A NOTE ON NONDISTINGUISHED KOTHE SPACES OF INFINITE TYPE

Carmen FERNÁNDEZ

Departamento de Análisis Matemático, Facultad de Matemáticas Universidad de Valencia, Dr. Moliner 50, E-46100 Burjassot (Valencia) Spain

ABSTRACT: In this note it is proved that if $\lambda_{\infty}(A)$ is any nondistinguished Köthe echelon space of infinite order, then there is a linear form on its strong dual $(\lambda_{\infty}(A))'_b$ which is locally bounded (i.e. bounded on the bounded sets) but not continuous.

MATHEMATICAL SUBJECT CLASSIFICATION: 46A06. Secondary 46A07, 46A12 KEY WORDS: Köthe echelon spaces, distinguished Fréchet spaces.

A Fréchet space F is distinguished if its strong dual F_b is barrelled or, equivalently, bomological. This means that the canonical representation of F as the (reduced) projective limit proj F_n leads to the representation $\inf_{n \to \infty} F_b$ of F_b as the inductive limit of the dual spectrum $(F_n)_n$. Distinguished Fréchet spaces were introduced by Dieudonné, Schwartz and Grothendieck.

The first example of a nondistinguished Fréchet space was given by Köthe

Présenté parJ. Schmets le 20 juin 1991

and Grothendieck and it was the Köthe echelon space of order one $\lambda_1(A)$ for the Köthe matrix $A=(a_n)_{n\in\mathbb{N}}$ on the index set NNN given by $a_n(k,j)=j$ if $k\leq n$ and $a_n(k,j)=1$ if $k\geq n+1$. For this matrix Grothendieck even proved that there is a linear form on $(\lambda_1(A))_b^*$ which is locally bounded but not continuous. Distinguished echelon spaces of order one were characterized in terms of the Köthe matrix A in [3]. In [2] it is shown that all nondistinguished Köthe echelon spaces of order one share the bad behaviour of the Köthe-Grothendieck example. On the other hand, an example of Komura (see e. g. [6] p.292) shows that there are nondistinguished Fréchet spaces such that every locally bounded linear form on F_b^* is continuous. More examples of both types of nondistinguished Fréchet spaces can be seen in [5], where one can also find the following characterization of the quasibarrelled spaces E such that on the strong dual E_b^* , there exists a noncontinuous locally bounded linear form

Lemma ([5]): Let E be a quasibarrelled l.c.s., Then the following statements are equivalent:

- (i) there exists a noncontinuous locally bounded linear form on E'
- (ii) there is a filter Fin E such that
- (a) for every 0-neighbourhood U there is $\rho_{tt}>0$ with $\rho_{tt}U\in \mathscr{F}$
- (b) for every bounded set B there exists a closed 0+neighbourhood in $(E,\sigma(E,E'))$, V_B , such that $E(B+V_B) \in \mathcal{F}$

On the other hand, distinguished Köthe echelon spaces $\lambda_{\infty}(A)$ were characterized in terms of the Köthe matrix A in [1]. Making use of these two results we show that all nondistinguished echelon spaces $\lambda_{\infty}(A)$ present exactly the same behaviour as in the case of echelon spaces of order one.

Notations for Köthe spaces are as in [4]. We recall that a Köthe space $\lambda_{\infty}(A)$ has a fundamental system of bounded sets of the form

$$\bar{v}(l_{\infty})_{i} := \{ z \in K^{I}: z = \bar{v}z'; \sup_{i \in I} |z'_{i}| \le 1 \},$$
 where $\bar{v} = \inf_{m} \rho_{m} a_{m}^{-1}$ for some sequence of positive numbers ρ_{m} .

Theorem: Let $\lambda_{\infty}(A)$ be a nondistinguished Köthe echelon space of infinite order. Then there is a locally bounded noncontinuous linear form on $(\lambda_{\infty}(A))_b^*$.

Proof: First, we assume that A is a Köthe matrix on NXN satisfying

(1)
$$a_n(k,j)=1 \forall k \geq n, \forall j \in \mathbb{N}$$

(2)
$$\lim_{j\to\infty}\frac{1}{a_{n+1}(n,j)}=0 \quad \forall n\in\mathbb{N}.$$

Let \mathcal{B}_h be the family of all the subsets B of NNN of the form $B = \bigcup_{k \geq p} \{k\} \times B_k$, where $p=p(B) \geq h$, and $B_k := \{1,2,...,n_k\}$, $n_k \in \mathbb{N}$.

Now, given $h \in \mathbb{N}$ and $(j_k)_{k \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ we put $M(h,(j_k)_{k \geq h}) := \{ \chi_B : B \in \mathcal{B}_k \text{ and } j_k \in B_k \text{ for } k \geq p(B) \},$ where χ_B denotes the characteristic function of B.

Hence $(M(h,(j_k)_{k\geq h}):h\in\mathbb{N}, (j_k)_{k\in\mathbb{N}}\in\mathbb{N}^{\mathbb{N}})$ generates a filter \mathscr{F} in $\lambda_{\infty}(A)$. We will see that \mathscr{F} satisfies the conditions (a) and (b) in Lemma above.

Given
$$n \in \mathbb{N}$$
, since $a_n(k,j)=1$ for all $k \ge n$, we have that $M(h,(j_k)_{k \ge n}) \subseteq U_n := \{(x_{k,j}): \sup_{k,j} a_n(k,j) \mid x_{k,j} \mid \le 1\}$

for all h≥n and arbitrary (j_k)_{k>h}. Therefore, condition (a) holds.

To check the other condition, we take a bounded set in $\lambda_{\infty}(A)$. We may assume that it is of the form $\tilde{v}(l_{\infty})_{1}$. Using (2), we obtain that

$$\forall k \in \mathbb{N} \exists j_k \in \mathbb{N} \ \forall j \ge j_k : |x_{k,j}| < 1/4 \ \forall x = (x_{k,j}) \in \tilde{v}(l_{\infty})_1$$

On the other hand, if x belongs to the convex hull of $M(1,(j_k)_{k\in\mathbb{N}})$, x can be expressed as a convex sum $x = \kappa_1 \chi_{B_1} + ... + \kappa_m \chi_{B_m}$, where $\chi_{B} \in M(1,(j_k)_{k\in\mathbb{N}})$, $\kappa > 0$, $1 \le r \le m$, and $\kappa_1 + ... + \kappa_m = 1$. By the definition of $M(1,(j_k)_{k\in\mathbb{N}})$, we may find $h \ge 1$ such that $j_p \in B_{r,p}$ for all $p \ge h$, and $1 \le r \le m$, whence, $\kappa(p,j_p) = 1$ for all $p \ge h$. Therefore,

$$(2\bar{\mathsf{v}}(\mathsf{l}_{\infty})_{\mathsf{i}} + \frac{1}{4} \; \mathsf{U}_{\mathsf{i}}(<1)) \cap (\mathsf{co}(\mathsf{M}(1,(\mathsf{i}_{\mathsf{k}})_{\mathsf{k} \in \mathbb{N}})) + \frac{1}{4} \; \mathsf{U}_{\mathsf{i}}(<1)) = \emptyset$$

where U₁(<1) denotes the open unit ball for a₁. Since these are disjoint open

sets, of which the first one is absolutely convex and the second one convex, we can find $u \in (\lambda(A))$ ' such that $u \in (2\bar{v}(l_{\infty})_1 + \frac{1}{4}U_1(<1))^{\circ}$ and |u(x)| > 1 for each $x \in co(M(1,(j_k)_{k \in \mathbb{N}})) + \frac{1}{4}U_1(<1))$. Therefore,

$$M(1,(j_{v})_{k\in\mathbb{N}})\cap(\overline{v}(l_{\infty})_{1}+\frac{1}{2}\{u\}^{\circ})=\emptyset,$$

Now we apply the former Lemma to obtain that there is a noncontinuous locally bounded linear form on $(\lambda_{\infty}(A))'_{k}$

In the general case, if $\lambda_{\infty}(A)$ is not distinguished, according with [1] and [2], it has a sectional subspace isomorphic to $\lambda_{\infty}(B)$ where B is a Köthe matrix on NXN satisfying (1) and (2) above. Since sectional subspaces are complemented, we are done.

Acknowledgement: The author thanks the referee for his careful reading of the manuscript and for his suggestions.

REFERENCES

- [1] F. Bastin, Distinguishedness of weighted Fréchet spaces of continuous functions, Proc. Edinburgh Math. Soc. (to appear).
- [2] F. Bastin, J. Bonet, Locally bounded noncontinuous linear forms on strong duals of nondistinguished Köthe echelon spaces, Proc. Amer. Math. Soc. 108(1990), 769-774.
- [3] K. D. Bierstedt, J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nach. 135 (1988), 149-180.
- [4] K.-D. Bierstedt, R. Meise, W. H. Summers, Köthe sets and Köthe sequence spaces, Functional analysis, holomorphy and approximation theory, North-Holland Math. Stud. 71(1982), 27-91.
- [5] J. Bonet, S. Dierolf, C. Fernández, On different types of nondistinguished Fréchet spaces, Note di Mat. (to appear)
- [6] M. Valdivia, Topics in Locally Convex Spaces, North-Holland Math. Stud. 67 (1982).