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On a Deformation of the Dirac Hamiltonian
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Abstract

We propose a specific quantum deformation of the well known Dirac Hamilto-
nian leading to the (expected) undeformed relativistic context when the deformation
parameter x tends to infinity. The non-relativistic limit is also consider ed.

1 . Introduction

The Dirac equation is well known as being a relativistic equation describing non-zero rest
mass and spin % particles. It has been extensively studied in the free case but also when
interactions are involved such as the Coulomb problem or the oscillator case [1].

The Dirac equation has also been related to non-relativistic supeisymuetiic quantum
mechanics [2]. .

Recently, the Dirac equation has been revisited in connection with the quantum de-
formation theories [3)-[5]. In ref. [4] a covariant equation invariani with respect o the
quantum Poincaré algebia, the so-called k-Dirac equation, has been put in evidence. How-
ever, the proposed equation doesn’t lead to an explicit lamiltonian formulation. In.the
present paper, we develop a new formulation based on a x-Dirac Hamiltonian. We scarch
for its non-relativistic limit and we show that thé usual Schrédinger Hamiltonian can be
recovered when the deformation parameter tends to infinity.
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2 Deformation of the Dirac Hamiltonian

Before entering into details, let us recall that the Dirac Hamiltonian writes
Hp = c¢&@ P +moc?B, (1)

where as usual, myg is the non zero rest mass of the particle. As a consequence, from the
usual four-momentum relation, we know that

Po = \/m3ct + c2p? 2)
which can be developped as follows
Py = A4 pP?+ (PP + ()

Here the coellicients A, i and = are given by
L
8mic?’

A= 771002 y f= Y= )

2mg
As usual, let us define the 1est mass of the particle as 7Q and start with the firtst Casimir
operator of the g-Poincaié algebra [4]

= Ring. (5)

1
K

o A
Cy = c*P? 4+ 2x%(1 ch%),

We then propose to consider the equation

moc?
ch

A P? 4 2K2(1 - ch%) =2x%(1 = ¢l ), (6)

which evidently implies (2) when & — oo, i.e. in the undeformed context.

Equation (6) can be written on the form

J 2
enf - -—PZ P (7)
K 2k2 K
that is P ) pi )
> i .
i BN 0 )2 mgc 8
+ 5.3 + T + [ " (8)

Now let. us start with this equation and develop the operator Py according to eq. (3).
After some 1earrangements, we obtain

A2 At A0 Mo N Ay <
1+ 21 ozt A4 + Girb +) +(F + 30k + 510 b
(- 2420y | 62%? 44Ny | 15AYE o+ 6X0y . P
k2 AlpA 610 :
2 P
=3P+ chﬁ%cj )
This last equation can be put in the following compact form
A T S TR I Y A 2
oh= +EP2sh= 4 (B2 (Lsyeh= + Tsh) = 1’2 +eh S (10
K K K M2k R K
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when we omit all the terms in (P2)?(n > 3). Inside this proposal, the coellicients X, j, 4
are then easily determined and are :

2 2 A cAeh s
)\=771062,;t=—c—-;,’)’=—-u—clh-—=<—'— £ (11)
2kshmes 26k 8Bsh3mac.
We finally obtain a new "mass-eneigy” 1elation
2 4 .}, moc?
c - crch®es. ”
Py =moc® + P~ £ (P?)? + O(P?)® 12)
QKShﬂ;‘;“LZ ’ 8/<;3sh3m"10—2 S ( ’ (

extending (2) to the context of the quantum deformation considered in Ref. [4].

With this new result, we are ready to search for a x-Dirac Hamiltonian A} such that
(HE)? = P (13)
where Py is given by the expression (12).

We propose the form
HpY = f &P+ Bg + Bh(P?)* ‘ (14)
Here f, g and h are some functions depénding on the deformation parameter x and are
such that
f-ec,g—mge?, h—0 (15)
when kK — 0.

Using equations (11)-(14), we easily obtain

f=c moc?
B fcsh—"i‘%ﬁ’
g = moc?, : (16)

2 2
h= (- )

¢ mgc
= . 4
8mgr2sh? Mo K

2
mye
clh

It is straightforward to verify that (16) obey the constraint (13). The resulting s-Dirac
Hamiltonian writes

K= /_7_7.]’_952._.-‘ 2 2 i BoN201 moe? | moc?
HD = Iisllm%czaup +ﬂ(77loc + 8m0n2$]227n£c2 ([ ) (1 P cth P )) (17)

One immediately observes that Hp — IIp when x — 00 and H}j is invariant with respect
to the parity operator. . .

3 Determination of the non relativistic limit

We start with the Hamiltonian (17) in the standard realization of the Dirac matrices

a=(35)0=(% ) (18)
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where o; are the usual Pauli matiices and o¢ is the 2 by 2 unit matrix. The time-inde-
pendent wave equation writes

Hpy=Ey, ¢ = ( ‘Zj; ) (19)

that is ‘ .
(f& P2 = (E —moc® — (7°)°h)y, (20)
(13 P)r = (E + moc® + (7°)*h), (21)

where the coefficients f and /i are given by formulas (16).

The system (20)-(21) is easily separated. Indeed, we obtain
FAP) = (B — mic* — 2moc? (5%)2h ) (22)

where, once more, we neglect terms of more than second order in 7.

The eigenvalue equation is then

4 4 2 2
2 24 moc® ¢ mec” . Mmact, oo .
F* = mjc* + =P o = (1 = ——cth——)(7") (23)
ksh ™2 4r%sh2 0 K . K

and the usual expression of the non relativistic energies ¢ takes here the form

2 4 2 : 2
= E? —mic _ ¢ P c* (1— moc moc )(_,2)2 (24)
= - - ct
2mgc? 2rsh Mo Bingr?sh? o ~

The usual Schuddinger Hamiltonian Z is obtained when x — oo.

4 Conclusions

The main result of this paper is Eq. (14) with the coeflicients f, g, /i determined by
(16). We obtained a Hamiltonian for one g-deformed Dirac equation by performing an
expansion of the relevant operator Fy in powers of the operator (1-52)2‘ Throughout the
calculations, terms of order (P2)3 and higher powers have been neglectod.
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