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Abstract

In [10], we started the study of the countable intersections of non
quasi-analytic classes of ultradifferentiable functions. In particular
the Beurling and the Roumieu intersections coincide as vector spaces.
We then studied the countable Beurling-Beurling intersections in [11]
and [12], up to tensor product characterizations and kernel theorems.
In this paper, we present a study of the countable Beurling-Roumieu
intersections.
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1 Introduction

In [10], we introduced countable intersections of non quasi-analytic classes of
ultradifferentiable functions of Beurling and of Roumieu type. In particular,
we proved that as vector spaces, they coincide but are in general new spaces,
developed some general properties (about denseness, for example) and gave
a condition under which these spaces are nuclear.

In [11] and [12], we introduced the countable Beurling-Beurling intersec-
tions

E(M×M′)(Ω× Ω′),D(M×M′)(Ω× Ω′) and D(M×M′)(K ×K ′),

of non quasi-analytic classes of ultradifferentiable functions and presented a
study of their properties up to tensor product characterizations and kernel
theorems.
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In this paper we study the remaining Beurling-Roumieu case, i.e. we study
the spaces

D(M×M ′}(K ×K ′) and D(M×M ′}(Ω× Ω′).

It is appropriate to mention that a huge literature exists on non quasi-
analytic classes of ultradifferentiable functions, and on their duals, the spaces
of ultradistributions. Basic references are [4] and [1]. Moreover kernel theo-
rems have already been obtained in this setting, such as [5], [6] and [7].

2 Notations

All functions we consider are complex-valued and all vector spaces are C-
vector spaces. The euclidean norm of x ∈ Rn is designated by |x|. If f is a
function on A ⊂ Rn, then ‖f‖A is defined by ‖f‖A = supx∈A |f(x)|.

If E is a Hausdorff locally convex topological vector space (in short, a
locally convex space), we designate by E ′ its topological dual endowed with
the strong topology β(E ′, E). We refer to [3] and [8] for properties of locally
convex spaces.

Whenever m is a sequence (mp)p∈N0 of real numbers, the notation M
designates as usual the sequence (Mp)p∈N0 where Mp = m0 . . . mp for every
p ∈ N0. Such a sequence m is:
(a) normalized if m0 = 1 and mp ≥ 1 for every p ∈ N;
(b) non quasi-analytic if

∑∞
p=0 1/mp < ∞.

A semi-regular matrix is a matrix of the type m = (mj,p)j∈N,p∈N0 of real
numbers such that, for every j ∈ N, the sequence mj = (mj,p)p∈N0 is increas-
ing, normalized, non quasi-analytic and such that:
(a) mj,p ≥ mj+1,p for every p ∈ N0;
(b) limp→∞ mj+1,p/mj,p = 0.

From now on and unless explicitely stated,
a) r and s are positive integers;
b) Ω and Ω′ are non empty open subsets of Rr and Rs respectively;
c) m′ = (m′

p)p∈N0 is an increasing, normalized and non quasi-analytic se-
quence and we set M ′ = (M ′

p)p∈N0 . Moreover, from Paragraph 6 on, we
require that M ′ is stable under differential operators, i.e. M ′ verifies the con-
dition (M.2)’ of [4]: there are constants A, H > 1 such that M ′

p+1 ≤ AHpM ′
p

for every p ∈ N0.
d) m is a semi-regular matrix and we set M j = (Mj,p)p∈N0 for every j ∈ N
and M = (Mj,p)j∈N,p∈N0 .
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3 The spaces D(M×M ′}(K ×K ′)
and D(M×M ′}(Ω× Ω′)

Definition. For every j ∈ N, h > 0 and k > 0, B(Mj×M ′),h,k(Rr × Rs)
is the Banach space of the C∞-functions f on Rr × Rs such that

‖f‖j,h,k := sup
(α,β)∈Nr

0×Ns
0

‖D(α,β)f‖Rr×Rs

h|α|k|β|Mj,|α|M ′
|β|

< ∞

endowed with the norm ‖.‖j,h,k.

For every h > 0 and k > 0, the Fréchet space B(M×M ′),h,k(Rr × Rs) is the
projective limit of the spaces B(Mj×M ′),h,k(Rr × Rs).

Definition. Let us introduce our main spaces D(M×M ′}(K ×K ′) and
D(M×M ′}(Ω× Ω′).

With the notations j ∈ N, h > 0, k > 0, K a non void compact subset of
Rr and K ′ a non void compact subset of Rs, we successively set:
a) D(Mj×M ′),h,k(K ×K ′) is the Banach subspace of B(Mj×M ′),h,k(Rr × Rs)
the elements of which have their support contained in K ×K ′;
b) D(M×M ′),h,k(K ×K ′) = lim←−

j∈N
D(Mj×M ′),h,k(K ×K ′);

c) D(M×M ′),k(K ×K ′) = lim←−
h>0

D(M×M ′),h,k(K ×K ′);

d) D(M×M ′}(K ×K ′) = lim−→
k>0

D(M×M ′),k(K ×K ′);

e) D(M×M ′}(Ω× Ω′) = lim−→
KbΩ,K′bΩ′

D(M×M ′}(K ×K ′).

Definition. A subset B of Rn has the local displacement property if
every x ∈ B has a neighbourhood W such that, for every ε > 0, there is
a ∈ Rn such that |a| ≤ ε and a + (B ∩W ) ⊂ B◦.

If B1, . . . , Bq are a finite number of closed balls of Rn such that Bj∩Bk 6= ∅
implies B◦

j ∩B◦
k 6= ∅, one can chek that their union has the local displacement

property. Moreover if the compact subsets K of Rr and K ′ of Rs have the
local displacement property, it is clear that K ×K ′ also has this property.

Therefore, we may consider exhaustions (Kn)n∈N and (K ′
n)n∈N of Ω and

Ω′ respectively, made of non void compact sets having the local displacement
property and such that Kn ⊂ K◦

n+1 and K ′
n ⊂ K ′◦

n+1 for every n ∈ N. In
particular, we have

D(M×M ′}(Ω× Ω′) = lim−→
n∈N

D(M×M ′}(Kn ×K ′
n) = lim−→

n∈N
D(M×M ′),n(Kn ×K ′

n).
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Proposition 9.1 of [9] states that, for every j ∈ N, 0 < h < h′, 0 < k < k′

and compact subsets K of Rr and K ′ of Rs, the canonical injection

J : D(Mj×M ′),h,k(K ×K ′) → D(Mj×M ′),h′,k′(K ×K ′)

is a compact linear map. Therefore
a) D(M×M ′),k(K ×K ′) is a (FS)-space;
b) D(M×M ′}(K ×K ′) and D(M×M ′}(Ω× Ω′) are (LFS)-spaces.

For the sake of clarity, let us recall the following facts (cf. [4]).
If m is an increasing, normalized and non quasi-analytic sequence, then

a) for every h > 0 and non void compact subset K of Rn, D(M),h(K) is the
Banach space of the functions f ∈ E (Rn) having their support contained in
K and such that

‖f‖h := sup
α∈Nn

0

‖Dαf‖Rn

h|α|M|α|
< ∞

endowed with the norm ‖.‖h;
b) the (FS)-space D(M)(K) is the projective limit of the spaces D(M),h(K);
c) the (DFS)-space D{M}(K) is the inductive limit of the spaces D(M),h(K).
d) the (DFS)-space D{M}(Ω) is the inductive limit of the spaces D{M}(Kn)
hence of the spaces D(M),n(Kn).

This leads to the following definitions:
e) the (FS)-space D(M)(K) is the projective limit of the spaces D(Mj)(K)
and, in order to avoid any confusion, we shall denote by ‖.‖j,h the norm ‖.‖h

of the space D(Mj)(K);
f) the (LFS)-space D(M)(Ω) is the strict inductive limit of the spacesD(M)(Kn).

4 First properties

Proposition 4.1 For every f ∈ D(M)(K) and g ∈ D(M ′),k(K ′), it is im-
mediate that f ⊗ g belongs to D(M×M ′),k(K ×K ′) and verifies ‖f ⊗ g‖j,h,k =
‖f‖j,h ‖g‖k for every j ∈ N and h > 0.

Therefore

⊗ : D(M)(K)×D(M ′),k(K ′) → D(M×M ′),k(K ×K ′); (f, g) 7→ f ⊗ g

is a well defined continuous bilinear map and the canonical injection from
D(M)(K)⊗π D(M ′),k(K ′) into D(M×M ′),k(K ×K ′) is continuous.

Proposition 4.2 The multiplication maps

Λ: B(M×M ′),h,k(Rr × Rs)2 → B(M×M ′),2h,2k(Rr × Rs)
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and

Λ: B(M×M ′),h,k(Rr × Rs)×D(M×M ′),h,k(K ×K ′) → D(M×M ′),2h,2k(K ×K ′)

defined by Λ(f, g) = fg are well defined, continuous and bilinear.

Proof. This is a direct consequence of the Leibniz formula.

Definition. We designate by E (p!q!)(Rr × Rs) the space of the func-
tions f ∈ E (Rr+s) such that

|f |K×K′,h := sup
(α,β)∈Nr

0×Ns
0

‖D(α,β)f‖K×K′

h|α|+|β|α!β!
< ∞

for every h > 0 and non void compact subsets K of Rr and K ′ of Rs, endowed
with the system of norms {|.|K×K′,h : K b Rr, K ′ b Rs, h > 0}. It clearly is
a Fréchet space but more can be said.

We let moreover H(Cn) designate the Fréchet space of the holomorphic
functions on Cn endowed with the topology of uniform convergence on the
compact subsets of Cn.

Then standard holomorphic properties provide directly that the restric-
tion map R : H(Cr+s) → E (p!q!)(Rr × Rs) defined by f 7→ f |Rr×Rs is a topo-
logical isomorphism.

Proposition 4.3 The multiplication map

λ : E (p!q!)(Rr × Rs)×D(M×M ′),h,k(K ×K ′) → D(M×M ′),2h,2k(K ×K ′)

defined by Λ(f, g) = fg is well defined, continuous and bilinear.

Proof. Direct consequence of Proposition 10.2 of [9].

5 Approximation and denseness

Notation. For every m ∈ N, ψm is the function defined on Rr × Rs

by

ψm(u, v) := mr+sπ−(r+s)/2e−m2|(u,v)|2 , ∀(u, v) ∈ Rr × Rs.

Let us note that, for every f ∈ D(Rr × Rs) and m ∈ N, the convolution
product f?ψm belongs to E (p!q!)(Rr × Rs) since it has a holomorphic extension
on Cr+s.
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Proposition 5.1 For every f ∈ D(M×M ′),h,k(K ×K ′), (f ? ψm)m∈N is a
sequence converging to f in B(M×M ′),2h,2k(Rr × Rs).

Proof. This is a direct consequence of Proposition 10.1 of [9] stating
that, for every j ∈ N and g ∈ D(Mj×M ′),h,k(K ×K ′), (g ? ψm)m∈N is a
sequence converging to g in B(Mj×M ′),2h,2k(Rr × Rs).

Proposition 5.2 Let the compact subsets H, K of Rr and H ′, K ′ of Rs

be such that H ⊂ K◦ and H ′ ⊂ K ′◦.
a) The closure of D(M)(K)⊗D(M ′)(K ′) in D(M×M ′),4h,4k(K ×K ′) contains

D(M×M ′),h,k(H ×H ′).
b) The closure of D(M)(K)⊗D(M ′)(K ′) in D(M×M ′),4k(K ×K ′) contains

D(M×M ′),k(H ×H ′).

Proof. One has just to proceed as in the proof of Proposition 5.2 of [9].

Notation. Given c ∈ Rn and a function f defined on Rn, τcf desig-
nates the function defined on Rn by τcf(.) = f(.− c).

Proposition 5.3 For every c ∈ Rr × Rs, the map τc is an isometry of
B(M,M ′),h,k(Rr × Rs)onto itself.

Moreover we have lim|c|→0 τcf = f in B(M,M ′),2h,2k(Rr × Rs) for every

f ∈ B(M,M ′),h,k(Rr × Rs).

Proof. This is a direct consequence of Proposition 10.4 of [9].

Proposition 5.4 If the compact subsets K of Rr and K ′ of Rs have the
local displacement property, then
a) the closure of D(M)(K)⊗D(M ′)(K ′) in D(M×M ′),8k(K ×K ′) contains the
space D(M×M ′),k(K ×K ′);
b) D(M)(K)⊗D(M ′)(K ′) is dense in D(M×M ′}(K ×K ′);
c) D(M)(Ω)⊗D(M ′)(Ω′) is dense in D(M×M ′}(Ω× Ω′).

Proof. One has just to proceed as in the proof of Proposition 5.4 of [9].

6 Structure of the elements of the space

D(M,M ′}(K ×K ′)

Let us recall that, from now on, we require that the sequence M ′ is stable
under differential operators. This implies in particular that, for every l ∈ N,
there is a constant Al > 1 such that M ′

p+l ≤ AlH
lpM ′

p for every p ∈ N (in

fact Al = AlH l(l−1)/2 is suitable).
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Proposition 6.1 For every k > 0 and β ∈ Ns
0, the differential map

D(0,β) is a well defined continuous linear map from D(M×M ′),k/H|β|
(K ×K ′)

into D(M×M ′),k(K ×K ′).
Therefore, for every β ∈ Ns

0, D(0,β) is a well defined continuous linear
map from D(M×M ′}(K ×K ′) into itself.

Proof. This is clear since, for every f ∈ D(M×M ′},k(K ×K ′), j ∈ N
and h > 0, we easily get

‖D(0,β)f‖j,h,k ≤ A|β|k
|β|H−|β|2 ‖f‖j,h,k/H|β| .

Proposition 6.2 a) For every f ∈ D(M×M ′),k(K ×K ′), the function

g : Rs → D(M)(K); y 7→ f(., y)

is well defined, C∞ and such that [Dβg(y)](.) = D(0,β)f(., y) for every β ∈ Ns
0

and y ∈ Rs.
b) Therefore, for every f ∈ D(M×M ′}(K ×K ′), the function

g : Rs → D(M)(K); y 7→ f(., y)

is well defined, C∞ and such that [Dβg(y)](.) = D(0,β)f(., y) for every β ∈ Ns
0

and y ∈ Rs.

Proof. a) For every j ∈ N, f belongs to D(Mj ,M ′),k(K ×K ′). The
proof of Proposition 11.1 of [9] then applies.

Proposition 6.3 Let S belong to D(M)(K)
′
.

a) If k > 0 is fixed, then, for every f ∈ D(M×M ′),k(K ×K ′), the func-
tion 〈S, f(., y)〉 belongs to the space D(M ′),k(K ′) and verifies the equality
Dβ〈S, f(., y)〉 = 〈S,D(0,β)f(., y)〉 for every β ∈ Ns

0 and y ∈ Rs. Moreover

ΓS : D(M×M ′),k(K ×K ′) → D(M ′),k(K ′); f 7→ 〈S, f(., y)〉

is a well defined continuous linear map.
b) Therefore, for every f ∈ D(M×M ′}(K ×K ′), the function 〈S, f(., y)〉

belongs to D(M ′)(K ′) and verifies Dβ〈S, f(., y)〉 = 〈S,D(0,β)f(., y)〉 for every
β ∈ Ns

0 and y ∈ Rs. Moreover

ΓS : D(M×M ′}(K ×K ′) → D{M ′}(K ′); f 7→ 〈S, f(., y)〉

is a well defined continuous linear map.
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Proof. a) By the previous result, we know that 〈S, f(., y)〉 is a C∞-
function with support contained in K ′, that verifies the announced equalities.
As S belongs to D(M)(K)

′
, for every j ∈ N, there are h(j) > 0 and Cj > 0

such that |〈S, .〉| ≤ Cj ‖.‖j,h(j) on D(Mj)(K), which leads to

‖〈S, f(., y)〉‖k ≤ Cj ‖f‖j,h(j),k < ∞
and we conclude at once.

Proposition 6.4 For every k > 0, the map

∆: D(M×M ′),k(K ×K ′)×D(M)(K)
′ → D(M ′),k(K ′); (f, S) 7→ 〈S, f(., y)〉

is well defined, bilinear and hypocontinuous.

Proof. As D(M×M ′),k(K ×K ′) is a Fréchet space and as D(M)(K)
′
is

the strong dual of an (FS)-space, we only need to prove that the map ∆ is well
defined and sequentially continuous. This easily follows from the following
argument.

Let the sequences (fn)n∈N and (Sn)n∈N converge to 0 in respectively

D(M×M ′),k(K ×K ′) and D(M)(K)
′
. As {Sn : n ∈ N} is an equicontinuous

subset of D(M)(K)
′
, there are j ∈ N, h > 0 and C > 0 such that

|〈Sn, g〉| ≤ C ‖g‖j,h , ∀g ∈ D(M)(K),

and this leads to

‖〈Sn, fn(., y)〉‖k ≤ C ‖fn‖j,h,k , ∀n ∈ N.

7 Structure of the elements of the space

D(M×M ′)(Ω× Ω′)

Let us recall that M ′ is supposed stable under differential operators.

Proposition 7.1 For every β ∈ Ns
0, D(0,β) is a well defined continuous

linear map from D(M×M ′}(Ω× Ω′) into itself.

Proof. Direct consequence of Proposition 6.1.

Proposition 7.2 For every f ∈ D(M×M ′}(Ω× Ω′), the function

g : Rs → D(M)(Ω); y 7→ f(., y)

is well defined, C∞ and such that [Dβg(y)](.) = D(0,β)f(., y) for every β ∈ Ns
0

and y ∈ Rs.
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Proof. Direct consequence of Proposition 6.2.

Proposition 7.3 Let S belong to D(M)(Ω)
′
.

a) For every f ∈ D(M×M ′}(Ω× Ω′), the function 〈S, f(., y)〉 belongs to the
space D{M ′}(Ω′) and verifies the equality Dβ〈S, f(., y)〉 = 〈S,D(0,β)f(., y)〉 for
every β ∈ Ns

0 and y ∈ Rs.
b) The linear map

ΓS : D(M×M ′}(Ω× Ω′) → D{M ′}(Ω′); f 7→ 〈S, f(., y)〉
is continuous.

Proof. Direct consequence of Proposition 6.3.

Proposition 7.4 The bilinear map

∆: D(M×M ′}(Ω× Ω′)×D(M)(Ω)
′ → D{M ′}(Ω′); (f, S) 7→ 〈S, f(., y)〉

is hypocontinuous.

Proof. As the space D(M×M ′}(Ω× Ω′) and D(M)(Ω)
′
are barrelled, it

suffices to establish that the bilinear map ∆ is separately continuous.
By the previous Proposition, we know that, for every S ∈ D(M)(Ω)

′
,

∆(., S) is a continuous linear map.
For every f ∈ D(M×M ′}(Ω× Ω′), there are k0 > 0, K0 b Ω and K ′

0 b Ω′

such that f ∈ D(M×M ′),k0(K0 ×K ′
0). As every S ∈ D(M)(Ω)

′
belongs to

D(M)(K0)
′
, we get

〈S, f(., y)〉 ∈ D(M ′),k0(K ′
0) ⊂ D{M ′}(K ′

0)

with

‖〈S, f(., y)〉‖k0
= sup

β∈Ns
0

∥∥Dβ〈S, f(., y)〉
∥∥

K′
0

k
|β|
0 M ′

|β|
= sup

g∈B
|〈S, g〉|

where

B := {D(0,β)f(., y)

k
|β|
0 M ′

|β|
: β ∈ Ns

0, y ∈ K ′
0}

is a bounded subset of D(M)(K0) hence of D(M)(Ω) since, for every j ∈ N and
h > 0, we have

sup
g∈B

‖g‖j,h = sup
β∈Ns

0
y∈K′

0

sup
α∈Nr

0

∥∥∥D(α,β)f(., y)
∥∥∥

K0

h|α|M ′
j,|α|

= ‖f‖j,h,k0
< ∞.
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8 Tensor product characterizations

Let us recall that M ′ is supposed stable under differential operators.

Definition. Given k ∈ N, S ∈ D(M)(K)
′
and T ∈ D(M ′),k(K ′)

′
, we

just obtained that the semi-tensor product

S ® T : D(M×M ′),k(K ×K ′) → C; f 7→ 〈T, 〈S, f(., y)〉〉

is a continuous linear functional.

Proposition 8.1 For every k ∈ N, the bilinear map

® : D(M)(K)
′ ×D(M ′),k(K ′)

′ → D(M×M ′),k(K ×K ′)
′
; (S, T ) 7→ S ® T

is continuous.
If the sets P ⊂ D(M)(K)

′
and Q ⊂ D(M ′),k(K ′)

′
are equicontinuous,

then P ® Q = {S ® T : S ∈ P , T ∈ Q} is an equicontinuous subset of

D(M×M ′),k(K ×K ′)
′
.

Proof. The space D(M)(K)
′
is barrelled and D(M ′),k(K ′)

′
is a Banach

space. So it suffices to note that, for every closed absolutely convex neigh-
bourhood U of 0 in D(M×M ′),k(K ×K ′)

′
,

⋂

‖T‖≤1

{S ∈ D(M)(K)
′
: S ® T ∈ U}

is a barrel.

Notation. For every k ∈ N, we designate by Gk(K ×K ′) the topo-
logical vector subspace D(M)(K)⊗D(M ′),k(K ′) of D(M×M ′),k(K ×K ′).

Definition. As in [10], we say that m (or equivalently M) is regular
if, for every j ∈ N, there are constants A(j), H(j) > 1 such that

Mj+1,p+1 ≤ A(j)H(j)pMj,p, ∀p ∈ N.

Proposition 8.2 For every k ∈ N,
a) the canonical injection I : Gk(K ×K ′) → D(M)(K)⊗ε D(M ′),k(K ′) is con-
tinuous.
b) if M is regular, then the spaces Gk(K×K ′), D(M)(K)⊗πD(M ′),k(K ′) and
D(M)(K)⊗ε D(M ′),k(K ′) coincide algebraically and topologically.
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Proof. a) is a direct consequence of the second part of Proposition 8.1.
b) is then a direct consequence of Proposition 4.1 and of the fact that,

by Proposition 8.2 of [10], as M is regular, D(M)(K) is a nuclear space.

As D(M)(K) is a Fréchet space and D(M ′),k(K ′) a Banach space, every
separately continuous bilinear functional on D(M)(K) × D(M ′),k(K ′) is con-
tinuous. Therefore, by [2], we have

D(M)(K)⊗π D(M ′),k(K ′) = D(M)(K)⊗i D(M ′),k(K ′)

where⊗i denotes the inductive tensor product. So designating by Ĝk(K×K ′)
the completion of Gk(K ×K ′), i.e. the closure of the space Gk(K ×K ′) in
D(M×M ′),k(K ×K ′), we obtain

Ĝk(K ×K ′) = D(M)(K)⊗̂πD(M ′),k(K ′) = D(M)(K)⊗̂iD(M ′),k(K ′)

if M is regular.

Theorem 8.3 If M is regular,
a) and if the compact subsets K of Rr and K ′ of Rs have the local displace-
ment property, then we have

D(M×M ′}(K ×K ′) = lim
→
D(M)(K)⊗̂πD(M ′),n(K ′).

b) we have

D(M×M ′}(Ω× Ω′) = lim
→
D(M)(Kn)⊗̂πD(M ′),n(K ′

n).

Proof. a) For every n ∈ N, Ĝn(K×K ′) is a topological vector subspace
of D(M×M ′),n(K ×K ′) which, by Proposition 5.4, is continuously embedded

in Ĝ8n(K ×K ′) hence

D(M×M ′}(K ×K ′) = lim
→
D(M×M ′),n(K ×K ′) = lim

→
Ĝn(K ×K ′).

b) As we have

D(M×M ′}(Ω× Ω′) = lim
→
D(M×M ′),n(Kn ×K ′

n),

the same procedure applies since Ĝn(Kn × K ′
n) is a topological vector sub-

space of D(M×M ′),n(Kn ×K ′
n) which is continuously embedded in the space

Ĝ8n(Kn ×K ′
n), a topological vector subspace of Ĝ8n(K8n ×K ′

8n).
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