegetation biophysical 

indices generates a decrease in LST values and vice versa, while the increase in urban 

biophysical indices generates an increase in LST values and vice versa. This confirms the role 

of vegetation in decreasing LST. Moreover, the variation in temperature between the urban 

setting and forest areas significantly widened. Therefore, the excessive presence of vegetation 

was a crucial factor that influences LST.  

This investigation has revealed a strong negative correlation that exists between vegetation 

biophysical indices and LST. As long as the values of vegetation biophysical indices are high, 

the LST values are low. In addition to this, the urban biophysical indices can effectively 

describe the LST. They were positively correlated in all years. 

We can conclude that by specifically explaining the quantitative relationships of LST with the 

surface characteristics that the biophysical indices significantly influence the magnitude of 

LST. This research broadens our scientific understanding of the impact of the land cover pattern 

on the LST. The findings are crucial for future theoretical and management use. Indeed, urban 

planners and natural resource managers try to reduce the effect of urban development on UHI. 

They can realize that it is vital to balance the relative quantity of various kinds of LC features 

as well as enhancing their spatial distributions. This result can also be used to determine the 

sustainability of urban environments by evaluating the reduction of environments productivity 

and the rise in a city's greenhouse gas emissions due to the loss of green cover and urban growth. 
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