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SUMMARY

The paper reexamines some aspects of channel flow stability and turbulence. The
approach followed draws its inspiration from the Liapounov stability concepts rather
than the classical Orr-Sommerfeld perturbation technique and originates from Serrin’s
variational theorem of stability. It leads to a principle of « minimum Reynolds number »
with interesting applications to the study of stability, equilibriurn flows and stationary
turbulence, throwing some new light on the Malkus theory.

1. INTRODUCTION

There is obviously a close relationship between the problems of stability and
turbulence, if only because turbulence arises in most cases from the breaking of
stability. The non-linear interactions of finite amplitude disturbances provide, to
some extent, a representation of what turbulence — the degree of complexity
increasing — may be ultimately. On the other hand, the existence, under given
physical conditions, of a turbulent flow with definite average characteristics suggests
that the realization of the observed turbulent state is also related to some stability
criteria.

This idea was exploited by Malkus in his well-known theory of turbulent shear
flow (Malkus 1956). In this paper and in a later paper by Nihoul on MHD turbulent
channel flow (Nihoul 1966), essential properties of the flow such as the mean velocity
profile or the mean friction coefficient were sought with the help of an equivalent
stability problem defined on the basis of a series of postulates propounded by Malkus.

Malkus’s hypotheses may be formulated as follows :

1° The mean flow is stable to infinitesimal disturbances. Thus the mean velocity
profile cannot have an inflexion point and the mean vorticity gradient has every-
where the same sign. Under definite physical conditions, the statistically steady
turbulent flow which is observed is that particular flow for which the critical Reynolds
number of the mean flow stability is the corresponding physical Reynolds number.

20 The turbulent velocity fluctuations have a negligible — actually slightly
stabilizing — direct influence on the evolution of a perturbation. They have a deter-
minant indirect influence on the stability problem through the modification of the
mean velocity profile under the action of the average turbulent Reynolds stresses.

30 The average Reynolds stresses and mean velocity spectra have a smallest
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scale of motion which is related to the smallest maromally stable motion according
to the stability theory.

4° Within the constraints which derive from the Navier-Stokes equations, the
boundary conditions and the assertions 1, 2 and 3, the dissipation rate is maximum
for fixed mean flow.

Despite indisputable successes of the Malkus theory, the basic postulates have
been much debated and although many arguments can be found to ascertain their
validity, from a physical point of view (Malkus 1961, Nihoul 1967a), there seems
to remain doubt on their proper interpretation (Reynolds and Tiederman 1967).

One of the difficulties in discussing the Malkus theory is that, being closely
related to the stability problem of channel flows, its conerete formulation and appli-
cation by Malkus resort essentially to the theory of the Orr-Sommerfeld equation.
As pointed out by Nihoul (Nihoul 1968), it is not quite clear then, in a critical
discussion such as the one by Reynolds (Reynolds and Tiederman 1967), which
argument actually questions the fundamental principles of the theory and which
aims in fact at the — sofar only — approximate solution of the Orr-Sommerfeld
problem.

For that reason, we would like to reexamine here some aspects of the channel
flow stability and turbulence problems following a different approach. This approach
which draws its inspiration from Liapounov’s stability method rather than the
classical Orr-Sommerfeld perturbation technique originates from Serrin’s variational
theorem of stability (Serrin 1959) and leads to a principle of « minimum Reynolds
number » with interesting applications to the analysis of stability, equilibrium flows
and stationary turbulence, throwing some new light on the Malkus theory (*).

2. STABILITY OF LAMINAR FLOW

To begin with, we recall and briefly comment a theorem demonstrated by
Serrin (Serrin 1959).

We consider a basic fluid motion occupying a bounded region Q of space-
We assume that the velocity field of the basic flow is altered at some initial instant ¢g-
Following Serrin, we say that the basic motion is stable (or, more precisely, « stable
in the mean ») if the kinetic energy E of the perturbation motion tends to zero as ¢
tends to infinity i. e. if the rate of change 7 s negative. If %];— is zero, we say that
the basic motion is marginally stable. Restrlctlng attention to an incompressible
fluid contained by rigid walls, we obtain readily, in non-dimensional form, (Reynolds
1895, Orr 1907, Serrin 1959)

1) B__ g [w.D.wldQ— | ||V XwI|[2dQ=RI;—1I,
dt Q Q

where D is the deformation tensor of the basic motion 1:1 e. Dy = % <%:_,, + g—gj)],
7 %

w is the velocity of the perturbation motion and R is the Reynolds number, R = @ ;
v

(*) There is also some analogy and some bearing on the ideas put forward by Lumley
(1965).
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v is the kinematic viscosity, % and L respectively the reference velocity and the
reference length which were used to make D, w and V X w non-dimensional.

On the right-hand side of (1), the term RI; represents the rate of energy transfer
from the mean flow to the disturbance, the term Iy is always positive and represents
the rate of dissipation of the disturbance energy. The solenoidal vector field w
which maximizes I; for constant Iy (or minimizes Is for constant I;) must satisfy
the continuity equation

2) V.w=0
and the Kuler-Lagrange equations
(3) Vew = VA + pw . D

where A\ and p are Lagrange multipliers. Eqgs (2) and (3), with the conditions that w
be zero on the boundary, set an eigenvalue problem for the constant multiplier p.

Serrin demonstrated the following theorem (Serrin 1959) : The eigenvalues p
constitute & bounded set. If W is the maximizing vector associated with the smallest
eigenvalue @, then

.

J |V X & |2 dQ
. Q

g1
f

(4)
f\%?“D‘,vadQ
Q

The basic motion is stable if R < .

This theorem holds when ) is unbounded provided the flow geometry is such
that the disturbances can be assumed spatially periodic at each instant, as for
instance in the case of Poiseuille flow. The region Q can then be chosen to cover
exactly one wave length and the boundary integrals at either end of Q, neither of
which vanishes separately, just cancel one another. Formula (1) may therefore be
agsumed to hold in this situation.

Serrin’s definition of « stability in the mean » which he actually borrowed from
the early works of Orr (1907) meets the stability concepts of Liapounov (Liapounov
1947) which wexre recently generalized to continuum mechanics by Zubov, Movchan,
Knops et al (Zubov 1964, Movchan 1959, 1960, 1963, Knops and Wilkes 1966,
Gilbert and Knops 1967). In the functional space of the field variables, the pertur-
bation energy E is indeed a suitable metric p which measures the distance from the
laminar motion to the perturbed motion. Serrin’s theorem ensures then that the
distance p = E decreases with time from its initial value along any natural trajectory
in the functional space, for any R < g and any perturbation (since this is so for
the worst possible one W) (*).

The Euler-Lagrange equations (3) are linear in w and — although there is no
restriction in Serrin’s theory on the magnitude of the perturbation — finite amplitude
solutions of (3) will not normally be solutions of the Navier-Stokes equations. For
instance, in the case of Couette flow between rotating cylinders treated in illustration
by Serrin (Serrin 1959), eq (3) admits solutions of the form

(5) wy = Wi(r) cos kz, wy = Wy(r) cos kz, w, = W,(r) sin kz

(*) The Orr-Serrin criterion is actually a little stronger than Liapounov’s as the
latter — especially in the context of the second method of the Liapounov functional —
only requires that it be possible to confine the perturbed motion in any domain ¢ < B
by restricting the initial disturbance to some region p < b where b can be smaller than B.

75




which cannot satisfy the Navier-Stokes equations. But then, solutions of this type
have been observed experimentally to describe satisfactorily the secondary motion
oceuring in Couette flow and it is customary to postulate disturbances of this form
in the non-linear analysis of stability. One may refer here to the work of Stuart
(e. g Stuart 1958) and more recently to Pritchard’s application of Liapounov’s
second method to the study of the Benard and Couette problems stability (Pritchard
1968).

The merit of Serrin’s approach seems precisely that it provides us with a well
defined « equivalent » linear problem which arises quite naturally from the Liapounov
Movchan stability theory ; which, among others, admit solutions of the classical
tentative forms and which is consolidated by a variational theorem which ascertains
the quality of the approximation. (The results obtained by Serrin for the stability
of laminar Couette flow were in excellent agreement with the experiments.)

The condensation of the theory in a variational principle has the further advan-
tage of allowing direct methods of analysis and facilitating eventual numerical
calculations. This principle may be formulated as a principle of minimum Reynolds
number

f IV X w|[2dQ
() R =2

‘——J- w.D . wdQ
Q

for marginal stability (see for instance eq. 4).

3. EQUILIBRIUM FLOWS

In the papers by Serrin and Pritchard (Serrin 1959, Pritchard 1968), the per-
turbation is the difference between the perturbed motion and the original laminar
one. (Hence, the Euler-Lagrange equations (3) are linear, the deformation tensor D
referring to the known laminar motion)

In view of the spatial periodicity of the perturbation, however, — and with
statistically steady turbulence in mind for a later study — it is convenient to take
space averages (with respect to one spatial dimension, at least) and to separate the
flow into a mean part and a disturbance part where the latter has zero mean.

An equilibrium state in which the rate of transfer of energy from the mean flow
to the disturbance balances precisely the rate of viscous dissipation of energy of
the disturbance is called an equilibrium flow (Stuart 1958). In an equilibrium flow,
- the disturbance has a definite finite amplitude and the mean flow — distorted
from its original laminar form — is steady.

In certain problems, such as the circular Couette flow, several states of equili-
brium flow can be observed. In other problems like the flow between parallel walls,
the transition from the laminar regime to turbulence seems on the other hand to
occur suddenly.

It is readily seen that Stuart’s definition of the disturbance (i.e. departure
from the mean) does not invalidate the expression (1) of the rate of change of the
perturbation energy. Indeed writing the Navier-Stokes equations for v=mn 4+ w
where u denotes the mean velocity and w the disturbance, taking the mean and
substracting, we get (in non dimensional form)
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ouy 0 D] = 9 R=1V24,

M 5 -+ 3 [ugu; + {(wiws)] 9z, + R-1V2y;
8 a—wi + —a [wjug -+ wity 4+ wyw; — {wsw;p] = ———a -+ R-1V2y;
) o o, Wil i ww; Wi ) = s Wi

where { > indicates an average and where p and 7 are the non-dimensional mean
pressure and perturbation pressure.

Multiplying (8) by wj;, summing over ¢ and integrating over Q (the volume €
covers one wave-length in the directions of periodicity and is limited to solid walls
otherwise), we obtain

. _ L Ou Rves
9) i —R L wWiw; a_xj aQ) - {Q w;V2w; d)

.—_—Rf w.D.wdQ—f 1V x wl2dQ
Q Q

and comparing the two integrals in the right-hand side, we may define a « Reynolds
number »

"

’ IV x wl]2dQ
JQ

(10) B=—
J w.D.wdQ
Q

which is equal to the actual Reynolds number of the flow if the disturbance is
stationary. In writing (9) and (10) we have taken into account that w has a zero
mean and that the surface integrals vanish. The deformation tensor D refers now
to the mean velocity u which must be counted among the unknowns of the problem.

Let us assume that, on this additional variable, we impose certain contraints
(obtained from the boundary conditions or other physical considerations which we
shall examine more specifically later) in such a way that the Euler-Lagrange equa-
tions associated with the minimization of Z yield, in addition to eqgs (3), the stationary
form of (7) for the mean velocity profile. The eigenvalues of the boundary value
problem set by these equations are the minima of Z (cf. eq. 4) (*) and whenever
the Reynolds number R is equal to one of these eigenvalues, the disturbance energy E
is stationary for the corresponding minimizing vector which also satisfies the sta-
tionary form of (7) and could describe an equilibrium flow (**).

As a specific example, consider the flow of an incompressible newtonian fluid
between two parallel planes at xp == - 1; the x; and zs axes being drawn in the
direction of flow and normal to the planes, respectively.

We denote by ( ) space averages over z; and w3 and put v = u + w where
u = (v) = [u(xz), 0, 0] is the mean velocity and w the disturbance of zero mean.

It is readily seen that the mean pressure gradient is a constant over the channel

(*) This result follows immediately from the form of the Euler-Lagrange equations (3)
and could be exploited to ascertain the mathematical conditions under which there exist
eigenvalues of the mon-linear problem (Nehari 1960, 1961).

(**) With the same accepted approximation as in section 2 and in the same sense
as in Stuart’s work (e. g. Stuart 1958),




span. The pressure gradient is externally applied and the value of this constant
is actually a boundary condition. Let

a ,p
: R—<(—>=—17.
(11) i o
We shall assume that Z has the same value whether we consider laminar,

equilibrium or turbulent flows.
The equation for the mean velocity can then be written, in the steady case,

a2 d
—— = —Z + R — {wyws).
(12) P Z e {wyws )y
In this equation, the mean velocity » and the fluctuationg velocity w are non

dimensional. The reference velocity % is the bulk average velocity i. e.

(13) Jq u dxg = 2.

-1

The average rate of work of the pressure gradient is given by

1 p 1 dzud R 1 g
(14) f Zu dxg = — f_lu (3;% xo + f ud—x; {wiws)y

-1 -1
i. e., integrating by parts and taking into account that w =0 at xp = 4+ 1
1

(15) 27 = (

J-1

1
w2 dxz —R f % <1,U1?,{J2> dxz

-1
(Henceforth a dot denotes a derivation with respect to ).
The average rate of change of the disturbance energy is :

dE 1 . rl
(16) EE:—Rf <W1wz>udxz—j AV x w2 das.
1 -1

We may thus define
1
j PV Xw[2) s
R ==L :

(17) :
— ( {wiws) w dg
J-1

If B = Z the energy of the disturbance is stationary and the global power balance
may be written (combining 15 and 16)

1 1
(18) 2Z=f udeerf IV X w25 dae
~1 -1

expressing that the energy supplied by the pressure forces is ultimately dissipated
by viscosity.

We now seek the state vector %, W which minimizes # subject to conditions
{2), (13), (18) and the boundary conditions

u:wl‘:W2=’LU3=0
(19) at xg = + 1.
= TFZ
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It is easy to see that the Euler-Lagrange equations of this problem yield eq (12)
in addition to the equations (3) for w. Let, for instance, w be described by the
following expressions (Meksyn 1964)

(20) w1 = [ay cos O + by sin 0] cos y a3
(21) we = [ag cos O + by sin 0] cos v a3
(22) wz = [az cos O + bz sin 0] sin v a3

where 6 = aw; — P3¢ and where the a’s and b’s are functions of x; and are related
by the conditions of incompressibility i. e.

(23) dg = — chl —Y a3
(24) by = aa; — v bs.
Introducing Lagrange multipliers A;, A2, w1, pe, ps (bhe X’s are functions of zp) the

variational problem may be expressed as follows :

1 . .
5 f ({1 — b + (b1 + 0@ + (a5 + yas)? + (bs + ybs)?
-1

+ (yar + abg)? + (vbr — oaz)? + wyi(mas + brbs)
(25) + 2h(de + aby + yas) + 2ha(bs — aay + ybg)
+ @ + psu} dwy = 0

with the side conditions (13), (18), (23) and (24). The Euler-Lagrange equations
may be written (after some manipulations) :

1 .
(26) D2y = 5 Wdeu — ohe
1 . .
(27) Dby = 5 w1boit + ahy
(28) Do = 3 w11 — AL
1 . .
(29) @23)2 = —2— y,lblu — )\2
(30) .@2a3 = ‘Y)\l
(31) D2bs = v
where
d2
(32) @D = @% — o2 — 2
d .
(33) s [a(aaas + b1b2) + 2poul = us.

Eqs (26) to (31) are the Fourier decomposition of egs (3), with
(34) A = (A1 cos O + Ag sin 6) cos yas.
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Their eigenvalues y; are the corresponding minima % of . With the help of (18)
and (19), eq. (33) may then be written

(35) , P (s> — Zawg = .

H R = %, the disturbance energy is stationary for the eigensolution v=1u + W
and the corresponding mean flow % satisfies then the steady state equation (12)
describing an equilibrium flow.

We have sofar left aside the question of the existence and the determination
of the eigenvalues of the non-linear problem (*). It is reasonable to expect, for each
o and v, a series 0 < gf < p2 < ... g} of eigenvalues corresponding to eigensolutions
of larger and larger transverse wave number (%, say) and it is tempting to speculate
that the surfaces g% («, y) are nested into one another in a way similar to the sketch
proposed by Spiegel by analogy with thermal turbulence (Spiegel 1962).

X
R B M
Fig. 1. — Tentative sketch of the intersections of the characteristic surfaces u?(«, y)
with a plane o = constant or y = constant.

Fig. 1 shows the tentative form of the intersections of these surfaces with a

plane vy = constant or o = constant. If R is equal to the smallest eigenvalue 1798
an equilibrium flow is conceivable characterized by unique values of the wave

(*) There is very little literature on the eigenvalues of non-linear boundary pro-
blems. — Certain methods of investigation such as the methods of Liapounov and
Schmidt are becoming available (Vainberg and Trenogin 1962) and some works have
been done recently in the domain (e.g. Kirchgissner 1960, 1961, Gortler et al. 1965).
We have also made several interesting observations on the subject in connection with
the variational study of secondary Couette flows which will be reported in a forthcoming
publication.
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numbers « and v, hence displaying simple well identified periodicities and comparable
to the first secondary flow observed in the circular Couette problem.

Furthermore, we may argue that, since the Euler Lagrange equations for w
have the same form as in section 2 (*), the mean flow % is then marginally stable
to infinitesimal disturbances negligibly affecting (and affected by) the W-field ;i. e,
if % were some laminar flow realized, as it is, by some appropriate device, without
any superimposed disturbance, this laminar flow would be marginally stable (in
the sense of Serrin) for the actual Reynolds number 179

The realization of such an equilibrium flow depends however obviously on the
possibility of finding a smallest eigenvalue Py of the non-linear problem beyond
the critical Reynolds number R, of stability of the laminar motion to infinitesimal
. disturbances.

In the case of parallel flow, most investigations seem to indicate that the
modification of the laminar profile by a superimposed finite disturbance is a distabili-
zing effect (e.g. Stuart 1962, Reynolds and Potter 1967).

The mean flow which is achieved in this way should then correspond to charac-
teristic values %, smaller than R,, excluding the possibility of a supercritical
equilibrium flow

This relationship between the existence of subcritical instabilities and the
absence of supercritical equilibrium flows is in agreement with the results of Reynolds
and Potter (1967).

The argument does not eliminate the possibility of some more complex equili-
brium flow where the disturbance would consist in the superposition of a large
number of modes whose intricated action on the mean flow would actually modify
it in the stabilizing sense, translating the characteristic surfaces p%(«,y) to higher
w1 regions but then, such an equilibrium flow, as it would be progressively built up,
with the corresponding loss of information — which we associate here with the
Navier-Stokes equations since the Euler Lagrange equations of Serrin’s problem are
accepted approximations only for the stationary stations — would have all the
characteristic of a turbulent flow and this mainly suggests that (statistically) steady
turbulent flows could be incorporated in the present approach, somehow.

We shall examine this aspect in the next section.

4. STATISTICALLY STEADY TURBULENT CHANNEL FLOW

The postulates on which the Malkus theory is based have been much debated
and different authors have often rephrased them to enlighten certain specific aspects
(e. g. Spiegel 1962, Townsend 1962, Lumley 1965, Reynolds and Tiederman 1967,
Nihoul 19676). Malkus himself has never employed his fourth (variational) postulate
in its original form. He actually inverted the variational principle and sought the
minimum Reynolds number (associated with the marginal stability of the mean
flow), holding Z constant.

Regarding the marginal stability of the mean flow, Reynolds and Tiederman
(1967) have shown that indeed the direct influence of the « proper » turbulent field w
on the birth and growth of a disturbance is negligible — slightly stabilizing in fact —
and that the essential action of w is the modification of the mean velocity profile
by the average turbulent Reynolds stresses. This result was also predicted by Nihoul
(1967a) on the basis of a comparison between the mean velocity profile in turbulent

(*) w being of course differently normalized.
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channel flow and the laminar Hartmann profile in magnetohydrodynamic channel
flow under a large transverse magnetic field. Both types of profiles are known to
be flat-topped with narrow regions of transition near the walls and — although
the flattening agent is different, internally applied turbulent Reynolds stresses in
the first case, externally applied Lorentz force in the second case — these profiles
can be shown to be very stable. The increased stability is found to be due to the
reduction of the mean flow scale in the boundary regions which extends the action
of the inertial restoring forces up to such small scale disturbances that these are
damped out by viscous dissipation. (Lin 1955, Nihoul 1967a). Although it is essential
in the modification of the velocity profile, the direct action of the Lorentz force
is found entirely negligible on the disturbance itself (Lock 1956).

According to the third hypothesis of Malkus, the rate of turbulent transport
of momentum {wiws) can be expanded in a finite series of functions of larger and
larger « wave number » ky ; the series being terminated at some smallest scale (i. e.
some maximum wave number k).

Following Townsend (1962), we may visualize the different modes of motion
contributing to the transport of momentum as motions obtaining energy directly
from the mean flow and losing it by viscous dissipation and by non-linear transfer
to a « background » of other turbulent motions (not transferring momentum) in
such a way that the mode amplitudes are kept stationary in time. The non-linear
transfer acts thus as a stabilizing influence ; this influence being negligible on the
mode of highest order which is neutrally stable in consequence of the balance between
energy transfer from the mean flow and energy loss by direct viscous dissipation.

The background is however not described by Malkus’s theory in its simple form
and in lieu of the actual modes imagined by Townsend one must seek then « equi-
valent » stationary modes whose combination comparable to a superposition of
successive equilibrium disturbances on the mean flow provides the best approxima-
tion of the actual motion (¥).

Rephrased as above, the Malkus theory seems the natural opening of the ideas
put forward in the preceding sections. Indeed, to some extent, the statistically steady
turbulent flow which is ultimately achieved — once secondary steady flows have
failed to settle — is a form of equilibrium flow where the disturbance superimposed
on the mean flow has become so intricatedly complex that — with the corresponding
loss of information — its properties may only be known statistically (Landau 1944).
One should expect, then, that, assimilating ensemble and space averages, many
aspects of the description valid for equilibrium flows will also be pertinent to
statistically steady turbulent flows

In particular, it seems reasonable to inquire into the possibility of such flows
being also extremizing solutions of a Reynolds number functional.

We note immediately that the minimum values of the Reynolds number (17)
— where w denotes now the « proper » turbulent field —, subject to the constraints
(2), (13), (18) and the boundary conditions (19), are obtained for eigensolutions of
the Euler-Lagrange equations (3) and (12). For these solutions, the proprer turbulent
energy E is stationary and the mean flow is given in terms of the average turbulent
Reynolds stresses by the correct steady state equation (12).

The constraint (18) expresses Malkus’s condition that Z — i. e., the ratio of

(*) Since the highest order mode in this description is not approximated, one should
expect to obtain fairly goods results whenever the principal objective is the determination
of the leading terms in the asymptotic solutions for large Ky (of the velocity profile
away from the boundaries, for instance) (Malkus 1961).
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the actual dissipation rate and the dissipation rate which would result from a
parabolic flow with the same % — be held constant.

Also the expansion of the turbulent field in different scales components of the
type mentioned above appears to be compatible, with the object of finding the
smallest possible Z# for constant Z, only if the series is interrupted at some wave
number ky for each mean flow realization.

Indeed, let us compare the viscous dissipation in any turbulent component
(say, of wave number K, and amplitude normalized to 1) to the energy released
to it by a mean flow of a specific shape (which we expect flat-topped with narrow
regions of transition near the walls). We observe that, once the component wave-
length K1 is sufficiently smaller than the width of the boundary regions of the
mean velocity profile, the rate of energy transfer decreases rapidly —, it is expressed
by an integral bearing on the product of two functions one of which oscillates many
times over the region where the other, %, is significantly different from zero — and
becomes much smaller than the dissipation rate which we may expect on the
contrary to increase with decreasing scale.

Since Z is the ratio of the total dissipation rate and the total rate of energy
transfer, it certainly will have a smaller value if wave number components which
bring much larger contributions to the numerator than to the denominator are cut
off of the spectrum. This requires the existence of a smallest scale ky! and suggests
that the corresponding highest mode is marginally stable on the mean flow since
marginal stability is precisely the frontier beyond which dissipation dominates. The
relation between the smallest scale of motion and the width of the transition region
of the mean flow is in agreement with the results obtained by Malkus (1956) and
Nihoul (1966).

A solution — appropriate to turbulence and to the present description — of
the non-linear eigenvalue problem set by the Euler-Lagrange equations of the
variational problem may be sought by expressing the proper.turbulent field w in
the following form proposed by Meksyn (1964)

MM

36 wy = [ai™ cos 10 - bL™ sin 10] cos myxs
1 1 Y
=1 m=1
(87) wy = Z [al™ cos 10 + bL™ sin 18] cos myws
=1 m=1
(38) wy = N al™ cos 16 4~ bi™ sin 10] sin mrvas
L 3 X
=1

-

m=

where 6 is the same as in (20), (21) and (22) and where the a’s and the b’s are
functions of x5 related by the conditions of incompressibility

(39) ad™ = — lab; — myag
1,m=1,23,..)

(40) blm = laa; — mybs.

Introducing Lagrange multipliers as in section 3, an infinite set of Euler-
Lagrange equations is obtained and it is readily seen that for each 1 and m they
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have the same form as eqs (26) to (31) where « is replaced by & = la and v by
¥ == my. All these equations combine to yield equation (3) with
RIS

(41) A= Z Z (A} cos 16 + A}™ sin 10) cos myzs.
=1 m=1

In addition there is a Euler-Lagrange equation for % which can be brought
in the form (12) exactly as we did in section 3. This equation, together with the
whole system of equations for the a’s and b’s and the boundary conditions, sets
a non-linear eigenvalue problem for pi.

Considering first the linear eigenvalue problem associated with eq. (26) to (31)
where « is replaced by o = la and y by ¥ = my and where w is the actual mean
turbulent velocity profile, we may éxpect that the eigenvalues uf(e, ) are all points
of the surfaces tentatively described in section 3 and sketched in figure 1 ; these
surfaces being transported to higher y; regions in consequence of the greater stability
of the flat-topped mean velocity profile. Let the smallest eigenvalue of the non-linear
problem be pj. This should not be the smallest u? on the surfaces above because
then the infinite set of Euler-Lagrange equations for the al” and bLm would only
admit one non trivial solution of a specific wave number vector (x, n, ), definitely
unable to produce the required reshaping of the mean velocity profile. We expect
instead u] to be the smallest eigenvalue associated with some high transverse mode
n* whose scale is presumably related to the width of the mean flow boundary layers
(to be determined) (see fig. 1).

This situation would be appropriate to the present description since then the
n*-mode is marginally stable on the mean flow, all higher modes are absent from
the series expansions (36), (37) and (38) as the surfaces u%(@, y) are entirely on the
right-hand side of the plane p? = yj for n > n*, all the modes of lower order (n < #*)
are stationary, their respective wave numbers o and ¥ being distributed at the
intersections of their characteristic surfaces p?%(z, ¥) and u% = pl.

The question which remains to be answered concerns the marginal stability
to infinitesimal disturbances of the mean velocity profile regarded as a laminar
motion (i. e. solely holding the dialogue with the perturbation). The existence in
the proper turbulent spectrum of wave number components for which the smallest
eigenvalue of marginal stability is smaller than the actual Reynolds number of the
flow would seem to suggest that infinitesimal disturbances might occur at those
scales and be amplified. However such «large scale » perturbations (¥), being of
infinitesimal amplitude, could not resist the restoring force exerted by the mean
flow (Nihoul 1967a) (**) and would be — the viscous dissipation defaulting — the
victims of inertial stabilization.

This remark completes the present discussion which it is hoped may reveal
additional arguments in favor of the Malkus theory and the variational approach
to turbulent channel flows

(*) Larger than the width of the mean flow boundary regions.

(**) The corresponding turbulent components are maintained against the inertial
restoring of the mean flow by the contra-inertial forces which — being of comparable
amplitude — they may develop.
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