A NOTE ON A CLASS OF ANALYTIC FUNCTIONS IN THE UNIT DISK II *

SHIGEYOSHI OWA

ABSTRACT. Let $A(\alpha)$ be the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk | and satisfy

$$|f(z)/z - 1| < \alpha$$
 ($z \in U$)

for some α (0 < $\alpha \leq$ 1). The object of the present paper is to show some distortion theorems for the fractional calculus of f(z) belonging to the class $A(\alpha)$.

I. INTRODUCTION

Many essentially equivalent definitions of the fractional calculus (that is, the fractional integrals and the fractional derivatives) have been given in the literature (cf., e.g., [2], [4], [5], [8], [9], and [10]). We find it convenient to recall here the following definitions which were used by Owa [6].

(1.1)
$$D_{z}^{-\lambda}f(z) = \frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta,$$

^{*} Présenté par H. Garnir, le 15 mars 1984.

where $\lambda > 0$, f(z) is an analytic function in a simply-connected region of the z-plane containing the origin and the multiplicity of $(z - \zeta)^{\lambda-1}$ is removed by requiring $\log(z - \zeta)$ to be real when $(z - \zeta) > 0$.

DEFINITION 2. The fractional derivative of order λ is defined by

$$(1.2) D_z^{\lambda} f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d\zeta ,$$

where $0 < \lambda < 1$, f(z) is an analytic function in a simply-connected region of the z-plane containing the origin and the multiplicity of $(z - \zeta)^{-\lambda}$ is removed by requiring $\log(z - \zeta)$ to be real when $(z - \zeta) > 0$.

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative of order $(n + \lambda)$ is defined by

$$D_z^{n+\lambda}f(z) = \frac{d^n}{dz^n} D_z^{\lambda}f(z) ,$$

where $0 < \lambda < 1$ and $n \in \mathbb{N}_0 = \{0, 1, 2, \cdots\}$.

Let $A(\alpha)$ denote the class of functions of the form

(1.4)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $U = \{z: |z| < 1\}$ and the satisfy the following condition

$$(1.5) \qquad \left| \begin{array}{c} f(z) \\ \hline z \end{array} \right| - 1 \qquad \langle \alpha \rangle \qquad (z \in \emptyset)$$

for some α (0 < $\alpha \le 1$).

This class $\mathbb{A}(\alpha)$ was studied by Padmanabhan [7] and Chandra and Singh [1].

Now, we need the following lemma by Nehari [3].

(1.6)
$$|\phi'(z)| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2}$$
 $(z \in U).$

2. DISTORTION THEOREMS

<u>THEOREM I.</u> Let the function f(z) defined by (1.4) belong to the class $A(\alpha)$. Then we have

$$(2.1) \qquad |D_{\mathbf{z}}^{1+\lambda} \mathbf{f}(\mathbf{z})| \ge \operatorname{Max} \left\{ 0, \frac{1}{\Gamma(2-\lambda)|\mathbf{z}|^{\lambda}} \right\} (1-\lambda)$$

$$- (2 - \lambda)\alpha|z| - \frac{\alpha|z|^2}{1 - |z|^2} \right\}$$

and

$$(2.2) \quad |D_{\mathbf{z}}^{1+\lambda} \mathbf{f}(\mathbf{z})| \leq \frac{1}{\Gamma(2-\lambda)|\mathbf{z}|^{\lambda}} \left\{ (1-\lambda) + (2-\lambda)\alpha|\mathbf{z}| + \frac{\alpha|\mathbf{z}|^{2}}{1-|\mathbf{z}|^{2}} \right\}$$

for $0 < \alpha \le 1$, $0 < \lambda < 1$ and $z \in U - \{0\}$.

PROOF. Let the function g(z) be defined by

(2.3)
$$g(z) = \frac{\Gamma(2 - \lambda)z^{\lambda}D_{z}^{\lambda}f(z)}{z} - 1,$$

where $0 < \lambda < 1$. Then g(z) is analytic in the unit disk \bigcup and has simple zero at the origin. Consequently we can write that

(2.4)
$$g(z) = \frac{\Gamma(2-\lambda)z^{\lambda}D_{z}^{\lambda}f(z)}{z} - 1 = z\phi(z) ,$$

where $\phi(z)$ is an analytic function in the unit disk U and satisfies $|\phi(z)| < \alpha$ for $z \in U$. Further we know that

$$(2.5) \qquad \left| \begin{array}{c} \phi'(z) \\ \alpha \end{array} \right| \leq \frac{1 - \left|\phi(z)\right|^2/\alpha^2}{1 - \left|z\right|^2}$$

for $0 < \alpha \le 1$ and $z \in U$ by means of Lemma.

Differentiating both sides of (2.4), we can show that

(2.6)
$$\Gamma(2 - \lambda)z^{1+\lambda}D_{z}^{1+\lambda}f(z) = (1 - \lambda)\Gamma(2 - \lambda)z^{\lambda}D_{z}^{\lambda}f(z) + z^{2}\phi(z) + z^{3}\phi'(z)$$

$$= z(1 - \lambda)(1 + z\phi(z)) + z^{2}\phi(z) + z^{3}\phi'(z)$$

$$= z(1 - \lambda) + (2 - \lambda)z^{2}\phi(z) + z^{3}\phi'(z).$$

hence further,

(2.7)
$$D_z^{1+\lambda}f(z) = \frac{1}{\Gamma(2-\lambda)z^{\lambda}} \{(1-\lambda) + (2-\lambda)z\phi(z) + z^2\phi'(z)\}.$$

Thus we obtain two estimates which we require, because, with the aid of (2.5), we have

(2.8)
$$|\phi'(z)| \leq \frac{\alpha\{1 - |\phi(z)|^2/\alpha^2\}}{1 - |z|^2}$$

$$\leq \frac{\alpha}{1 - |z|^2}$$

for $z \in U$. This completes the proof of the theorem.

THEOREM 2. Let the function f(z) defined by (1.4) belong to the class $A(\alpha)$. Then we have

$$(2.9) \quad |D_{\mathbf{z}}^{1-\lambda}\mathbf{f}(\mathbf{z})| \ge \operatorname{Max} \left\{ 0, \frac{|\mathbf{z}|^{\lambda}}{\Gamma(2+\lambda)} \left\{ (1+\lambda) - (2+\lambda)\alpha|\mathbf{z}| - \frac{\alpha|\mathbf{z}|^2}{1-|\mathbf{z}|^2} \right\} \right\}$$

and

$$(2.10) \quad |D_{\mathbf{z}}^{1-\lambda}\mathbf{f}(\mathbf{z})| \leq \frac{|\mathbf{z}|^{\lambda}}{\Gamma(2+\lambda)} \left\{ (1+\lambda) + (2+\lambda)\alpha|\mathbf{z}| + \frac{\alpha|\mathbf{z}|^2}{1-|\mathbf{z}|^2} \right\}$$

for $0 < \alpha \le 1$, $\lambda > 0$ and $z \in U$.

PROOF. Let the function h(z) be defined by

(2.11)
$$h(z) = \frac{\Gamma(2+\lambda)z^{-\lambda}D_z^{-\lambda}f(z)}{z} - 1$$

for $\lambda > 0$. Then we can show two estimates of the theorem in the same way as in the proof of Theorem 1.

3. Functions with initial zero coefficients

In this section, we show two distortion theorems for functions $f(z) \in A(\alpha)$ with initial zero coefficients.

THEOREM 3. Let the function f(z) defined by

(3.1)
$$f(z) = z + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in \mathbb{N} = \{1, 2, 3, \dots\})$$

belong to the class $A(\alpha)$. Then we have

(3.2)
$$|D_z^{1+\lambda}f(z)| \ge \text{Max} \left\{ 0, \frac{1}{\Gamma(2-\lambda)|z|^{\lambda}} \left\{ (1-\lambda) - (p+1-\lambda)\alpha|z|^p - \frac{\alpha|z|^{p+1}}{1-|z|^2} \right\} \right\}$$

and

$$|D_{z}^{1+\lambda}f(z)| \leq \frac{1}{\Gamma(2-\lambda)|z|^{\lambda}} \left\{ (1-\lambda) + (p+1-\lambda)\alpha|z|^{p} + \frac{\alpha|z|^{p+1}}{1-|z|^{2}} \right\}$$

for $0 < \alpha \le 1$, $0 < \lambda < 1$ and $z \in U - \{0\}$.

PROOF. Let the function G(z) be defined by

(3.4)
$$G(z) = \frac{\Gamma(2-\lambda)z^{\lambda}D_{z}^{\lambda}f(z)}{z} - 1,$$

where 0 < λ < 1. Then G(z) is analytic in the unit disk | and has p zeros at the origin. Hence we can write that

(3.5)
$$G(z) = \frac{\Gamma(2 - \lambda)z^{\lambda}D_{z}^{\lambda}f(z)}{z} - 1 = z^{p}\phi(z) ,$$

where $\phi(z)$ is an analytic function in the unit disk || and satisfies $||\phi(z)|| < \alpha$ for $z \in |$. Consequently we obtain that

(3.6)
$$D_{z}^{1+\lambda}f(z) = \frac{1}{\Gamma(2-\lambda)z^{\lambda}} \{(1-\lambda) + (p+1-\lambda)z^{p}\phi(z) + z^{p+1}\phi'(z)\},$$

which gives two estimates of the theorem with (2.5). Thus we have the theorem

REMARK I. Let p = 1 in Theorem 3, then we have Theorem 1.

THEOREM 4. Let the function f(z) defined by (3.1) belong to the class $A(\alpha)$. Then we have

$$(3.7) \quad |D_{\mathbf{z}}^{1-\lambda}f(\mathbf{z})| \ge \operatorname{Max} \left\{ 0, \frac{|\mathbf{z}|^{\lambda}}{\Gamma(2+\lambda)} \right\} \left\{ (1+\lambda) - (p+1+\lambda)\alpha|\mathbf{z}|^{p} - \frac{\alpha|\mathbf{z}|^{p+1}}{1-|\mathbf{z}|^{2}} \right\}$$

and

$$(3.8) \quad |D_{\mathbf{z}}^{1-\lambda}f(\mathbf{z})| \leq \frac{|\mathbf{z}|^{\lambda}}{\Gamma(2+\lambda)} \left\{ (1+\lambda) + (p+1+\lambda)\alpha|\mathbf{z}|^{p} + \frac{\alpha|\mathbf{z}|^{p+1}}{1-|\mathbf{z}|^{2}} \right\}$$

for $0 < \alpha \le 1$, $\lambda > 0$ and $z \in U$.

The proof of Theorem 4 is obtained by using the same technique as in the proof of Theorem 3.

REMARK 2. Let p = 1 in Theorem 4, then we have Theorem 2.

REMARK 3. We have not been able to obtain sharp estimates $\underline{\text{for}} \ | D_z^{1+\lambda} f(z) | \ \underline{\text{and}} \ | D_z^{1-\lambda} f(z) | \ \underline{\text{in our theorems}}.$

REFERENCES

- [1] S. Chandra and P. Singh, On certain classes of the analytic functions, Indian J. Pure Appl. Math., 4(1973), 745 748.
- [2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi,
 Tables of Integral Transforms, Vol. II, McGraw-Hill Book Co.,
 New York, London and Toronto, 1954.
- [3] Z. Nehari, Conformal mapping, McGraw Hill Book Co., New York, 1954.
- [4] K. Nishimoto, Fractional derivative and integral. Part I, J. Coll. Engng. Nihon Univ., B-17(1976), 11 19
- [5] T. J. Osler, Leibniz rule for fractional derivative generalized and an application to infinite series, SIAM J. Appl. Math., 18(1970), 658 - 674.
- [6] S. Owa, On the distortion theorems. I, Kyungpook Math. J., 18(1978), 53 - 59.
- [7] K. S. Padmanabhan, On the radius of univalence and starlikeness for certain analytic functions, J. Indian Math. Soc., 29(1965), 71 - 80.
- [8] B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, in Fractional Calculus and Its Applications (B. Ross, ed.), Springer-Verlag, Berlin, Heidelberg and New York, 1975, 1 - 36.
- [9] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135 143.
- [10] H. M. Srivastava and R. G. Buschman, Convolution Integral Equations with Special Function Kernels, John Wiley and Sons, New York, London, Sydney and Toronto, 1977.

Department of Mathematics, Kinki University, Osaka, Japan.

