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Abstract

A continuous and linear operator T : E — F between Banach spaces F and
F is a bounded below, resp. surjective (and open), if and only if its transposed
operator T' : Fj — E is surjective (and open), resp. bounded below. This
survey paper presents a complete analysis of the possible extensions of these
two results when E and F are both Fréchet spaces or both complete (DF)-
spaces.,

1 Introduction, Notation and Preliminaries

Bounded below and almost open continuous linear operators between normed spaces,
their relation with the topological divisors of zero in the normed algebra of all op-
erators, and the approximate point spectrum have been extensively studied. We
refer to the books of Berberian [3] and Harte [14] and to the article of Abramovich,
Aliprantis and Polyrakis [1]. We recall the necessary definitions in the frame of
locally convex spaces. These classes of operators in the general frame were investi-
gated by the authors in [7]. See also Arizmendi and Harte [2]. A continuous linear
operator T" between locally convex spaces E and F' is called bounded below (or a
monomorphism) if it is injective and the image of every open subset of F is open in
T(E) € F. An operator T is called almost open if for every O-neighborhood U in
E there is a O-neighborhood V' in F such that V C T(U), the closure taken in F.
Every almost open operator has dense range. The operator is called open if it maps
open subsets of F into open subsets of F. Every open operator is surjective. The
open mapping theorem of Banach-Schauder assures that a continuous linear opera-
tor between Fréchet spaces is surjective if and only if it is open, or equivalently in
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this case, if it is almost open. A continuous linear operator between locally convex
spaces which is open onto its image is called a homomorphism (e.g. [17, § 32]).

The following classical result, which can be seen in {3, Theorems 57.18 and
57.16] and [14, Theorems 5.5.3 and 5.5.2], is very useful when dealing with operators
between Banach spaces.

Theorem 1.1 Let T : X — Y be a linear continuous operator between Banach
spaces X and Y with transposed operator T' : Y' — X'. Then

(A) T is bounded below if and only if T" is open,
(B) T is open if and only if T' is bounded below.

The possibility of extending Theorem 1.1 to arbitrary locally convex spaces has
been considered several times in the literature, and it is a quite delicate question
even for Fréchet or complete (DF)-spaces F and F. We avoided this duality problem
in our research in [7) with direct proofs. There are many scattered results which
include for example the classical Dieudonné, Kéthe, Schwartz homomorphism theo-
rem for Fréchet spaces {17, § 32.3(4)]. The case of Montel (gDF)-spaces (also called
(DCF)-spaces) was investigated by Hollstein [15]. Further information can be seen
in Kéthe's book {17, § 32 and § 33] The relation to short exact sequences of Fréchet
spaces and the lifting of bounded sets is investigated by Meise and Vogt {19, Chap-
ter 26]. See also Dierolf [11]. Very interesting results about the strong transposed
operator of a homomorphism were given by Dierolf and Zarnadze [12]. Very recently
Wengenroth has utilized the derived functors and homological algebra to investigate
in his Habilitationsschrift [25, Chapter 7] when the transposed operator of a homo-
morphism in the category of locally convex spaces is again.a homomorphism. See
also Palamodov [20]. Our purpose is to collect some of these results, adding a few
new remarks and counterexamples 2.7, 3.3, 3.4, and 3.7. We hope that the present
article would be useful as a future reference.

We use the standard notation for operator theory, Banach spaces and locally
convex spaces that can be found in [3, 17, 19, 21, 22]. Unless explicitly mentioned,
E and F denote Hausdorff locally convex spaces (1.c.s.). The family of all closed
absolutely convex neighbourhoods of the origin in E is denoted by Up(E) and the set
of all closed absolutely convex bounded subsets of a locally convex space F is denoted
by B(E). The set of all continuous and linear operators between E and F is denoted
by L(E,F). Ej stands for the topological dual of E endowed with the topology
of the uniform convergence on the bounded subsets of E, and for any operator
T € L(E, F) we represent the transposed operator of T by TV : Fy — E}. If E is a
Fréchet space, we denote by El 4 the dual E' of E endowed with the bornological
topology associated with E. Grothendieck proved that Bl = (E, B(E', E")), see
[17, §29.4.2]. A Fréchet space is called distinguished if E, = E} 4 holds topologically.
We 1efer to [4, 9, 17, 19, 21] for details about distinguished spaces.

The following important result will be used several times.



Theorem 1.2 (Grothendieck’s Homomorphism Theorem) [17, § 82.4(3)].

(1) The operator T € L(E, F) is a homomorphism if and only if the following two
conditions are satisfied:

(1) T'(F') is o(E', E)-closed in E', and
(1) for every My C E'-equicontinuous set such that My C T'(F") there exists
M, C F'-equicontinuous satisfying My C T'(M>).

(2) T is almost open if and only if condition (1)(is) is verified [17, § 34.1(4)].

A lcs. E is a Ptdk space if and only if every T' € L(FE, F) which is almost open
is open, see [17, § 34.3]. Every Fréchet space is a Ptdk space. The strong dual of a
reflexive Fréchet space is a Ptdk space. Every quotient of a Pték space is complete
[17, § 34.3(3)]. A Montel space E is a quasibarrelled space in which each bounded
set is relatively compact. A (DFM)-space is a (DF)-space which is also Montel.

The class of quasinormable spaces was introduced and studied by Grothendieck.
It contains Banach spaces and nuclear spaces, and it is also stable under the forma-
tion of quotients. Every (DF)-space in the sense of Grothendieck is quasinormable.
A l.c.s. is called quasinormable if for every U € Uy(E) there is V' € Uy(E) such that
for every € > 0 there is B € B(E) with V C B+ eU. Quasinormable Fréchet spaces
and their relevance for the lifting of bounded sets can be seen in [19, Chapter 26]
and [21, Section 8.3].

2 Extending Theorem 1.1.(A)

This section studies the relation between T being a monomorphism and T” being
surjective and open, thus finding extensions of the result (A). Our first result is well
known and generalizes [14, Theorem 5.5.3] for lL.c.s.

Remark 2.1 Let E and F belcs.

(a) If T € L(E, F) is a monomorphism, then T' : F| — E] is surjective. This is
easy, fix u € E} and define v : T(E) — K by v := uoT~!. By the Hahn-Banach
theorem there exists w € F” such that w|pg) = v. This implies T"(w) = u.

(b) If T € L(E, F) satisfies that T : F, — Ej is surjective, then T is injective, as
follows from [17, § 32.1(5)}.

We analyze the necessity in theorem 1.1.(A). We start with Fréchet spaces £
and F.

Proposition 2.2 Let T € L(E,F) be a monomorphism between Fréchet spaces.
Suppose that one of the following conditions are satisfied:
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(1) Every bounded subset of F/T(FE) is contained in the image of a bounded subset
of F by the quotient map q: F — F/T(E),

(2) F/T(E) is a Montel space,
(8) E is distinguished,
then T' : Fy — Ej is a surjective homomorphism.

The assumption (3) holds, in particular, if E is quasinormable or if E is reflexive
(this last case follows from [17, § 32.4(7)]).
Proof.

(1) This follows from a deep recent result due to Meise and Vogt [19, Lemma
26.11].

(2) If F/T(F) is Montel, then every bounded subset of F/T(E) is relatively
compact. A classical consequence of the Banach-Dieudonné theorem [17, §
21.10(1)] shows that every compact subset of F//T(E) is contained in the im-
age of a compact subset of F by ¢ : F — F/T(E) (see e.g. {19, Corollary
26.22]). The conclusion now follows from case (1).

(3) The operator T" : F] — Ej is surjective and continuous by 2.1. Therefore
T : F 4 — El 4 is a surjective continuous operator between (LB)-spaces. By
the open mapping theorem, T" : Fi y — E , is open. Since F is distinguished.
Then E], = Ej. This implies that T" : F] — Ej is open. Thus T’ : F} — EJ
is a surjective homomorphism.

O

Example 2.3 The implication in proposition 2.2 does not hold in general for arbi-
trary Fréchet spaces. Let E be a non-distinguished Fréchet space (e.g. [17, § 31.7]
or [19, Corollary 27.18 and Example 27.19]). Let F be a countable product of Ba~
nach spaces such that E is isomorphic to a closed subspace of F. We denote by
T : E — F the continuous inclusion. The operator T is a monomorphism. Sup-
pose that T" : Fj — Ej is a surjective homomorphism. Since F is bornological, its
quotient E} is also bornological. A contradiction, since E is not distinguished.

Remark 2.4 If T € L(E, F) is a monomorphism between Fréchet spaces such that
T': F) — Ej is open and F is distinguished, then E is distinguished too.

It is easy to see that the necessity in Theorem 1.1.(A) does hold for (DF)-spaces.

Proposition 2.5 If T € L(E, F) is a monomorphism between (DF)-spaces, then
T’ : F} — Ej is surjective and open.
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Proof. TV : F| — Ej is a continuous linear surjection between Fréchet spaces by

2.1. The conclusion follows from the Banach-Schauder open mapping theorem.
' O

We investigate now the converse implication in theorem 1.1.(A). This one always
holds for Fréchet spaces as a consequence of Banach-Dieudonné theorem.

Proposition 2.6 [17, § 33.3(2)] Let E and F be Fréchet spaces and let T € L(E, F)
satisfy that T' : Fy — Ej is surjective and open, then T is a monomorphism.

The sufficiency in theorem 1.1.(A) is false in general for (DF)-spaces.

Example 2.7 A continuous linear operator T : E — F between complete (LB)-
spaces which is not a monomorphism but whose transposed operator T' : Fyy — Ej s
surjective and open: The following example due to Grothendieck can be seen in {21,
8.6.13]. There is a countable direct sum of reflexive Banach spaces (F,t) = ®§2Fk
with a closed subspace E such that the (LB)-space (E,s) = indn({(®F=,F%) ) E)
has a topology strictly finer than the restriction ¢|E of ¢ to E but such that (E,s) =
(E,t|EY. We denote by T : (E, s) — (F,t) the inclusion, which is not a monomor-
phism. On the other hand T" : (F,t), — (FE, s), is surjective by the Hahn-Banach
theorem. Since (F,t), and (E, s), are Fréchet spaces, T” is open.

Proposition 2.8 Let E be a (DFM)-space and F a quastbarrelled (DF)-space. If
T : F| — E} is surjective and open, then T € L(E, F) is a monomorphism.

Proof. This follows from Grothéndieck’s homomorphism theorem 1.2.(1)(i), be-
cause T' : F] — Ej lifts bounded subsets of Ej, as every bounded subset of the

Fréchet space Ej is relatively compact.
O

The best criterion to ensure that a continuous linear operator between (DF)-
spaces is a monomorphism is the so-called Baernstein’s lemma. It was successfully
applied by Bierstedt, Meise and Summers [5] to show that if a weighted inductive
limit of Banach spaces of holomorphic functions on an open subset of C" satisfies that
the linking maps are compact, then the inductive limit topology can be described
by weighted sup-seminorms; see e.g. [21, Theorem 11.9.12].

Proposition 2.9 (Baernstein lemma) [21, Theorem 8.3.55]. Let F be a (DF)-
space. Let F be a l.c.s. such that every closed bounded set is compact. Suppose that
T € L(E, F) satisfies that T~}(B) is bounded in E for every bounded subset B of
F. Then T is a monomorphism.

Corollary 2.10 [21, Proposition 8.6.8(v)]. Let (F,t) := indp(Fn,tn) be an (LB)-
space such that every bounded subset in F is bounded in a step. Let E be a subspace
of F. If (E,t|E) is semi-Montel, then (E,t|E) = ind,(E N Fy,t,|(E N Fy,)) holds
topologically, i.e. E is a limit subspace of (F,t).
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Corollary 2.11 If E and F are both Fréchet-Montel spaces or both (DFM)-spaces,
then T : E — F is a monomorphism if and only if T' : F} — Ej is surjective and
open.

In the case of (LB)-spaces (or even (LF)-spaces) F and F', the problems consid-
ered in this section are related to the acyclicity of inductive limits and the condition
(M) of Retakh. We refer the reader to [23] or [21, Section 8.6 and Remark 8.9.20].
We briefly explain the connection: Let (F,t) := ind,(Fy,t,) an (LF)-space, let E
be a subspace of F such that E N F, is closed in (Fp,t,) for each n. We define
(E,s) := ind,(E N F,,t,|(E N F,)). Clearly, the injection T : (E,s) — (F,t) is
continuous and injective. The operator T is a weak homomorphism if and only
if 77 : (F,ty — (E,s) is surjective and T is a monomorphism if and only if
s = t|E on E. Characterizations of these two properties in terms of the proper-
ties of ind,(F,/E,) are due to Palamodov, Retakh and Vogt. See [23]. Compare
also with Proposition 2.9. The characterizations are useful to study the surjectivity
of convolution operators between spaces of (ultra)-distributions. See [6, 13, 23].

3 Extending Theorem 1.1.(B)

This section establishes the relationship between T being almost open and 7" being
a monomorphism and it extends result (B) mentioned in the introduction. We have
a general characterization to determine when 7" is a monomorphism.

Theorem 3.1 [17, § 82.5(2)] Let T € L(E,F) with E,F lLcs. ThenT' : Fy — Ey
is a monomorphism if and only if for every B € B(F) there is some C € B(E) such
that B C T(C), with the closure taken in F'.

An operator T € L(E, F) is said to lift bounded sets with closure if for every
B € B(F) there is C € B(E) such that B C T(C), the closure taken in F. If T
lifts bounded sets with closure, then T has dense range. The operator T is said to
lift bounded sets if every bounded set B in F is contained in the image T(C) of a
bounded set C in E by T. Clearly if T lifts bounded sets, then it is surjective. It
was proved by Bonet and Dierolf [8] that a surjection between Fréchet spaces which

lifts bounded sets with closure, actually lifts bounded sets (see [19, Lemma 26.7}).

The following rather trivial examples show that more conditions are required to
ensure that an operator T € L(E, F') such that T : Fj — Ej is a monomorphism is
(almost) open or surjective.

Example 3.2 (a) Let E be a proper dense subspace of the Banach space F' and
let T : E — F be the canonical inclusion. The transpose operator T" : Fy — E;
is an isomorphism and T is continuous, linear and open onto its image but not

surjective.

(b) Let (E,t) be an infinite dimensional Banach space, F := (E,0(E, E')), and
T : E — F the identity. Then T" : F] — Ej is an isomorphism, and T is
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surjective but not almost open. In fact t is strictly finer than o(E, E') and
they are both topologies of the same dual pair, hence the closures of convex
sets for the two topologies coincide.

Proposition 3.3 Let F be a quasibarrelled l.c.s. and let T € L(E, F) satisfy that
T’ : Fy — E, is a monomorphism. Then T is almost open.

Proof. By theorem 3.1, T has dense range. We apply theorem 1.2.(2) to com-
plete the proof. To check condition (1)(ii) in the statement of 1.2, we fix an E-
equicontinuous subset M; C T'(F'). Consequently M is bounded in Ej. Since T’
is a monomorphism, M, := (T")~}(M;) is bounded in F}, hence F-equicontinuous,
as F' is quasibarrelled. Since T"(M;) = M, the proof is complete. |

The assumption on F' is necessary, even if £ and F' are complete (DF)-spaces.

Example 3.4 (1) Let (E,t) be the Hilbert space I5(I) with the index set I of
uncountable cardinal. We denote by #' the topology on E of the uniform
convergence on the separable bounded subsets of E’, and we denote F the space
(E,t'). Cleatly t and t' are topologies of the dual pair (E, E’), hence they have
the same bounded sets. Since E is reflexive, (E,o(E, E')) is quasicomplete,
and we can apply [17, § 18.4(4)] to conclude that F is also quasicomplete.
Since the space F is (DF) (see e.g. [17, p. 401 remark after § 29.4(6)]), F is a
complete (DF)-space by [17, § 29.5(3)]. Let T : E — F denote the identity.
Its transposed operator T” : Fy — Ej is an isomorphism, and T is continuous,
linear and surjective but not almost open.

(2) Let G be a non-distinguished Fréchet space. See e.g. [19, Proposition 27.18].
We set F := ng , F:= G}, and T : E — F the identity, which is continuous
but not open. Since E and F have the same bounded sets, 77 : F} — Ej is
a monomorphism. In this case T is not almost open. (Observe that F is not
quasibarrelled.) To see this we denote by (U,)%2; a basis of 0-neighborhoods
in G. Since G is not distinguished, there are o, > 0, n € N such that the 0-
neighborhood U := I'(Up2, 0 U7) in G | 4 is not a O-neighborhood in Gj. Since
E is (DF), we apply [21, Proposition 8.2.27] to conclude that the closure U of
U in G} is contained in 2U. If T were almost open, then T(U) = U would be
a neighborhood in Gj. This is a contradiction since U is not a 0-neighborhood
in G},

Corollary 3.5 Let E be a Fréchet space or the dual of a reflexive Fréchet space,
let F be a quasibarrelled space. If T € L(E,F) satisfies that T' : F] — E, is a
monomorphism, then T is surjective and open.

Proof. The space E is a Ptk space by [17, § 34.3(5) and the comments before
it]. By proposition 3.3, T is almost open, hence nearly open in the sense of Ptk in
(17, § 34]. We apply [17, § 34.2(2)] to conclude that T is open into its image. This
implies that T': E — T(E) is a surjective homomorphism. By [17, § 34.3(3)], T(E)
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is also complete. Since it is a dense subspace of F, we conclude that T(E) = F, and

T : E — F is a surjective homomorphism.
O

The main application of results like the corollary above is to conclude the sur-
jectivity of an operator between Fréchet spaces from properties of the transpose
operator. A very useful “surjectivity criterion” is due to Meise and Vogt [19, 26.1].
It has been successfully applied e.g. in [6, 2.2]

Proposition 3.6 [19, 26.1]. Let T € L(E,F) be an operator between Fréchet
spaces. The operator T' is surjective if and only if for every bounded subset B in E,
then (T")~*(B) s bounded in Fy.

Example 3.7 There are bornological (DF)-spaces E and F and T € L(E, F) such
that T' : F, — E} is a monomorphism but T is not open. Our example shows that
an almost open operator between bornological (DF)-spaces need not be open

Let F be a complete (LB)-space which contains a dense barrelled subspace E
which is not bornological. Such examples were constructed by Valdivia [24]. We
denote by E the bornological space associated with Eandby T : E — F the
continuous inclusion. The operator T lifts bounded sets with closure. Indeed, T
has dense range and E and F are (DF)-spaces. We can apply [21, Corollaries 8.3.17
and 8.3.25] to conclude that every bounded subset of F is contained in the closure
of a bounded subset of E. Since E and E have the same bounded sets, it follows
that 7T lifts bounded sets with closure, hence T" : F} — E; is a monomorphism. By
proposition 3.3, T is almost open. As F is not bornological, we conclude that T is
not open onto its image.

We now discuss the converse, and suppose that T : £ — [ is a continuous,
almost open, linear operator, between l.c.s. We investigate whether T : Fy — Ej
is a monomorphism or, equivalently by Theorem 3.1, whether T lifts bounded sets
with closure.

We first suppose that F and F are (DF)-spaces. Our next result if T' is supposed
to be open is [12, 2.8]. Recall from 3.7 that almost open operators between (DF)-
spaces need not be open onto their image.

Proposition 3.8 Let T : E — F be continuous, almost open and linear operator.
If E is a (DF)-space, then T' : Fy — E, is a monomorphism.

Proof. We apply Theorem 3.1. Let (C,)%; be a fundamental sequence of bounded
sets in £. Assume that there is C € B(F) such that for every n € N thereis ¢, € C
with ¢, ¢ nT(C,), the closure taken in F. By the Hahn-Banach theorem, for every
n € N there exists u, € F' with u,(c,) = n and |u,(T(z))| < 1 for every z € C,.
The set {u, o T|n € N} C E' is B(F', E)-bounded. Indeed, fix m € N, as C;, € C,,
for every n > m then |u, 0 T'(2)] < 1 for every z € Cp,. Now u, o T € C, for every
n > m. Using that uy 0 T,uso T, ..., Up-1 0T € E’ the conclusion follows.

190



Since F is (DF), U := ()2 ,{z € E||u, o T(z)| < 1} is a O-neighborhood in E.

As T is almost open, T(U) is a 0-neighborhood in F, and we can find A > 0 such
that C C AT(U). For n € N and z € U we have that |u,(Tz)| < 1. Consequently
[un(c)] < A for every ¢ € C and every n € N. A contradiction.

d0
The assumptions of Proposition 3.8 imply that F is a (DF)-space too.

We suppose now that E is a Fréchet space and that T : E — F is almost open.
Since E is a Pték space, T is open. This implies that T(E) is a Fréchet space. As
T(FE) is dense in F, we conclude that T(E) = F, hence T is surjective and F is a
Fréchet space. Consequently the problem we have to consider is the following: Let
T : E — F be a continuous, linear, surjective operator between Fréchet spaces, when
does T lift bounded sets with closure? This question has been thoroughly studied.
We mention [19, Chapter 26] as a reference and we collect in the next proposition
some of the known results.

Proposition 3.9 Let T : E — F be a continuous, linear, surjective operator be-
tween Fréchet spaces. We have:

(1) There are a Fréchet-Montel space F, a Banach space F and T : E — F con-
tinuous, linear and surjective such that T' : Fy — Ej is not a monomorphism.

(2) T' : F) — E} is a monomorphism if and only if T lifts bounded sets.

158 Montel or ker T is quasinormable, then TV : — 18 @ MOnOMmor-
8} If F is Montel or ker T ] ble, thenT' : F} — Fj i
phism.

(4) If E is quasinormable and F is Banach, thenT' : F) — E} is a monomorphism.

(5) If E is quasinormable and T' : F) — E, is a monomorphism, then ker T is
quasinormable.

Proof.
(1) There are well known examples due to Grothendieck. See [17, § 33.6].
(2) This is a result of Bonet and Dierolf [8]. See also [19, Lemma 26.7].

(3) If F is Montel, this follows from the Banach-Dieudonné theorem, cf. [19, Corol-
lary 26.22, Proposition 26.23]. If ker T' is quasinormable, the result, originally
due to Palamodov and De Wilde, follows from [19, Lemma 26.13].

(4) Tt is a result of Mifiarro [18]. In [7] we extended the result for a quasinormable
l.c.s. E and a normed space F.

(5) This is a result of Cholodovskij [10]. See also [19, Proposition 26.18].

Extensions of some of these results can be seen in [25, Chapter 7).
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Corollary 3.10 Let E and F be both Fréchet Montel spaces or both (DFM)-spaces,
and let T : E — F be continuous and linear. The operator T is surjective and open
if and only if T' : F} — Ej is a monomorphism.
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