THE CLASS OF DOUBLE MS-ALGEBRAS SATISFYING THE COMPLEMENT PROPERTY

Luo Congwen

Abstract

We construct a functor from the category of de Morgan algebras into the category of double MS-algebras which satisfy a certain condition, called the complement property and show that this functor has a left adjoint.

1. Introduction

An MS-algebra < A, \lor , \land , $^{\circ}$, $^{\circ}$, $^{\circ}$, $^{\circ}$, $^{\circ}$ is an algebra of type < 2, 2, 1, 0, 0 > such that < A, \lor , \land , $^{\circ}$, $^{\circ}$ is a bounded distributive lattice and $^{\circ}$ is a unary operation satisfying $x \leqslant x^{00}$, $(x \land y)^{\circ} = x^{\circ} \lor y^{\circ}$, $^{\circ}$, $^{\circ}$ = 0. These algebras belong to the class of Ockham algebras introduced by Berman [1]. A double MS-algebra is an algebra < A, $^{\circ}$, $^{+}$ > such that < A, $^{\circ}$ > and its dual $< A_d$, $^{+}$ > are MS-algebras and for every $x \in L$, $x^{0+} = x^{00}$, $x^{+0} = x^{++}$. T. S. Blyth and J. C. Varlet in [3] pointed out that every de Morgan algebra L can be represented non-trivially as the skeleton of the double MS-algebras satisfying the complement property which is related to the construction due to T. S. Blyth and J. C. Varlet and investigate the role of the complete-

AMS Subject Classifications (1991): 05A15,06D30.

Key words: de Morgan algebra, double MS-algebra, double MS-space, complement property.

This work is supported by Natural Science Foundation of China.

ment property in the theory of double MS-algebras. Our main result is that the complement property associates a double MS-algebra K(L) with each de Morgan algebra L. More precisely, we show that K is a functor from the category M of de Morgan algebras and de Morgan algebra homomorphisms into the category M of double MS-algebras which satisfy a certain condition called the complement property and double MS-algebra homomorphisms and that the functor M has a left adjoint M. As a consequence of the construction we obtain an important property of the left adjoint M of M for each double MS-algebra M satisfying the complement property, the congruence lattice of M is isomorphic to the congruence lattice of the lattice M.

The main tools we use in the proof of the results mentioned above are the duality between double MS-algebras and certain ordered topological spaces developed by T. S. Blyth and J. C. Varlet in [5]. We recall here the main results that we shall need.

Since double MS-algebras are bounded distributive lattices, they are dually equivalent to some suitable category of Priestley spaces (i. e., compact totally order disconnected spaces) and order-preserving continuous functions. In fact, a double MS-space is a Priestley space X endowed with two continuous order-reversing maps $g_1, g_2: X \rightarrow X$ satisfying the following conditions:

- (1) $g_1^2(x) \leq x$
- (2) $g_2^2(x) \geqslant x$
- (3) $g_2(g_1(x)) = g_2^2(x)$
- $(4) g_1(g_2(x)) = g_1^2(x).$

If $\langle X, g_1, g_2 \rangle$ is a double MS-space, then we can define two unary operations g_1 , $g_2 > 0$, the lattice of clopen decreasing sets of X, by setting

$$I^{0} = X \backslash g_{1}^{-1}(I), I^{+} = X \backslash g_{2}^{-1}(I)$$

for each $I \in O(X)$, and thereby obtain a double MS-algebra. Conversely, if < A, 0 , $^{+}>$ is a double MS-algebra, then we can define two maps g_{1} , g_{2} on the ordered set X(A) of prime ideals of A by setting

$$g_1(p) = \{a \in A : a^0 \notin p\}, g_2(p) = \{a \in A : a^+ \notin p\}$$

for each $p \in X(A)$, and thereby obtain a double MS-space, which will be denoted by S(A). These constructions give a dual equivalence.

A subset Y of a double MS-space < X, g_1 , $g_2 >$ is said to be a g_1 -invariant subset if it satisfies the condition

$$x \in Y \Rightarrow g_i(x) \in Y, i \in I = \{1,2\}.$$

According to Urquhart in [8], if A is a double MS-algebra, then the congruence lattice of the MS-algebra < A, $^0 >$ is dually isomorphic to the lattice of all closed g_1 invariant subsets of the MS-space < X, $g_1 >$. Dually, the congruence lattice of the dual MS-algebra < A, $^+ >$ is dually isomorphic to the lattice of all closed g_2 invariant subsets of the dual MS-space < X, $g_2 >$. Therefore, the congruence lattice of the double MS-algebra A is dually isomorphic to the lattice of all closed g_1 invariant subsets of the double MS-space < X, g_1 , $g_2 >$. If $\theta(Y)$ is the congruence associated with the closed g_1 invariant subset Y, then

$$b \equiv c(\theta(Y))$$
 iff $B \cap Y = C \cap Y$

where B, C are the clopen decreasing subsets that represent b, c.

Clearly, $g_1(X)$ is a closed g_1 -invariant subset of X and $g_1(X) = g_1^2(X)$, $g_2(X)$ is a closed g_2 -invariant subset of X and $g_2(X) = g_2^2(X)$.

2. The complement property

Definition 2.1. A double MS-space $\langle X, g_1, g_2 \rangle$ is said to satisfy the *complement property* if the equations $g_1(X) \cup g_2(X) = X$, $g_1(X) \cap g_2(X) = \emptyset$ hold. In other words, X is the disjoint union of $g_1(X)$ and $g_2(X)$. A double MS-algebra A is said to satisfy the complement property if the double MS-space S(A) satisfies it.

In what follows the complement property will be denoted by (CP).

Example 2.1. For every Boolean algebra $\langle B, \vee, \wedge, ', 0, 1 \rangle$, let $B^{[2]} = \{(a, b) \in L \times L : a \leq b\}$. $B^{[2]}$ is a double Stone algebra which satisfies (CP), where the pseudocomplement of (a,b) is (b',b'), the dual pseudocomplement of (a,b) is (a',a').

Theorem 2.1. Let A be a double MS-algebra and $\langle X, g_1, g_2 \rangle = S(A)$. Then the following are equivalent conditions:

- (i) A satisfies (CP).
- (ii) Given b, c in A such that $b = b^{00}$, $c = c^{00}$ and $b \le c$, then there exists a unique element $d \in A$ such that $d^{++} = b$, $d^{00} = c$.

Proof. We are going to show that the following conditions (1) and (3) are equivalent, and that so are conditions (2) and (4).

- $(1) g_1(X) \bigcup g_2(X) = X$
- (2) $g_1(X) \cap g_2(X) = \emptyset$
- (3) Given b, c in A such that $b^{00} = c^{00}$, $b^{++} = c^{++}$, then b = c.
- (4) Given b, c in A such that $b = b^{00}$, $c = c^{00}$, $b \le c$, then there exists an element $d \in A$ such that $d^{++} = b$, $d^{00} = c$.

The following B, C, D represent b, c, d respectively.

(1)
$$\Leftrightarrow$$
(3). Since $b^{++} = c^{++}$, $b^{00} = c^{00}$ iff $b^{+} = c^{+}$, $b^{0} = c^{0}$

iff
$$X \setminus g_2^{-1}(B) = X \setminus g_2^{-1}(C)$$
, $X \setminus g_1^{-1}(B) = X \setminus g_1^{-1}(C)$

iff
$$g_2^{-1}(B) = g_2^{-1}(C)$$
, $g_1^{-1}(B) = g_1^{-1}(C)$

iff
$$g_2^{-1}[(B\backslash C) \cup (C\backslash B)] = \emptyset$$
, $g_1^{-1}[(B\backslash C) \cup (C\backslash B)] = \emptyset$

iff
$$(B \setminus C) \cup (C \setminus B) \subseteq X \setminus g_2(X)$$
, $(B \setminus C) \cup (C \setminus B) \subseteq X \setminus g_1(X)$

iff
$$(B \setminus C) \cup (C \setminus B) \subseteq X \setminus (g_1(X) \cup g_2(X))$$

iff
$$B \cap (g_1(X) \cup g_2(X)) = C \cap (g_1(X) \cup g_2(X))$$

iff
$$b \equiv c \left(\theta(g_1(X) \bigcup g_2(X)) \right)$$

If (3) holds, that is, c = b, then $\theta(g_1(X) \cup g_2(X)) = \omega$ (i. e., the zero congruence), $g_1(X) \cup g_2(X) = X$. If (1) holds, that is, $g_1(X) \cup g_2(X) = X$, then $\theta(g_1(X) \cup g_2(X)) = \omega$, $c \equiv b(\theta(g_1(X) \cup g_2(X)))$ implies c = b.

(2) \Leftrightarrow (4). If (2) holds and $b = b^{00}$, $c = c^{00}$, $b \leqslant c$, then $B = X \setminus g_1^{-1}(X \setminus g_1^{-1}(B))$, $C = X \setminus g_1^{-1}(X \setminus g_1^{-1}(C))$, $B \subseteq C$, that is, $B = g_1^{-2}(B)$, $C = g_1^{-2}(C)$. Setting

 $D=(C\cap g_1(X))\cup B$, therefore we have that D is a clopen decreasing set of S(A). $g_1(X)\cap g_2(X)=\emptyset$ implies that $D\backslash B\subseteq C\cap g_1(X)\subseteq g_1(X)\subseteq X\backslash g_2(X)$, $C\backslash D=C\backslash (B\cup g_1(X))\subseteq C\backslash g_1(X)\subseteq X\backslash g_1(X)$, hence we obtain that $X\backslash g_2^{-1}(D)=X\backslash g_2^{-1}(B)$, $X\backslash g_1^{-1}(C)=X\backslash g_1^{-1}(D)$, that is, $d^+=b^+$, $d^0=c^0$, $d^{++}=b^{++}=b$, $d^{00}=b^{00}=c$. Therefore (4) holds.

If (4) holds and there exists an element $d \in A$ such that $d^{++} = b = b^{00}$, $d^{00} = c = c^{00}$, that is, $d^+ = b^+$, $d^0 = c^0$, then $X \setminus g_2^{-1}(D) = X \setminus g_2^{-1}(B)$, $X \setminus g_1^{-1}(D) = X \setminus g_1^{-1}(C)$, hence, we have that $(B \setminus D) \cup (D \setminus B) \subseteq X \setminus g_2(X)$, $(C \setminus D) \cup (D \setminus C) \subseteq X \setminus g_1(X)$. It follows that $B \subseteq D \subseteq C$ from the fact that $b = d^{++} \leqslant d \leqslant d^{00} = c$, and so $D \setminus B \subseteq X \setminus g_2(X)$, $C \setminus D \subseteq X \setminus g_1(X)$, $C \setminus B \subseteq X \setminus (g_1(X) \cap g_2(X))$. Fix b = 0, c = 1, then $B = \emptyset$, C = X, it follows that $g_1(X) \cap g_2(X) = \emptyset$.

Theorem 2.2. Let $\langle L, \vee, \wedge, ', 0, 1 \rangle$ be a de Morgan algebra and let $K(L) = \{(a, b) \in L \times L : a \leq b\}$. For every $(a, b) \in K(L)$, define $(a, b)^0 = (b', b')$ and $(a, b)^+ = (a', a')$. Then $\langle K(L), 0, + \rangle$ is a double MS-algebra satisfying (CP).

Proof. By Theorem 2. 3 in [3], $\langle K(L), {}^{\circ}, {}^{+} \rangle$ is a double MS-algebra.

Let (a,b), $(c,d) \in \mathbf{K}(L)$ such that $(a,b) = (a,b)^{00}$, $(c,d) = (c,d)^{00}$ and $(a,b) \le (c,d)$. Then a = b, c = d and $a \le c$, hence $(a,c) \in \mathbf{K}(L)$, $(a,c)^{++} = (a,a)$, $(a,c)^{00} = (c,c)$. Suppose that there exists some $(a_1,c_1) \in \mathbf{K}(L)$ such that $(a_1,c_1)^{++} = (a,c)^{++} = (a,a)$, $(a_1,c_1)^{00} = (a,c)^{00} = (c,c)$. This means that $a = a_1$, $c = c_1$, i. e., $(a,c) = (a_1,c_1)$. According to Theorem 2.1, $\mathbf{K}(L)$ satisfies (CP).

Lemma 2.1. Let L, L_1 be de Morgan algebras and let $h: L \to L_1$ be a 0-1-preserving de Morgan algebra homomorphism. For each (x,y) in K(L) define K(h) ((x,y)) = (h(x),h(y)). Then K(h) is a double MS-algebra homomorphism from K(L) into $K(L_1)$.

According to Theorem 2.2 and Lemma 2.1, we obtain a functor **K** from the category of de Morgan algebras and de Morgan algebra homomorphisms into the category of double MS-algebras and MS-algebra homomorphisms.

Lemma 2.2. Let A be a double MS-algebra and let $L(A) = \{x \in A : x = x^{00}\}$. Then L(A) is a de Morgan algebra.

Lemma 2.3. Let A, A_1 be double MS-algebras and let h be a double MS-algebra homomorphism, define L(h)(x) = h(x) for each $x \in L(A)$. Then L(h) is a de Morgan algebra homomorphism from L(A) into $L(A_1)$.

Proof. It suffices to show that the definition of L(h) is reasonable. For $x \in L(A)$, $x \in A$ and $x = x^{00}$, We have $h(x) = h(x^{00}) = h(x)^{00}$, thus $h(x) \in L(A_1)$.

MS-algebras and double MS-algebra homomorphisms into the category of de Morgan algebras and de Morgan algebra homomorphisms.

The following will be devoted to prove that L is a left adjoint of K.

Theorem 2.3. Let L be a de Morgan algebra and let $L(K(L)) = \{x \in K(L) : x = x^{00}\}$. Then $L(K(L)) \cong L$.

Proof. It is plain that L(K(L)) is a de Morgan algebra, whose elements have the form (a,a), $a \in L$. Define $P_L : (a,a) \to a$. It is easy to show that P_L is an isomorphism from L(K(L)) into L.

Theorem 2.4. Let A be a double MS-algebra satisfying (CP). Define $J_A(a) = (a^{++}, a^{00})$ for each $a \in A$. Then J_A is a double MS-algebra isomomorphism from A into K(L(A)).

Proof. Since $(a^{++})^{00} = a^{++}$ and $(a^{00})^{00} = a^{00}$, we deduce that a^{++} , $a^{00} \in \mathbf{L}(A)$. By observing that $a^{++} \leqslant a^{00}$, we have $(a^{++}, a^{00}) \in \mathbf{K}(\mathbf{L}(A))$, which implies that the definition of J_A is reasonable. Since

$$J_{A}(a \lor b) = ((a \lor b)^{++}, (a \lor b)^{00}) = (a^{++} \lor b^{++}, a^{00} \lor b^{00})$$

$$= (a^{++}, a^{00}) \lor (b^{++}, b^{00}) = J_{A}(a) \lor J_{A}(b),$$

$$J_{A}(a \land b) = ((a \land b)^{++}, (a \land b)^{00}) = (a^{++} \land b^{++}, a^{00} \land b^{00})$$

$$= (a^{++}, a^{00}) \land (b^{++}, b^{00}) = J_{A}(a) \land J_{A}(b),$$

 J_A is a lattice homomorphism.

Moreover, $J_A(a^0) = (a^{0++}, a^{000}) = (a^0, a^0)$, $(J_A(a))^0 = (a^{++}, a^{00})^0 = (a^{000}, a^{000}) = (a^0, a^0)$, hence $J_A(a^0) = (J_A(a))^0$. Similarly, $J_A(a^+) = (J_A(a))^+$. So we obtain that J_A is a double MS-algebra homomorphism. To see that J_A is also an isomorphism, suppose $(a^{++}, a^{00}) = (b^{++}, b^{00})$. By Theorem 2.1, we have a = b. This means that J_A is one-one. Since, for any $(x,y) \in K(L(A))$, that is, $x,y \in L(A)$ and $x \leq y$, by Theorem 2.1, there exists some $c \in A$ such that $c^{++} = x$, $c^{00} = y$, and hence, $J_A(c) = (x,y)$. This means that J_A is an onto mapping.

According to Theorems 2. 3 and 2. 4, it is easy to check that the mappings J_A and P_L define natural transformations $J: 1_V \to KL$ and $P: LK \to 1_M$, where 1_V and 1_M are the identity functors in the categories V and M respectively. More precisely, we have:

Theorem 2.5. <L, K, J, P > is an adjunction, with unit J and counit P.

Proof. Since we have already noted that $J: 1_V \to KL$ and $P: KL \to 1_M$ are natural transformations, according to a result in [7, ch. iv, Theorem 2(v)], to complete the proof, we have to show that the following two conditions hold, where 1_X denotes the identity for the object X:

(1) For each de Morgan algebra L, $K(P_{LK(L)})J_{K(L)} = 1_{K(L)}$, and

- (1) For each de Morgan algebra L, $K(P_{LK(L)})J_{K(L)} = 1_{K(L)}$, and
- (2) For each double MS-algebra A satisfying (CP), $P_{LKL(A)}(L(J_A)) = 1_{L(A)}$.

The prove (1), let $a, b \in L$, $a \le b$. Since

$$J_{K(L)}(a, b) = ((a,b)^{++}, (a,b)^{00}) = ((a,a), (b,b)),$$

we have

$$\begin{split} \mathbf{K}(P_{\mathbf{LK}(L)})J_{\mathbf{K}(L)}((a,b)) &= (P_{\mathbf{LK}(L)}(a,a)\,,\,P_{\mathbf{LK}(L)}(b,b)) = (a,b). \\ \text{To prove (2), let } a \in \mathbf{L}(A)\,, \text{ that is, } a \in A,\, a = a^{00}\,, \text{ since} \\ J_A(a) &= (a^{++},a^{00}) = (a,a) \in \mathbf{L}(\mathbf{KL}(A))\,, \\ P_{\mathbf{LKL}(A)}((\mathbf{L}(J_A))(a) = P_{\mathbf{LKL}(A)}((a,a)) = a \end{split}$$

Theorem 2.6. Let $\langle X, g_1, g_2 \rangle$ be a double MS-space satisfying (CP). Then the correspondence $T \to T \cup g_2(T)$ establishes an isomorphism from the lattice of all the closed g_1 -invariant subsets of $g_1(X)$ onto the lattice of all the g_1 -invariant subsets in X.

Proof. Since X is a compact totally order-disconnected topological space and $g_1(X)$ is a closed set in X, hence, is compact and the continuous mapping $g_2 \mid_{g_1(X)}$ is closed. Let T be a closed g_1 -invariant subset of $g_1(X)$. It is plain that $T \cup g_2(T)$ is a closed set in X. To prove $T \cup g_2(T)$ is a g_1 -invariant subset in X, let $x \in T \cup g_2(T)$. If $x \in T$, then $g_1(x) \in g_1(T) = T$; if $x \in g_2(T)$, let $x = g_2(t)$, $t \in T$, then $g_1(x) = g_1(g_2(t)) = g_1^2(t) \in T$. This implies that $T \cup g_2(T)$ is g_1 -invariant. Similarly, $T \cup g_2(T)$ is g_2 - invariant, hence, we obtain $T \cup g_2(T)$ is a g_1 -invariant subset in X. For each $x \in g_2(T) \cap g_1(X)$, i. e., there exist $t \in T$, $x_0 \in X$ such that $x = g_2(t) = g_1(x_0)$, we have $g_1(x) = g_1(g_2(t)) = g_1^2(t) \in T$, and so, $g_1^2(x) \in T$. Since $g_1^2(x) = g_1^2(g_1(x_0)) = g_1(x_0) = x$, $x \in T$, therefore, $g_2(T) \cap g_1(X) \subseteq T$ and then, $(T \cup g_2(T)) \cap g_1(X) = T$. From this equality we obtain that $T \cup g_2(T) \subseteq S \cup g_2(S)$ iff $T \subseteq S$. Finally, to see that the mapping is onto, note that if Y is a g_1 -invariant subset in X, then $Y = (Y \cap g_1(X)) \cup (Y \cap X \setminus g_1(X))$. It is enough to show that the following two conditions hold:

- (1) $Y \cap g_1(X)$ is a g_1 -invariant subset of $g_1(X)$.
- $(2) Y \cap X \setminus g_1(X) = g_2(Y \cap g_1(X)).$

The prove (1), note that if $y \in Y \cap g_1(X)$, then $y \in Y$, $y \in g_1(X)$ and hence $g_1(y) \in Y$, $g_1(y) \in g_1(g_1(X)) \subseteq g_1(X)$, therefore, $g_1(y) \in Y \cap g_1(X)$.

To see (2), note that, by (CP), $g_1(X) \cup g_2(X) = X$ and $g_1(X) \cap g_2(X) = \emptyset$, hence $X \setminus g_1(X) = g_2(g_1(X))$. If $t \in Y \cap X \setminus g_1(X)$, then there exists $x_0 \in X$ such that $t = g_2(g_1(x_0))$. Since Y is g_1 -invariant, $g_1(t) \in Y$, and so, $g_1(g_2(g_1(x_0))) = g_1(x_0) \in Y$, $t = g_2(g_1(x_0)) \in g_2(Y \cap g_1(X))$. Suppose alternatively that $t \in g_2(Y \cap g_1(X))$, then there exists $y \in Y$ such that $t = g_2(y)$, $y \in Y \cap g_1(X)$, since Y is g_1 -invariant, $t \in Y$, $t = g_2(y) \in g_2(g_1(X))$. \square

From Theorem 2. 6 and topological duality for double MS-algebras, we have: Corollary 2.1. The lattices Con(A) and Con(L(A)) are isomorphic for each double MS-algebra A satisfying (CP).

Remark. Since the only subdirectly irreducible de Morgan algebras are the chains with two and three elements and the four-element de Morgan algebra with two fixed points, from the above Corollary we obtain at once that the only subdirectly irreducible double MS-algebras satisfying (CP) are the following:

REFERENCES

- [1] J. Berman, Distributive lattices with an additional unary operation, Aequationes Math., 16(1977), 165-171.
- [2] T. S. Blyth and J. C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94A(1983), 301—308.
- [3] T. S. Blyth and J. C. Varlet, Double MS-algebras, Proc. Roy. Soc. Edinburgh 94A(1984), 37-47.
- [4] T. S. Blyth, G. Hansoul and J. C. Varlet, The dual space of a double MS-algebra, Algebra Universalis 28(1991), 26-35.
- [5] T. S. Blyth, J. C. Varlet, On the dual space of an MS-algebra, Math. Pannonica 1(1990), 95-109.
- [6] R. Balbes and P. Dwinger, Distributive lattices. University of Missouri Press, Columbia, Missouri, 1974.
- [7] S. Maclane, Categories for the working Mathematician, GTM., Vol. 5, Springer-Verlag, N. York, Heidelberg, Berlin, 1971.
- [8] A. Urquhart, Distributive lattices with a dual homomorphic operation, Studia Logica 38(1979), 201-209.

Department of Mathematics, Three Gorges University, Yichang 443000, P. R. China