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apsTRACT: In this note it is proved that if A_(A) is any nondistinguished
Kothe echelon space of infinite order, then there is a linear form on its
strong dual (?Lw(A)); which is locally bounded (i.e. bounded on the bounded
sets) but not continuous.

MATHEMATICAL SUBJECT CLASSIFICATION: 46A06. Secondary 46A07, 46A12
ksy worps: Kothe echelon spaces, distinguished Fréchet spaces.

A Fréchet space F is distinguished if _its strong dual F; is barrelled or,
equivalently, bomological, This means that the canonical representation of F
as the (reduced) projective limit gol]; F,1 leads to the representation ;ni) F;
of F; as the inductive limit of the dual spectrum (F:‘)n. Distinguished Fréchet
spaces were introduced by Dieudonné, Schwartz and Grothendieck.

The first example of a nondistinguished Fréchet space was given by Kothe
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and Grothendieck and it was the Kothe echelon space of order one li(A) for the
Kiéthe matrix A:(an)n&,N on the index set NN given by an(kJ)=j if k<n and
an(k.j)=1 if k>n+1. For this matrix Grothendieck even proved that there is a
linear form on (KI(A)); which is locally bounded but not continuous,
Distinguished echelon spaces of order one were characterized in terms of the
Kothe matrix A in [3], In [2] it is shown that all nondistinguished K&the
echelon spaces of order one share the bad behaviour of the Kdthe-Grothendieck
example. On the other hand, an example of Komura (see e. gi-[6] p.282) shows
that there are nondistinguished Fréchet spaces such that every locally bounded
linear form on F is continuous. More examples of both types of
nondistinguished Fréchet spaces can be seen in [5], wherewone can also find
the following characterization of the quasibarrelled spaces ‘E such that on the
strong dual E;’ there exists a noncontinuous locally boundedlinear form

Lemma ([S1): Ler E be a quasibarrelled l.c.s., Then the following statements
are equivalent.

(i} there exists a noncontinuous locally bounded linear form on E;

(ii} there is a filter &Fin B such that

{a} for every O-neighbourhood U there is pU>0 with pUUeifg'

{b) for every bounded set B there exists a closed Osneighbourhood in
(EO(BE, V,, such that ENB+Y )& S

On the other hand, distinguished K&the echelon spaces A__(A) were characterized
in terms of the Kéthe matrix A in {1]. Making use of these two resulls we show
that all nondistinguished echelon spaces A_(A) presentcexactly the same
behaviour as in the case of echelon spaces of order one.

Notations for Kithe spaces are as in [4]. We recall'that a Kéthe space
A_(A) has a fundamental system of bounded sets of the form
ir(lm)l:=( zeh z = V2 sup izi|$1 )
i€ 1
where v = inf p a’ for some sequence of positive numbersap. .
m mom aim

Theorem: Let A_(A) be a nondistinguished Kéthe echelonsspace of infinite
order. Then there is a locally bounded noncontinuous linear/ form on (.'&.W(A));.
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Proof: First, we assume that A is a K6the matrix on 0@ satisfying

(1) a (kj)=1 Vkon, VieN
: 1 _
2 }_1993 W =0 Vnen

Let QB’ be the family of all the subsets B of ™ of the form
B=1 {k}xB where p=p(B)2h, andB ={1,2,.. By },n e,
x2p

Now, given hed and (jk)kewewN we put

M(h'(jk)kZh)::{ yx Be QB;" and jke Bk for k2p(B)],
where A denotes the characteristic function of B,

. . . N .
Hence M(h,(jk) l(2]‘).}112&\1, (;k)k enEN } generates a filter & in &_(A). We
will see that SFsatisfies the conditions (a) and (b) in Lemma above.

Given neW, since a (k j)=1 for all k>n, we have that
MO G),5)CU=(05, s gup 3, (e Ix, 1<)
for all h2n and arbitrary (j),, . Therefore, condition (a ) holds.

To check the other condition, we take a bounded set in A_(A). We may
assume that it is of the form v(l__ ) Using (2), we obtain that
Vkewt 3j en Vi, : |x |< 14 Vx=(x, Je ),

On the other hand, if x béiongs to the convex huil of M(l,(jk)k ew)’ X can
be expressed as a convex sum X = K xB +.4+ K xB . Where xﬂeM{l,{j)kew),

K>0 1<r<m, and K FadK =1. By :he defimuon of M(1, (;lew) we may
ﬁnd hz1 such that _] eB for aii pzh, and 1sr<m, whence, X(p,j) 1 for all
p=h. Therefore,

) + - U<D)=0

where U:(d) denotes the open unit ball for a. Since these are disjoint open

(290,) + — U (<DNeoMG), ey
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sets, of which the first one is absolutely convex and the second one convex,
]

we can find ve (A{A))* such that ue (2\7(100)1+ 711_U1(<1)) and |u(x) [>1 for each

x& oML, o)) + U (<1)). Therefore,

MG, G, + () )=0,

Now we apply the former Lemma to obtain that there is a noncontinuous locally
bounded linear form on (?»m(A));

In the general case, if A _(A) is not distinguished, according with
(13 and [2], it has a sectional subspace isomorphic to A_(B) where B is a
Kdthe matrix on NxN satisfying (1) and (2) above. Since sectional subspaces
are complemented, we are done.
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