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Ultraholomorphic extension maps for spaces of
ultradifferentiable jets
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Abstract

The key results (4.3, 6.2, 7.2 and 7.6) provide ultraholomorphic
approximation continuous linear maps for spaces of ultradifferentiable
functions on an open subset of R”. )

They lead to results about the existence of continuous linear ex-
tension maps from the spaces of the ultradifferentiable Whitney jets
of Beurling or Roumieu type on a closed subset F of R”. Their values
belong to spaces of functions defined on R™ U D: they are ultradif-
ferentiable on R™ and ultraholomorphic on D, an open subset of C*
such that D NR" = R™\ F. We consider the cases when the ultrad-
ifferentiable jets and functions are defined by means of a weight or of
a sequence of positive numbers.
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1 Introduction

This paper is announced in the final remark of [8]: it contains the general-
ization of the results therein to the ultradifferentiable setting. We consider
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the Beurling and Roumieu types, defined by means of a weight w or of 2
suitable sequence M of positive numbers. We first treat in detail the case of
a sequence M for both the Beurling and Roumieu types. We next indicate
in paragraph 7 how to treat the case of a weight.

The best way to describe what is going on consists in saying what happens
in the C®-setting and then to mention how this generalizes in the “ultra”
setting.

For a closed subset F' of R", we designate as usual by £(F) the Fréchet
space of the Whitney jets on F (cf [11]). Moreover if ) is an open subset
of R*, BC®(Q) is the Fréchet space of the C®-functions on 2 which are
bounded on ) as well as all their derivatives, endowed with the system of
norms {||-||,, : m € N} defined by

1l = sup 2m+ilel Ipe £l
afj<m

Step 1.

In [7], the key result (cf. Theorem 4.1) states that if 2 is a proper open
subset of R™, then there is a continuous linear map T from BC®(Q) into
BC*®(Q) such that, for every f € BC®(Q),

a) Tf has a holomorphic extension on

QO ={u+iv:ueQueR" |y < du o)}
b) for every s € N and € > 0, there is a compact subset K of ) such that
sup [[ID*f ~ D*(Tf)llg\x < &

ja|<s

This fact is the basic material to prove the following result (cf. Theorem
1.1) about the existence of an analytic extension map: if K is a non void
compact subset of R", then

a) every Whitney jet on K has a BC®(R")-extension which is real-analytic
on R*"\ K;

b) there is a continuous linear extension map from E(K) into C*(R") if and
only if there is such a map with values real-analytic outside K.

Step 2.

In [5], L. Frerick and D. Vogt have got the generalization of this last
result to the setting of the closed subsets: if there is a continuous linear
extension map from E(F) into C*(R"), then there also is such a map with

374



values having a holomorphic extension on Q* if and only if, for every bounded
subset B of R™, the boundary of the union of the connected components of
R™\ F having non empty intersection with B is compact. Their proof makes
a deep use of the key result mentioned here above.

In [4], L. Frerick makes a deep analysis of this situation.

Step 3.

In order to refine these results, one has first to improve the key result
of [7]. This has been done in [8] as follows.

1If U is a proper open subset of C", H,(U) is the Fréchet space of the
holomorphic functions on U which are bounded on U as well as all their
derivatives, endowed with the system of norms {||-||,, : m € N} defined by

1l = sup 1D flly -

The enhanced key result states that: for every proper open subset Q of
R", one can construct an open subset D of C* such that D NR™ = Q and
obtain a continuous linear map T from BC®(Q) into Hoo(D) such that for
every f € BC™(Q), e > 0 and s € N, there is a compact subset K of Q such
that

|DX(Tf)(u+iv) - D*f(u)] < ¢

for every u +iv € D and a € N} verifying u € Q\ K and |a| < s.
Step 4.

The generalization of Step 2 we have in mind consists in giving a better
description of the analytic extension map with respect to the fact that its
values have a holomorphic extension on some open subset of C*. Let us state
such a result.

If Q is a proper open subset of R”, let H,C®(f2) designate the following
Fréchet space. Its elements are the functions f defined on R® U D such that
(1) flrn € C=(R™);

(2) flp € HeolD);
(3) lim,_, D*(f|p)(2) = D*(f|r~)(z) for every o € N? and z € 9Q.
It is endowed with the countable system of semi-norms {|||-|||,,: m € N}
defined by
£l = sup [1D°(Flre)ly, 00
lel<m

where by, := {z € R": |z] < m}.
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This leads to the following result (cf. Theorem 5.1 of [8]): let F' be a
proper closed subset of R*. If F is compact or if R* \ F is bounded, then
the existence of a continuous linear extension map from E(F) into C®(R™)
implies the existence of such a map from E(F) into HeoC®(R™ \ F).

In (8], one also finds a result solving the case of a closed subset.

In the “ultra” situation, the setting is as follows:
(1) the generalization of Step 1 is available in [9] and [10];
(2) the argument of L. Frerick and D. Vogt applies, as we shall see;
(3) the equivalent to the enhanced key result of Step 3 and the ultraholo-
morphic extension maps generalizing Step 4 are the matter of this article.

2 Basic notations

For a C®-function f on an open subset § of R?, we set

glel

e oE;

D%f(z) = (z), YaeNj,z e,

and, for a holomorphic function f on an open subset U of C”,

e
D (2) = gt

(031 4
5 e

(2), YaeNgzelU

Throughout the paragraphs 2 to 6, M = (M, ),en, is a sequence of posi-
tive numbers which is
(M1) normalized, i.e. My =1 and M, > 1 for every r € N;
(M2) logarithmically convez, i.e. M? < M,_1M, 1, for every r € N;
(M3) non quasi-analytic, i.e. such that >0 M,_,/M, < co.

Moreover  is a proper open subset of R™® and €* designates the open
subset {u+v: u € Q,v € R", |v| < d(u, 0Q)} of C".

Then as in [6] for instance, one can introduce the now classical following
spaces: v
(a) for every non void compact subset K of R", the spaces Enn(K) =
EM)(K) [resp. Epny(K) = EWMI(K)] of the ultradifferentiable Whitney
jets of class M and of Beurling [resp. Roumieu] type on K;
(b) the spaces Ean(R?) = EMI(R?) [resp. Epny(R™) = EMI(R™)] of the
ultradifferentiable functions of class M and of Beurling [resp. Roumieu] type
on R™.
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If F is a proper closed subset of R®, one can also introduce the spaces
Ean(F) [resp. Ey(F)] as the projective limit of the spaces Eary(F N bn)
[resp. Eaay(F N by)] where by = {z € R™: |z| < m} for every m € N.

We will also need the not so classical Fréchet space C(M, Q) = C(M,, Q)
introduced in Paragraph 2 of [9]. The elements of this space are the C*-
functions f on € such that, for every h > 0, there is k£ > 0 verifying

|D*f(z)| < kh* My, Vo eNZ,z€Q,

and C(M,Q) is endowed with the fundamental system {|}-||,, : m € N} of
the norms defined by

2m Vil D fllg
= SUu .
1l = st D M

3 Construction of the open subset Dg of C"

Given a proper open subset 2 of R”, the construction of the open subset Dq
of C™ comes from a refinement of the construction of the sequence (M )ren
made in the Paragraph 1 of [9].

For the sake of clarity and completeness, we give the construction ex-
plicitely. The reader may skip it at first reading and come back to it as
needed. The point is that we want to be able to use the inequalities of [9]
involving the numbers )\, as well as to obtain supplementary results about
the space C(M, Q).

We first fix a compact cover {K,: r € N} of ) subject to the following
requirements: (K;)° # 0, d(K;,00Q) < 1 and for every 7 € N, (K,)>~ =
K, C (Ky1+1)° as well as

Ny = d(Kr, R"™ \ K7+1) > %d(Ky, 89)

Of course the sequence (7, ),en strictly decreases to 0 and 7, < 1.
Now by use of [6] (cf. p. 56), it is a direct matter to get a sequence
(ar)ren (called (u,),en in [9]) of C(M,R™) such that, for every 7 € N,
(1) a, = 1 on a neighbourhood of K42\ (K;41)°,
(2) supp(ar) C (Kr43)° \ Kr.
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Then for every v, m € N, we choose d,,, > 1 such that

(7” + 1>d3,m < d7‘+1,ma
dr,m < d1,m+17
D%, |lgn < drm2” ™+, Va e NZ.

We set p, = d,, for every r € N and fix a strictly increasing sequence (¢, )ren
of positive numbers such that p,,; < 2% for every 7 € N, as well as a strictly
decreasing sequence (&,),en of positive numbers such that &, < 277%+ for
every v € N. Finally we remark that

®(p) == W'"/Q/ e dy 11

lyl<e

as p > 0 increases to +00.
So if we introduce the numbers

5, = 51‘(371293107+-1TC’+1+12"+2+C’+‘1W2,+1+1)“1, Vr € N, |

we can fix a strictly increasing sequence (), ),en of positive numbers by the
following procedure.

We choose A; > 1 verifying the conditions hereunder if they apply to A;
only and then the numbers Ag, Az, ... successively, submitted to the following
requirements:

(1) 1 = ®(\0,) < 6y :

2) w2 \re= T 21K, 15) < 277, where u is the Lebesgue measure;
3) A2 222 (1 + (K 48)) < 277

) Ak < d(K, R™\ Q);

) emah < AT,

) M2 = A7) = S forevery pe {1,...,r — 1}

)

)

8
9) for every p € N, we set R, = sup{|u| : u € K} and, if Ay, ..., Ap are fixed,
we first choose ©, > 0 such that e — 1| < Ay ™+ for every 6 € [0, O]
and next impose 4A2\ 1R, 15 < ©,, for every r > p.

Let us remark that the requirements (1) and (2) are exactly the conditions
imposed in [9] for the definition of the sequence (Ar)ren. So all the inequalities
established in [9] are available.

378



Definition. Now we have at our disposal all we need to introduce the
open subset Dq of C™ as the interior of

oo
U{u +iv: u € Ko \ Kpyv € R, Ju| < A7)}
17=0

where Ky := 0.
The requirement (4) has been introduced in order to have Do C Q*.

4 Key result about C(M, Q)

Let Q be a proper open subset of R”,
As in [9], given f € C(M, ), we define the sequence (G, (-, f))ren, Of
functions on C" by the following recursion: we set Go(w, f) = 0 and

7—1
G,(w, f)= 7T_n/2/\:“/R a, () (f(y) — ZGk(y,f))e—A? i1 (wy—y5)? dy
" k=0

for every r € N and w € C™.

As the functions a, € C*°(R") have compact support contained in 2, this
makes sense and the functions G, (-, f) are holomorphic on C*. Moreover we
have

DG, ()
71
=y [ e (My)(f(y) -y G f>>) R dy
’ R» k=0

for every o € Nj and € N.

We first estimate |D®G, (u + v, f) — D*G,(u, f)| for every u + v € Dq,
o € Nj and r € N. By use of the inequality (3) of the Proposition 1 of [9],
we certainly have :

ID°G; (u + i, f) = DG, (u, f)] < 77207 - &2 .27 ™ Mgy || f |, - I
for every m € N, with '

-[7‘ = sup / e"/\z Z?=1 (uj+iv; "yj)2 —_— e"‘/\g 2?=1 (u; "yi)z dy
u+we€Dq J K, 13\ K>

These numbers I, have been estimated in [8] as follows.
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Lemma 4.1 We have I; < (1 +e)u(Ky) and
I <2721+ p(K, )M ™D vre {2,3,.. }a
Proposition 4.2 a) For every m € N, there is Cp, > 0 such that
|D°G, (u+ i, f) = DGy (w, f)] < Cu2 ™ Mgy [ £l

for every f € C(M,Q), u+1iv € Do, a € N} andr € {1,...,m}.
b) For every f € C(M,Q), m, r €N, o € N} and u +iv € Dgq, one has

DG (u+ 0, f) = DG, )] < 2727001 | £,

Proof.  a) is a direct consequence of the Lemma 4.1.
b) It suffices to apply the Lemma 4.1 and to use of the requirement (3)
of the definition of the numbers A, g

Definition. Given a proper open subset U of C", let us designate by
Hoo(M,U) the vector space of the holomorphic functions g on U such that,
for every h > 0, there is k > 0 verifying

ID%lly < kR My, Vo e NG

So for every m € N,

alm+1)el (D
ot Mool MLU) = By g sup 1Dl
aeNp My

is a norm on Hoo(M,U) such that ||, < ||, and we endow Hoo(M,U)
with the Fréchet space structure coming from {||,, : m € N}.

Now everything is in order to obtain the key result about the space
C(M, ) in view of the extension theorems. :

Theorem 4.3 For every proper open subset 2 of R®, there is a contin-
uous linear map Tq from C(M,Q) into Hoo(M, Dq) such that for every
f€C(M,Q), e >0 and s €N, there is a compact subset K of Q such that

|D*(Taf)(u+iv) - D¥f(u)| < ¢

for every u +1v € Dq and o € N} verifyingu € Q\ K and |a] < s.
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Proof.  We just have to set (Tof)(u+iv) = Y = G,(u + v, f) for
every f € C(M,Q) and u + iv € Dq.

For every f € C(M,Q), the Proposition 8 of [9] says that Tof is a
holomorphic function on {2* hence on Dg. It is also clear that the construction
of Ta f is linearly depending on f. To conclude that T, is a continuous linear
map from C(M, Q) into He (M, Dg), we then have just to note that, for
every f € C(M,Q), m € N, u+ v € Dg and a € Nj, we successively have

ID*Taf(u +iv)| < ID°Taf(u)| + D _ [D*Gr(u+ i, f) —~ DG, (u, f)]

r=1

+ 37 DG, (u+iv, f) — DG, (u, )]

r=m-1

< (em +mCr, +27™27 =Dl pg (1 11

by use of ([9], Proposition 7) and of the Proposition 4.2 to get the second
inequality.

Let us now prove the second part of the statement: let f € C(M,Q),
€ >0 and s € N be fixed.

The Theorem 1 of [9] provides dy € N such that

DT f(u) - D*f(u)} <

Wil M

for every u € Q\ Ky, and o € NZ such that |a| < s.
The part b) of the Proposition 4.2 leads to

DG, (u + iv, f) — DGy (u, )] < 2727 Mgy |1 71,
for every u +iv € Dq, o € Nj and integer r > 2. So we can fix an integer

m > 2 such that

ZHWQW+mﬁ—WQWﬁK§

r=m-+1

for every u + v € Dq and a € N§ such that |a] < s.
Now we turn our attention to the evaluation of

DG, (u+ iv, f) — D*G,(u, f)|
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for every r € {1,...,m}, @ € N} such that |a| < s and v € Q\ Ky with
d € N such that d > dy. We already know that it is

<7 n/2>\n pm2 ’aIA/[IaI “f”l ruiv

with
e)\zlv|2e—2i)\a ;‘___1 vi{uj~y;) _ 1l dy

I T U+ S / k
K'1‘+3\K—1

For u + iv € Dq verifying u € Kgu; \ Ky with d > sup{m + 2, dy}, we have

Aol =200 Ty vy (uy~u5) 1[

< il | BN T vyl ) _ 1' + (@Pah — 1)

with exp(A2A77,) < e and exp(A2A;2,) — 1 — 0 if d — oo. Moreover we have

2)2 Z v (u; — ;)

So we can choose d; > sup{m + 2, d} such that

< 2X2A d+2(|ul +lyl) < 4X2 )‘d+2Rd+1

DG, (u+iv, f) - DG (w, )] < 5

for every r € {1,...,m}, a € N such that |a| < s and u+iv € D such that
u € \ Kd1 .

Hence the conclusion.g
5 Beurling type extensions

Case 1 : F is compact or R*\ F is bounded.

Definitions. Given a proper open subset U of C*, we designate by

F(U) the vector space of the functions f defined on R® U U such that

(1) flzn € C2(RY),

(2) flv € H(U),

(3) lim,_, D*(flv)(2) = D¥(f|gn)(z) for every o € N2 and z € O (R*NU).

382



The space F(M,U) is the vector space of the elements f of F(U) such
that, for every m € N and h > 0, there is k > 0 such that

ID%fll, oy < kR My, VYo eNg,

endowed with the fundamental system of semi-norms {||-||,,, : m € N} defined
by

9lm+1)lel D@ (m+1)lef ||
1D flly,\0r sup 2 |D f”U;
My aeNg My

it is a Fréchet space (we recall that b, := {x € R": |z| < m}).

Il -= sup
aeN

n
[

Theorem 5.1 Let F be a proper closed subset of R".

If F is compact or if R*\ F is bounded, then the existence of a continuous
linear extension map E from Engy(F) into Eagy(R™) implies the existence of
such a map Er from Engy(F) into F(M, Dgn\r).

Proof.  If F is compact, we choose a function ¥ € £as)(R") identically
1 on a neighbourhood of F with compact support and check that

Ey: Enn(F) — EanyR"); o= Ep

has a meaning and defines a continuous linear extension map. So in both
cases (i.e. F is compact or R" \ F is bounded), we may very well suppose
that (E-)|rs\r is a continuous linear map from &z (F) into C(M, R\ F).

Now to every jet ¢ € & (F), we associate the function Erp defined on
R™ U Dgn\r as follows

{(Ew)(x) = (Bp)(2), Vz € F,
(Ere)(z) = Tamr((E@)lrm\r)(2), Vz € Demyp-

By use of the key theorem 4.3, it is a direct matter to check that Ep is
a linear extension map from &g (F) into F(M, Dgn\r). Its continuity is
straightforward by use of the continuity of the different maps its definition
involves.g

- Remark. If F is a non void compact subset of R™, we have by, \ Dga\p = F'
for m large enough in the definition of the norm ||-{|,,, of F(M, Dgn\r).

Case 2 : F' is closed.
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Definitions. Let us abbreviate “connected component” by “c.c
Given a proper closed subset F' of R”, let us set

O = U{w: w=cc. of R*\ F,wnb # 0},
introduce by recursion the sets
Q= Ufw: w=cc. of R*\ Fwnb; #0,wn (UZ10%) =0}

for j = 2, 3, ...and write J := {j € N: Q; # 0}. For every j € J, the
construction of Paragraph 3 applied to ; provides an open subset Dg;.

We then set Dp = U;esDq, and introduce the following Fréchet space
G(M, Dr). Its elements are the functions f € F(Dr) which restriction to
Dq, belongs to Hoo(M, Dq;) for every j € J, endowed with the countable
system of semi-norms {||-|l|,, : m € N} defined by

(m+1)laf o(m+1)la]

2
= sup — n +su su
91l = s5p =57==ID*(Flar)linor + 530 sup 37

D fll g -

Theorem 5.2 Let F be a proper closed subset of R™.

If there is a continuous linear extension map E: Ean(F) — Enn(R™),
the following assertions are equivalent:
(1) there also is such map Ey from Ean(F) into G(M, Dr);
(2) for every bounded subset B of R", the boundary of the union of the con-
nected components of R®\ F having non empty intersection with B is compact.

Proof. (1) = (2). The argument of Frerick and Vogt developed in [5]
applies.

(2) = (1). I F is compact or if R™\ F' is bounded, the condition (2) is
automatically satisfied and the previous theorem provides the result.

If F is not compact and if R™ \ F is not bounded, we proceed as follows.

If n > 2, as F is not compact, the condition (2) implies that all the
connected components of R"\ F' are bounded and, as R™\ F' is not bounded,
J is infinite. If n = 1, as F' is not compact, the condition (2) implies that
one and only one connected component w of {2 may be unbounded: it is
of the type | — 00, a] or |b, +oo[. We then choose a function ¢ € C(M,R)
identically 1 on a neighbourhood of [a, +0o[ or ] — 00, b] and 0 on | - 00, a—1]
or [b+ 1, +o0[ respectively and check that

Ey: &y (F) — Ean(R) o —.Ep
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is a continuous linear extension map such that (Es-)|q; is a continuous linear
map from & ap(F) into C(M, ;) for every j € J.

So up to a substitution, we may very well suppose that, for every j € J,
(E-)|q, is a continuous linear map from &g (F) into C(M, ;).

Now we apply the Theorem 4.3 for every 7 € J and get continuous linear
extension maps T, from C(M, ;) into Heo(M, D).

To every jet ¢ € Ear)(F), we then associate the function Ej¢p defined on
R* U Dp by

{ (Brp)(x) = (Ep)(=), Vz € F,
(B1p)(2) = Ta,((Ep)le;)(2), Vz€ Dq,,j€J

It is straightforward to check that E; so defined is a continuous linear
extension map from &gy (F) into G(M, Dr)4

6 Roumieu type extensions

Definitions. Let Q be a proper open subset of R™. ;

We recall the definition of the Hausdorff LB-spaces C{M, Q} = C{M,, 2}
introduced in the Paragraph 4 of [9].
, For every m € N, C,,{ M, Q} is the Banach space con31st1ng of the C*-
functions f on  such that "

ID*fllg

170l = sup gl < oo

endowed with the norm [[|-]}] ; C{M , §2} is the inductive limit of these spaces
Cn{M,Q}. :

It is a direct matter to introduce by the same procedure the following
Hausdorff LB-space: Hoo{M,U}.

Given a proper open subset U of C* and positive integers m and %,
Fi{M,b,, UU} is the vector space of the functions f defined on b, UU such
that
(a) flom € C®(bn);

(b) flv € H(U);
(b) lim,_ D*(flv)(2z) = D*(f|gn)(z) for every a € N§ and & € O (R*NT);

b \U D U
= su sup - < 0,
“f”k ael\% klalMa] ael\% k]alMlo‘]
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endowed of course with the norm ||-|,.

We then define F{M, b,, U U} as the inductive limit of the Banach spaces
Fi{ M, b, UU} and finally F{M, U} as the projective limit of the LB-spaces
F{M, b, UU}.

Proposition 6.1 a) For every m € N, there is Cy, > 0 such that
DG (u+ v, f) = DGy (u, )] < Cm(m + 1) Mgy [II 111,

for every f € Cp{M,Q}, u+iv € Do, a € N} andr € {1,...,m}.
b) For everym €N, f € Cp,{M,Q}, r € N, o € N2 and u+ v € Dg,
one has

| D% Gontr (u + 80, f) = DG, )] < 270 (m+ 1) Mgy [I£11,, -

Proof. It is a direct consequence of the Lemma 4.1, of the inequality
(15) of the Proposition 9 of [9] and of the requirement (3) of the definition
of the numbers A, .3

Now comes the appropriate key result.

Theorem 6.2 There is a continuous linear map Tq from C{M,Q} into
Hoo{M, Dq} such that for every f € C{M,Q}, e >0 and s €N, there is a
compact subset K of § such that

|D*(Taf)(u+iv) - DPf(u)| < e

for every u+iv € Dq and a € N§ verifyingu € Q\ K and|a| <s.
In fact, for every m € N, Tq is a continuous linear map from C,,{M,Q}
mnto H4m,oo{M, DQ}'

Proof. The proof is quite similar to the one of the Theorem 4.3; we
just indicate the appropriate modifications.

For every f € C{M,Q}, the Proposition 16 of [9] asserts that G(, f) is
a holomorphic function on Q* hence on Dgq. The continuity of the map Tq
from C{M,Q} into Heo{M, 2} (and more precisely from C,,{M,Q} into
Hamoo{M,Q} for every m € N) is provided by the Proposition 15 of [9] and
the Proposition 6.1 since they lead to

ID*(Tof)(u +i0)| < (b +mC +27) (4m)* Mig 1 £,

386



for every meN, f € C,,{M,Q}, u+iw € D and o € N§.

To establish the second part of the statement, one has just to substitute
the Theorem 4 of [9] to the use of the Theorem 1 of [9], the part b) of the
Proposition 6.1 to the use of part b) of the Proposition 4.2 as well as the
inequality (15) of the Proposition 9 of [9] to the use of the inequality (3) of
the Proposition 1 of [9]4

Now we are ready to get the extension results.

Theorem 6.3 Let F' be a proper closed subset of R™.

If F is compact or if R*\ F is bounded, then the existence of a continuous
linear extension map E from Engy(F) into Eary(R™) implies the existence
of such a map from Eqapy(F) into F{M, Dgn\r}.

Proof. a) If R*\ F is bounded, we proceed as follows.

We first choose mg € N such that the closure of R™ \ F' is contained in
the interior of by,,. For every positive integers m > mq and k, we then define
the map Trmi on & ary(bm) by

Trmre)(x) = ¢(2), Vz € F b,
(Temirp)(z) = Temr(olre\r)(2), Vz € Dgmr

(as by, \ F = R™\ F for every integer m > my, this makes sense); it clearly is
a continuous linear map from & (ar} (by) into Fuu{M, by U Dgm\r}. There-
fore, for every integer m > myg, the map Tk, it canonically defines from
Eiany(by,) into F{M  b,, U Dgn\r} also is continuous and linear, as well as fi-
nally their canonical restriction Tr from Eary(R™) into F{M, Dg~\r}. Hence
the conclusion by consideration of the map TrFE.

b) If F is compact, we first choose a function ¥ € & (R") identically
1 on a neighbourhood of F with compact support H and a positive integer
mg such that H C (by,,)°. For every positive integers m > mg and k, it is a
direct matter to check that the map

Myt €y (bm) = Co{ MLRY); ¢ by

is continuous and linear. So for every integer m > myg, the map My, they
canonically define from Eary(bm) into C{M,R"} also is continuous and lin-
ear, as well as finally their canonical restriction My from S{M}(R”) into
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C{M,R"}. In this way so far we have obtained a new continuous linear
extension map: the map MyFE from Eqy(F) into C{M,R"}.
Now for every positive integers m > mg and K, the map

Trmk: Co{M,R"} — Fy{M, by U Dgn\r}

(p}_){cp on F,

defined by

TRn\F((p!Rn\\F) on D]R"\F

has a meaning and clearly is continuous and linear, as well as the canonical
maps
Trm: C{M, Rn} - f{M, b U DRn\F}

and ,
Tp: C{M,R"} — F{M, Dgnr}

they successively define.
Hence the conclusion by consideration of the map TF MyE §

In order to get a result for the general case, i.e. when F is a proper closed
subset of R™, we need of course to introduce a space: G{M, Dr}. For this
purpose, we use the same notations Q;, J and Dp as in the definition of
the space G(M, Dr). Next we denote by Dj(m) the union of the unbounded
connected components of R” \ F with the open subsets Dg, contained in
by,. Then for every positive integers m and k, we define the Banach space
Ge{M, by U Djomy} as the vector space of the functions f defined on by, U
D,y such that
(8) flom € C=(bm);

(b) f1Djimy € Hoo{ M, Djmy};
(c) im, ., Da(lej(m))(Z) = D%(f|p,.)(z) for every a € N and element z of
O~ (b \ Dj(m)); Do
. bmUD;(m)
@ il = sup —gemp— <
endowed of course with the norm ||||,.

Finally we introduce the LB-space G{M,bm U Djimy} as the inductive
limit of these Banach spaces and G{M, Dr} as the projective limit of these
LB-spaces.

Now everything is set up to state the result.
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Theorem 6.4 Let F be a proper closed subset of R™.

If there is a continuous linear extension map E: Eqany(F) — Eqary(R™),
the following assertions are equivalent:
(1) there also is such a map Ep from Ery(F) into G{M, Dr};
(2) for every bounded subset B of R™, the boundary of the union of the con-
nected components of R"\ F' having non empty intersection with B is compact.

Proof. (1) = (2). The consideration of the map (Ez-)|g~ tells us that
the values of E are real-analytic on R™\ F’ and the argument of Frerick and
Vogt applies.

(2) = (1). The proof of the Theorem 5.2 can be adapted to this situation.
The map E; coincides with My E where M,, is defined by

My: Epny(R) — Eany(R);  f o of

and is clearly a continuous linear map.

So again for every j € J, we may very well suppose that (E)lq, is a
continuous linear map from Eqpry(F) into C{M, Q;}. Therefore we can in-
troduce the map E; and it is a direct matter to check that it suits our

purpose.g

7 The weighted spaces case

In this paragraph we indicate how to treat the case when the ultradifferen-
tiable jets and functions are defined by means of a weight. The idea is to
apply the same method, using the results of [10] instead of those of [9].

Definitions. For the definition of a weight, we use the modification
introduced by Braun, Meise and Taylor in [3] to Beurling’s method of {1]. So
a weight is a function w from [0, +o0o[ into itself which is continuous, increases
and verifies the following conditions:

(wl) there is [ > 1 such that w(2¢t) < (1 + w(t)) for every ¢ > 0;
(w2) [ eY dt < oo;

(w3) lims oo ln‘f,l(;ﬂ =0;

(w4) the function ¢(-) = w(e’) is convex on [0, +oo|.

By the Proposition 1.2(b) of [2], there is then a weight 0 < w such that

o(1) =0 and o(t) = w(t) for large ¢t. As in what follows, the values of w(t)
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are used only for large ¢, we are going to suppose moreover that we have
w(1) = 0 hence ¢(0) = 0.

The Young’s conjugate ¢* of ¢ is the function defined on [0, +oo[ by
©*(y) = sup,>o (zy — ¢(z)). It is a convex and increasing function which
verifies ¢*(0) = 0; moreover ¢*(y)/y increases and lim,_ ¢*(y)/y = oo.

The condition (w1) of the definition of a weight provides the existence of
a positive integer jo such that p(z+1) < jo((z)+1) for every > 0. Finally
by the Lemma 1.4 of [3], there is yo > jo such that ¢*(y)—y = jow*(¥/j0) — Jo
for every y > 0. '

As we will use [10] to play the fundamental role that [9] had in the M-
case, we refer to [10] for the definition of the spaces £, (K) and &y (K)
for K a non empty compact subset of R”, £y(R") and £} (R™), as well as
C{w, ) and C{w, Q} for Q a proper open subset of R®. Moreover if F is a
proper closed subset of R”, we define the spaces ) (F) and £ (F) as the
projective limits of the spaces Ew)(F Nby) and Egy(F Nby,) respectively.

Now we follow the pattern of the M -case.

So the first thing to do is to obtain the equivalent of the construction
of the open subset Dg of C" while preserving the inequalities established
in [10]. This is direct: one has just to proceed as in Paragraph 3, replacing
the material coming from [9] by the corresponding one of [10].

In what follows the notation Dq will refer to this new open subset of C™.

The next goal is to get the key result about C(w, (). The use of the
inequality 5 of [10], of the Lemma 4.1 and of the requirement (3) of the
definition of the numbers \, lead directly to the following fact.

Proposition 7.1 a) For every integer m > jo, there is Cp, > 0 such that
i TR
|DPG, (u+ i, £) — DGy (u, )] < Crne? ™7 Gtm) || £,
for every f € C(w,Q), u+iv € Dg, « € N? andr € {1,...,m}, where p(m)
denotes the integral part of m/d.
b) For every integer m > jo, there is a constant g, > 0 such that, for

every f € C(w,Q), r € N, o € N} and u + iv € Dq, one has

, —(mar v( el
| D*Ginr (u+ i, £) = DG (0, )| < 2747 gne? ™9 G £,

390



Definition.  Given a proper open subset U of C", we designate by
Hoo(w, U) the vector space of the holomorphic functions g on U such that,
for every m € N,

|9, == s ID%g]ly ™" () < oo,

endowed with the Fréchet space structure coming from {}-|,, : m € N}.
Now everything is set up to state the key result.

Theorem 7.2 For every proper open subset 0 of R”, there is a con-
tinuous linear map Tq from Clw, ) into Heo(w, Dq) such that for every
feCw,N), e>0and s €N, there is a compact subset K of Q) such that

|D*(Taf)(u+dv) — D*f(u)] < e
for every u+iv € Dq and a € N} verifying u € Q\ K and |o| < s.

Proof. By the Proposition 6 of [10], Tqf is a holomorphic function on
2* hence on Dq. Of course T is a linear map; its continuity is established
as in the proof of the Theorem 4.3 by use of the Proposition 5 of [10] instead
of the Proposition 7 of [9].

To obtain the second part, one has just to proceed as in the proof of the
Theorem 4.3 substituting the Theorem 1 of [10] to the Theorem 1 of [9], the
part b) of the Proposition 7.1 to that of the Proposition 4.2 as well as the
inequality 5 of [10] to the inequality 3 of [9] g

Definition. Given a proper open subset U of C", F(w, U) is the vec-
tor space of the elements f of F(U) such that for every m € N, :

—mpr(al
1fll := sup D% flly, 0 €™ ) < o0,
aeNg

endowed with the Fréchet space structure coming from the system of semi-

norms {||-||,, : m € N}.
An easy adaptation of the proof of the Theorem 5.1 leads then to the

following result.

Theorem 7.3 Let F' be a proper closed subset of R™.

If F is compact or if R™\ F is bounded, then the ezistence of a continuous
linear extension map from &\ (F) into £,y (R™) implies the existence of such
a map from £ (F) into F(w, Dra\r) 4
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Definition. Let us use the notations §;, J and Dr as in the definition
of the space G(M, Dr). We then define the Fréchet space G(w, Dr) as the
vector space of the elements f € F(Dr) which restriction to D, belongs to
Hoo(w, Dg,) for every j € J, endowed with the countable system of semi-
norms {|[|-{l,,, : m € N} defined by

e~ lad o -1l
WAL, = sup IDFlly, nr & ™ (%) + sup sup [D*fp, €™ ).
j<m aeNg

This time a straightforward modification of the proof of the Theorem 5.2
leads to the folowing result.

Theorem 7.4 Let F be a proper closed subset of R™.

If there is a continuous linear extension map from E(F) into £y (R™),
the following assertions are equivalent:
(1) there also is such map from &) (F') into G(w, Dr);
(2) for every bounded subset B of R", the boundary of the union of the
connected components of R™ \ F having non empty intersection with B is
compact.y

Now we turn our attention to the Roumieu type. Of course this time the
Paragraph 4 of [10] becomes the basic ingredient for the proofs. Guessing
that at this moment the method is well established, we limit ourselves to the
essential.

First of all, given a proper open subset U of C", one introduces the spaces
Hoo{w, U}, Fe{w, by UU}, F{w, by, UU} and F{w, U}. With the notations
of the Paragraph 6 in mind, one also introduces the spaces Gy {w, b, U Dj(m)},
G{w,bm U Djmy} and G{w, Dr}.

Now everything is at hand to state the results.

Proposition 7.5 a) For every m € N, there is Cy, > 0 such that
DG, (u+ v, ) — DG, (u, f)] < Ce®n® ™0 [ £
for every f € Cp{w,Q}, u+iv € Do, a €N§ andr € {1,...,m}.
b) For every m € N, there is a constant ln, > 0 such that, for every

f€Cniw,Q}, reN, a e N} andu+iv € Dq, one has

| D° Gy (04 10, ) = DG (u, )] S 27T oD ) £
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Theorem 7.6 For every proper open subset 2 of R", there is a con-
tinuous linear map To from C{w,Q} into Heo{w, Do} such that for every
f € C{w,Q}, e > 0 and s € N, there is a compact subset K of  such that

|D*(Taf)(u+iv) — D°f(u)| S ¢

for every u + v € Dq and o € N verifying u € Q\ K and |a| < s.
In fact, for every m € N, Tq, is a continuous linear map from Cp{w, 2}
wnto ngm,oo{“’, DQ}I

Theorem 7.7 Let F be a proper closed subset of R™ for which there is a
continuous linear extension map from Eqy (F) into Ery(R™).

a) If F is compact or if R"\ F is bounded, then there also is such a map
Jrom Ey(F) into F{w, Dgm\r}.

b) The following assertions are equivalent:
(1) there also is such map from Egy(F) into G{w, Dr};
(2) for every bounded subset B of R™, the boundary of the union of the
connected components of R™ \ F having non empty intersection with B is
compact.g
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