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The behavior of solutions of some semilinear
wave equations in one space dimension near
their blow-up curve
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Dedicated to the memory of Pascal Laubin

1 Introduction and statement of the results
In this paper we shall consider the Cauchy problem

(1.1) Ou=F(u,u) ifz €R, t> 0,

(1.2) (Blu)(x,0) = ¥;(x), j=0,1, if z € R,

where O = 82 — 2 is the d’Alembertian, F € C}(R x R?), v’ = (8,u, u),
and ¥; € C*J(R), j = 0,1. We shall put Rt = {s € R, s > 0},R¥ =
{s€eR, s> 0}. It is well known and easy to verify that one can find an
open neighborhood V of R x {0} in R x R¥ such that (1.1), (1.2) has a
(unique) C?*(V) solution. To be more precise, if « € R and ¢ > 0, put
K~ (z,t) = {(y,8) e RxR¥, s<t, |[xt—y| <t—s}. IfU is an open subset
of R x R+, one says that U is an influence domain if for any (z,t) € U, one
has K=(xz,t) C U. Let  be the union of all influence domains containing
R x {0} in which (1.1), (1.2) has a ( unique) C? solution. Then  is the
maximal influence domain with that property. One can check that, for all
z €R, {t >0, {z}x[0,¢] C Q} # 0. Put p(z) = sup{t > 0, {z}x[0,t]} C Q.
Then either ¢ = +00 or ¢ is everywhere finite and |¢(x) — ¢(y)| < |z — y|
for all z,y € R. In [2], [3], under suitable assumptions on the initial data, a
study was made of the case that F(z, (p,q)) is independent of (p, g), behaves
like 2", r > 1, as z — 400, and is bounded below as z — —co. When
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@ is everywhere finite, it was shown that u(z,t) — +o00 as t < ¢(z) and
(x,t) — (z, p(xg)) for some z9 € R. In this case, it was also proved in
[2], [3] that ¢ € CYR). In the case of mixed problems and exponential
nonlinearities, a study of such properties was made in [5], [6]. When F'
depends on (p,q) (and z), an example from [4] shows that ¢ need not be C.
See also e.g. [1] and the references in [1], [2], 3], {4]; [5], [6] for many results
on the blow-up of solutions of nonlinear hyperbolic equations.

In this paper we shall consider two classes of functions F(z, (p,q)). As-
suming ¢ to be everywhere finite, we shall obtain information on the behavior
of u(z,t), u'(z,t), as t < ¢(z) and (z,t) — (2o, ¢(zo)) for some zo € R. We
shall first prove the following result.

Theorem 1.1 Assume that 0 < F(z,(p,q)) < G(z)(1 + |p| + lgl) for all
(2, (p,q)) € R x R?, where G is non decreasing and e=*“ € L*(R*) for some
A > 0. Assume that ¢ is everywhere finite. Then u(x,t) — 400 as t < ¢(z)
and (x,t) — (xo, p(z0)) for some zg € R.

We shall also consider the case that F'(z,p,q) = f(g—p) where f satisfies
the following assumptions : f € CYR), f > 0, there exists M € R such

that s — f(s) is non decreasing for s > M, and there exists a € R such
+co +oo ds

s
that —— < 400 for all € > 0, but
<z+€ f( ) a f( )

vo = ¥ — Yy and assume for shmplicity that {z € R, vo(z) > a} =]a,f]
for some «, 3 € R with a < 8. Then, of course vp(a) = vp(B) = a. Put

o0
T={(z,t) ERxR+t = / ds } Then ¥ # @ and it is easily checked
volz

= +00. We shall put

z-1) £ (8)

that ¥ is a C! curve. We shall assume for simplicity that

there exists exactly one point (z2*,t*) € X such that the tangent to
(1.3) X at (z*,t*) is parallel to (—1,1); furtheremore 2uy(s) < f(vo(s))
ifz* -t <s<f.

Put 7 = {(a* — p, t* + ), pu > 0}, € = ZUT. It is easy to check that , for all
z € R, one can find ¢ > 0 such that (z,t) € £. Put 6(z) = inf{t > 0, (x t) €
£}. One readily verifies that |6(z) — 6(y)] < |z — ¥, so {(z,t) € R x R¥,
t < 6(x)} is an influence domain.

Theorem 1.2 |u/(xz,t)] — +00 ast < 6(z) and (z,t) — (xo, H(zy)) for some
z9 € R.
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It follows in particular from Theorem 1.2 that § = ¢, where ¢ is as in
the beginning of this section. u(,t) itself may behave in several ways as
t < O(x) and (z,t) — (29,60(x0)). 76 € R, as the next result shows.

Theorem 1.3 Let f be as above.

(1) Assume that for some C > 0 and some b < 3, f(s) < Cs® for large s.
Then one can find Py, ¥y such that (1.8) holds and such that u{x,t) —
+oo ast < H(z) and (x,t) — (2%, ).

(2) Assume that for some C > 0 and some b > 3, f(s) > Cs® for large
s. Then one can find yy, vy such that (1.3) holds and such that u(x,t)
has a finite limit as t < 6(x), v+t < 2* +t* and (v,1) — (2%, 7).

Our paper is organized as follows, Theorem 1.1 is proved in section 2;
Theorem 1.2 and Theorem 1.3 are proved in section 3.

2 Proof of Theorem 1.1

We shall make use of the following well known result, of which we give a
proof for the sake of completeness.

Lemma 2.1 Assume that for some C > 0, one has |[F(z.(p.q))] < C{1+
vl + lg) for all (z,(p,q)) € R x R% Then Q=R x R+,

To prove Lemma 2.1, it is enough to show that for any (X, T) € R x R+,
there exists C' > 0 such that the following holds :
(2.1)
f0< Ty <Tandue€ CH{(x,t) € K~(X,T), t <Th}) is a solution of
(1.1), (1.2) when (z,t) € K~(X,T),t <Th, then |0%u| < C'if la] < 2.

To verify (2.1), put P(z,t) =
and write (1.1), (1.2) in the form

(vola — ) + ol + 1)) + / bi(y) dy

N =

(2.2) u(z,t) = P(z,t) + % // (F(u,u'))(y,s)dyds
K~(x,t)
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For 0 <t < Tj, put M(t) = sup  |u'(z,t)]. By differentiation of (2.2),
(@.)eK~(X.T)
it follows that, for some C; > 0,

(23) A[(t) <C+C; /t AI(S) ds,

so M(t) < C1eT if 0 < t < T, by the Gronwall inequality. Differentiating
(2.2) a second time easily yields (2.1).

To prove Theorem 1.1, let x : R — [0, 1] be a C? function with x(s) =1
if s <1and x(s)=0if s > 2. For k € N\ {0}, consider the Cauchy problem

(2.4) Cug = Fx (%) ue ) if 2 €R, t >0,
(2.5) (Hw)(z,0) = ;(x), §=0,1, if r € R.

By Lemma 2.1, (2.4), (2.5) has a unique solution u; € C?(R x RF). We are
going to adapt some ideas of [3] to the present situation. Let ((X;,T})) be a
dense sequence in R x R¥. Since F > 0, it follows (cf. [3]) that (ug(z,t)) is
bounded below at each (x,t). Passing to a subsequence of (uy) if necessary,
one can assume that for each (X;,T;), either (i) ug(X;,T;) has a finite limit
as k — +oc, or (ii) ux(X;,T;) / +o0 as k — +o0. In case (i), we shall
say that (X;,T;) € &, whereas in case (ii) we shall say that (X;,T;) € &,.
If & = @, one checks easily with the help of a formula of type (2.2) and:
of the Ascoli theorem that (uy) has a subsequence (uy) such that (0%u)
converges uniformly on every compact subset of R x R¥ if |a| < 2; so in that
case (1.1), (1.2) has a global solution. If (z,t) € R x R¥, put K*(z,t) =
{(y,s) e RxRt,s > t,Ja—y| < s—t}. lfzeR, define 4, = {t > 0,
there exists (X;,T;) € & such that (x,t) € K—(X;,T;)}, and if & # 0,
define B, = {t > 0, there exists (X;,Tj) € & such that (z,t) € K+(X;, T;)}.
Assuming that & # 0, one checks easily that sup A, = inf B,. This number
will be denoted by ®(z). The following properties are easily checked :

1 |@(z) - ®(y)| < |z —y| for all z,y € R.

2. One can find a subsequence (uw) of (ux) and a function @ in the space
C*? ({(z,t) e R x R¥, t< <I>(5L)}) such that, for all (zg,t) € R x RF
with top < ®(zo), ugr — @ in C"Z(K"(wo,—t;;) as k' — +o00, whereas
up(z,t) — +oo as k' - +oo for any (z,t) with ¢ > ®(z). To prove
Theorem 1.1, it is enough to show that @(x,t) — +o0 if t < ®(z) and
(z,t) — (2o, P(xg)) for some z¢ € R. This will also show that & = .
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Let P be as in (2.2) and put F, = F (X (%) uk,ul.). By the formula
already used in (2.2), we have

(2.6) ug(z,t) = P(z,t) + % // Fi(y,s)dyds
K~ (z,t)
Fix (X,T) € R x R¥ with T > ®(X), and define, if 0 < T" < T,

M (T, t) = sup  |ui(z, t).
(@)K (X,17)

Now, for some C > 0 independent of T € [0,T}, ur(y,s) < w(X,T") +C
when & € N\ {0} and (y,s) € K-(X,T’). Hence, differentiating (2.6) (as
in the proof of Lemma 2.1) and using the fact that G is non decreasing, we
obtain, for some C; > 0 independent of £,¢, 7" when t <T' < T :

27)  Mu(T",t) < O+ Glus(X, T') + C) / "1+ M(T, 5)) ds.
0

Adding 1 to both members of (2.7) and applying the Gronwall inequality, we
deduce that
Mk(T,, Tl) S (Cl + 1)eT'G(uk(X,T')+C)'

This implies in particular that
(2.8) Byur(X,t) < (Cy + 1)elC(X0+0)
if 0 < t < T. We may assume that T is so large that e=7¢ € L}(R*). Put
g(s) = — / ” e~ T6@)dy. (2.8) means that
S

(2:9) = Gu(X,)+C)) S Cr+1

if 0 <t <7T. Take t;,% with 0 < t; < ®(X) < tp < T. Integrating (2.9)
over [t1, 2], we obtain that

g(ur(X, t2) + C) — g(un(X, t1) + C) < (Ch + 1)(t2 — t1).
But e~7¢ € L}(R*). So if k — +00, it follows that

—g((X, 1) + C) < (Cy + ){ta — t1).
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When ¢, = ®(X), we obtain that
(2.10) —g(UX, 1) + C) < (C1 + 1)(2(X) — t1).

Now the proof leading to (2.10) also shows that (2.10) still holds with uniform
constants C,C; > 0 when X belongs to a compact neighborhood of zp € R
and 0 < ¢ < ©(X). Hence g(i(X,t) +C) — 0ast; < O(X) and (X, 1) —
(2o, ®(xp)) , which completes the proof of Theorem 1.1.

3 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2.

Assume first that (z¢,6(20)) € . Put (J; — 8)u = v. Then of course
(O + Oz)v = f(v) and v}i=p = vo. Solving this Cauchy problem for v, we can
easily check that v(z,t) — 400 as t < 6(z) and (z,t) — (z9,8(z0)). We are
going to show that the following holds :

(3.1) (G + dpu(z,t) > +0 as z+t < z* +t* and (x,t) — (27, ).

Since Ou > 0, it will follow from (3.1) that (& + 9,)u(z,t) — +o0 as
T4+t < z*+t* and (z,t) — (20,60(0)) if (z0,0(xo)) € €\ X. This will
complete the proof of Theorem 1.2. ‘

If ¢ > a, put hio) = —(iz- Ha<z-t< fand 0 <t < b(z),
we certainly have v(z,1) > a and h(v(z,t)) = h(vo(x — t)) — t. Hence
v(z,t) = H(h{vo(z—t))—t) if H : |0, +00[—]a, +0oo[ is the inverse function of

h :]a, +00[—]0, +oo[. Put & = -!2—:1:, n = t,—2—x, &= t*:x*, n* = i —2:1::’
U(&,m) = u(z, t), v(s) = h{vo(—2s)) — s. By the definition of v, we have

’ 7
(32 0(En) = Ul6,~6)+ [ ol -6+ )ds,

n .

(33) OU)Em =@+ | (FE)E 28+ 3)ds
where @ € C*(R). Notice that
(3.4) v(§ — 5, +s) = H(y(s) - &)
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in (3.2), (3.3). Since y(n*) = &*, we easily obtain that

(3.5) s)—€<E =& +cls -

for some ¢ > 0, if s is close to #*. In (3.3) assune that £ < £, that s is close

to 57 and (§,7) close to (£',7*). It then follows from (3.4), (3.5) that

(3.6) (F)E—s,6+5) 2 (foH)E =& +cls —77]).

Assume now that & < &* if k € N\ {0} and that (&,m) — (£,7n*) as
k — +oo. We are going to show that (9:U)(é, ) — +o00 as k — +o00,
which will prove (3.1) and hence Theorem 1.2. Let § > 0 be small and put
fe(8) = s (8)F(H(E — & +c|s —n*])) if k € N\ {0} and s € R, where
14 denotes the characteristic function of the set A. Since fo H = —H’, it

easily follows with the help of (3.6) that / (12111 Jimf fr(s)) ds = +o0. Hence,
R koo

by the Fatou lemuna, we obtain that lgm _gnf / fi(s)ds = +00. (3.3) then
—t+oo Jg

shows that ((){:[j)(f}H 7)/\‘) — 400 as k — +oo.

Proof of Theorem 1.3

(1) Take y; € C*1(R), so that vy € C*(R). Since 7'(n*) = 0, we find that
H(y(s) - €) 2
Cils — n*|7%1 for some C, > 0 if (£,s) is close to (€*,7*). Theorem
1.3(1) follows easily with the help of (3.2), (3.4) if we make use of the
Fatou lemma. .

(2) It is not hard to check that one can choose vy € C?*(R) such that
Y'(n*) > 0 (and of course v(n*) — €& = 4'(n*) = 0). Then we find
that H(y(s) — &) < Cy|s — 71*|"b—il for some Cy > 0 if (€, s) is close to
(&*,7*) and € < &*. Theorem 1.3(2) follows easily with the help of
(3.2), (3.4).
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