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ON BANACH SPACES INVARIANT
UNDER DIFFERENTIATION

Michael LANGENBRUCH and Jiirgen VOIGT

Summary

If E is a Fréchet space which is continuously embedded in D’'(€2) and invariant
under differentiations then E is already contained in C°(€2). If additionally B
is a Banach space then E cannot contain D(§2). We investigate these and several

related properties.

In analysis it is a widely accepted fact that there is no Banach space E such that
D(Q) C ECD,(Q) with continuous inclusions (%)

and such that

all partial differentiations act continuously in E. (%)

Here and in the following @ C R is open, D(R) is the space of test functions and
D! (Q2) denotes the space of distributions on 2 endowed with the weak topology.
Surprisingly, a proof of this folklore fact seems to be missing. The aim of the present
paper is to provide a short proof and to discuss some related questions. We will show
in particular that a Banach space E satisfying (x+) and the right hand inclusion of (x)
is already contained in a canonical weighted space of entire functions.
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Let H(C") denote the space of entire functions and
Hy o= { feHT)] / |/ () Pe=24k gy < oo}, for A> 0.

The theorem below is the main result of this paper. We consider here a situation
slightly more general than (x) and (*x) which can easily be dualized (see Theorem 6).

Theorem 1. Let E be a Fréchet space. Let 5 E — D'(Q) and d;: E — E, for
j=1,...,n, be linear mappings such that

se: E — D (Q) s continuous 1)
and
)od;j=0j03c forj=1,...,n, (2)
for the distributional derivatives 8; = 0/0x;. | |
a) Then x(FE) is contained in C*(2), and

w. B — C®(Q) 1is continuous.

b) Let E be a Banach space and let  be connected. Then there is A > 0 such that
any h € »(E) can be extended uniquely to a function h € Hy, and the resulting
mapping

3. B — Hy s continuous.

Proof. a) i) Passing to se: E := E/ ker(s) — D/,(Q) and identifying E with a subspace
of D'(Q) (via 5) we may assume that F is contained in D'(12),

»x=1id: E — D,(Q) is continuous, (3)
and
d; = 8;: E — E s continuous. ' (4)
Indeed, d; is well-defined on E because of (2), and d; is continuous by the closed graph
theorem (and (1)).
ii} For a compact K C Q let D(K) := {f € C®°(R") | supp f C K}. The mapping
T:ExD(K) —»C, T(h,o) = (h )

is separately continuous by (3). Since E and D(K) are Fréchet spaces, T is continuous
and thus there are a continuous seminorm || - || on E and k € N such that

[(h, 0} < CullAll [l@llx  for any h € E and any ¢ € D(K) (5)
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where ||¢||x == sup |p(®(z)|. For a distribution f with compact support the Fourier
laf<k

2€EK
Laplace transform is denoted by

F(2) = (f, exp(—i(-, 2))), forzeC
By Leibniz’ rule, (5) implies

12%(he)(2)| < Cy glip 18P ook (1 + [2])F e
Lo

for all z € C*, o € N}. Thus, ph € D(R?) for any ¢ € D(K) by the theorem of Paley-
Wiener, and therefore b € C®(Q). The inclusion id: E — C®(Q) is continuous by

the closed graph theorem and (3).
b) Let || - || be the norm on E. By (4) thereis C > 1 such that for j=1,...,n

18;h]] < Clih|| forall h € E.
From a) we know that for any compact K .C Q there is Cx > 1 such that

[|Allx := sup |h(z)] < Ckllh|| forallhe E.
z€K

This implies that for all h € F
12®lx < Cxl{R| < CxC¥|h|| for all o € N;. (6)

By Taylor’s theorem, A is a real analytic function on § with everywhere convergent
Taylor series. Since €2 is connected, we get for fixed zp € 2

hiz) = Z R (zo)(z — 20)*/a! for any z € Q.
[+3

This formula also defines an entire extension h of h and
|h(2)] < C3€¥ for any z € C

by (6). This implies that he Hse and id: E — Hae is continuous by the closed
graph theorem, property (3), and the identity theorem. ‘ O

Corollary 2. a) The space C®(Q) is the mazimal Fréchet space satisfying (%) and

b) There egists no Banach space E' satisfying (*) and (%),

Proof. a) directly follows from Theorem 1la).

b) If E is a Fréchet space satisfying () and (x), then Theorem la) implies that E
induces the standard Fréchet topology on D(K) for any compact K C €. This shows
b). o ' O
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Example 3. Let W: C* — R satisfy

sup W(€+2) < C+W(z) onC" (7N

fei<t

Then
HW) = {f e HC) | / F@)P ™ dz < oo}

satisfies (1) and (2) for s(f) := f|,

Proof. (1) is trivial. Since

orol<( [ Ir@Pa)" for s e HE)

=it

we get for f € H(W) by (7)
Josere i<t [ e ordee o ds
lgf<t

. 2 _—2W(Z+4€) — ‘2 ~2W (z)
<024|<1/]f(z+§)l eIV (g e 03/1f<z>1 W)y

O

A similar series of examples can also be given using L,-norms for p € [1, co] instead of
the Ly-norm.

By Theorem 1a) and Example 3, H4 is the “largest” Banach space satisfying (1)
and (2). :

If Q is not connected, we can choose a space from Example 3 (or a subspace closed
under differentiation) on each connected component of Q. In particular, the space of
locally constant bounded functions provides an example of a Banach space satisfying
(1) and (2).

In Theorem 1a), the differentiations 8; in (2) can be substituted by a more general
set of partial differential operators:

Propoéition 4. Let P, (8), » , Pa(8) be partial differential operators with constant
coefficients. Let E be a Fréchet space satisfying (1) and let ‘

P;(8)»(E) C %(E) forj=1,...,d

If the algebra generated by {P1(9),. .. , Pi(0)} contains a non-constant hypoelliptic op-
erator P(8), then »(F) C C®(%). :

Proof. We modify the proof of Theorem 1a): We may suppose that (3) holds. By (5)
we then get for ¢ € D(K), h € E fixed, and all j € N '

]((Pi(a)h)go)/\(x)] < CIPIO)A| (1 + |z))* = C;(1 + |z|)*  for z € R™.
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Since P(d) is hypoelliptic we can use Hormander [1, Theorem 11.1.8] and.conclude
that

he (V| BY,5(@) C C°(Q),

j€N

where g(z) := 1/(1 + |z])¥. The inclusion follows from Sobolev’s lemma (Hérmander
[1, Theorem 10.1.25]) since -

P(z) = (TIPD@)P) 2 01+ lz))*

for some ¢ > 0 again by the hypoellipticity of P # const (use Hérmander [1, Theo-
rem 11.1.3IIb]). o

Conversely, if P(9) is a non-cbnstant paxfial differential operator such that for any
Fréchet space E satisfying (1) and P(8)x(E) C »(E) we have »(E) C C®(Q), then
P(0) is hypoelliptic. Indeed, we set

E:={heC(Q)|P(d)h=0}

with the topology induced by C(Q). Then E is closed in C(f2) and invariant under
P(d), hence E C C*(Q) by assumption. Thus P(0) is hypoelliptic.

One could guess that a Banach space E with (xx) could be found satisfying (*) in
a suitably weaker form. We will show now that this is impossible in a rather general
setting. In fact, let E be a space of hyperfunctions on . Then by the definition of
hyperfunctions (see e.g. Hérmander [1, Chapter 9])

E(K):={h e E|supph C K} C A(K)" for any compact K C &,

where A(K) denotes the space of holomorphic germs near K. Condition (8) below thus
is a very weak substitute for (x).

Theorem 5. Let E be a Banach space of hyperfunctions on § such that for some
compact K C §)

{0} # E(K) and id: E(K) — A(K), is continuous. (8)
Then P(O)E ¢ E for any non-constant partial dzﬁ‘(:rential operator P(9).
Proof. E(K) is closed in F by (8) Let P(8)E C E. Then P(9)E(K) C E(K) and
P(8): E(K) — E(K) is continuous 9)
by (8) and the closed graph theorem. Since
T: E(K)x H(C*) — C, (h,f)— (b f),
is separately continuous by (8) and hence continuous, there is k € N such that
(0 ) < Cllsup (2] fo 3y 1€ B(K) and any f & H(C")
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Using also (9) we get for any h € E(K)
|Pi(iz)h(z)| < C||P7(8)hl} ¥l < CCI||hlje¥*! for any j € N and any z € C*.

This implies that

(|P(z‘z)])j —0 for j— oo if iL(Z) #0,

and therefore
|P(iz)| < 2Cy it h(z) #0. (10)
On the other hand there are C; > 0 and an open cone I' C C* such that k
|P(iz)| > Cs|z|®8F if 2 € T and |2| > 1/C,. : (11)

By assumption, there is 0 # h € E(K). Since then {z € ' | h(z) # 0} is unbouhded,
P is constant by (10) and (11). O

Finally, Theorem 1b) admits the following dual formulation:
Theorem 6. Let E be a Banach space and let Q be connected. Let
#:D(Q) — E . and dj: E— E be linear and continuous ‘ ‘ (12)
and let
ol =djosx forj=1,...,n (13)

Then there is A > 0 such that s can be uniquely extended to a continuous linear
mapping »: (Hy) — E.

Proof. a) The assumptions of Theorem 1b) are satisfied for {E,%,'d;}. Thus there
is A > 0 such that t»: B/ — H, is continuous, that is,

[I*>(e)ll < Clle'llz for any €’ € E*
where || - || is the norm in H4. For the norm | - ||* in (H4)' we thus get

e(F)lle = sup (£, ()] < CIFII* for any f € D(R)

fle'llst
and
e (D(Q), ]+ I") — £ is continuous.

b) D(Q) is dense in (H4)'. Indeed, any f € H4 which vanishes on D(Q2), is zero on
Q, thus f = 0 on C" by the identity theorem. O
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Examples for the situation in Theorem 6 are provided by the duals of the spaces
from Example 3.

In contrast to the situation of Theorem 1b), the continuity of d; is needed to prove
Theorem 6. In fact, Let E := Ly(R), 3 := id and choose a linear complement F' of
D(R) in E. If we now set di(f) := f' for f € D(R) and d;(f) := 0 for f € F, then
(12) and (13) are satisfied (except for the continuity of d;), but

id: (D(R), || - II*) — E = Ly(R) is not continuous
for the norm || - ||* in (H4)' since

id: (D(R),7) — E is not continuous

for the topology 7 induced by C*®(R);.
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